Eichenlaub, Amy B. 2007. Exploration of Genetic Links Between Breccia

Total Page:16

File Type:pdf, Size:1020Kb

Eichenlaub, Amy B. 2007. Exploration of Genetic Links Between Breccia EXPLORATION OF GENETIC LINKS BETWEEN BRECCIA PIPES AND PORPHYRY COPPER DEPOSITS IN A LARAMIDE HYDROTHERMAL SYSTEM, SOMBRERO BUTTE, PINAL COUNTY, ARIZONA By Amy B. Eichenlaub ________________ A Manuscript Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 2007 2 STATEMENT BY THE AUTHOR This thesis has been submitted in partial fulfillment of requirements for the Master of Science degree at The University of Arizona and is deposited in the Antevs Reading Room to be made available to borrowers, as are copies of regular theses and dissertations. Brief quotations from this manuscript are allowable without special permission, provided that accurate acknowledgment of the source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the Department of Geosciences when the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. _______________________________________________ ___________________ (author’s signature) (date) APPROVAL BY RESEARCH COMMITTEE As members of the Research Committee, we recommend that this thesis be accepted as fulfilling the research requirement for the degree of Master of Science. Eric Seedorff___________________________________ __________________ Major Advisor (type name) (signature) (date) Mark D. Barton_________________________________ __________________ (type name) (signature) (date) Spencer R. Titley________________________________ __________________ (type name) (signature) (date) 3 ACKNOWLEDGMENTS I would like to thank Eric Seedorff for his assistance in all aspects of this project; particularly for his time in carefully editing of this manuscript. I would also like to thank Mark D. Barton and Spencer R. Titley for comments and advise on previous versions of this manuscript. I am grateful to Bell Resources Corporation for their financial support for my graduate work. I would also like to especially thank Timothy Marsh for his ongoing support and input throughout this study. I would like to thank many others that assisted me during my graduate work. Thanks to Doug Kriener for his help in formatting and general support during writing. Thanks to David Keeler for helping to keep my sanity and making sure that I took lunch breaks. Thank you to Ken Dominick for his assistance in the use of the electron microprobe and Gary Salais for his careful sample preparation. 4 DEDICATION To Dr. & Mrs. Thomas H. Lake, my grandfather and grandmother who funded my undergraduate education and have supported me throughout my life, To my father, mother, and brother for their love and support, To Kevin for his unconditional love and understanding throughout the past few years, To T.S. Laudon for his inspiration. ‘There’s a land where the mountains are nameless, And the rivers all run God knows where; There are lives that are erring and aimless, And deaths that just hang by a hair; There are hardships that nobody reckons; There are valleys unpeopled and still; There’s a land—oh, it beckons and beckons, And I want to go back and I will.’ Robert Service 5 TABLE OF CONTENTS LIST OF ILLUSTRATIONS ........................................................................................... 8 LIST OF TABLES .......................................................................................................... 10 ABSTRACT ..................................................................................................................... 11 INTRODUCTION .......................................................................................................... 13 MINING AND EXPLORATION HISTORY ............................................................... 16 GEOLOGIC OVERVIEW ............................................................................................. 18 STRUCTURAL SETTING ............................................................................................ 20 LOCAL GEOLOGY- THE AUDACIOUS AREA ...................................................... 22 Laramide volcanic rocks ............................................................................................... 22 Laramide intrusive rocks............................................................................................... 23 Tertiary volcanic rocks ................................................................................................. 24 METHODS AND APPROACH ..................................................................................... 25 Field mapping and core logging ................................................................................... 25 Petrographic analysis .................................................................................................... 26 Electron microprobe analysis ........................................................................................ 27 Geochemical analysis of drill core ................................................................................ 27 BRECCIA PIPES ............................................................................................................ 29 Abundance, geometry, and dimensions of breccia pipes .............................................. 29 Weathering profile ........................................................................................................ 30 Fabric of breccias .......................................................................................................... 31 Clasts ......................................................................................................................... 31 6 TABLE OF CONTENTS-Continued Matrix-supported breccia .......................................................................................... 32 Clast-supported breccia ............................................................................................. 33 Petrographic and microprobe analysis .......................................................................... 33 Hypogene alteration of clasts and wall rocks ............................................................... 36 Grade distribution ......................................................................................................... 39 Geochemical comparison between breccias ................................................................. 41 PORPHYRY ENVIRONMENT .................................................................................... 43 Vein types ..................................................................................................................... 44 Alteration ...................................................................................................................... 44 Breccia pipes and porphyry copper deposits ................................................................ 45 Fluid sources for mineralization ................................................................................... 46 INTERPRETATION OF SOMBRERO BUTTE ......................................................... 48 Geochemistry ................................................................................................................ 48 Mineralizing source ...................................................................................................... 49 DISCUSSION .................................................................................................................. 51 Mechanism of breccia pipe formation .......................................................................... 51 Separation and collection of an aqueous phase ............................................................. 53 Conditions leading to preferential formation of breccia pipes ...................................... 54 Significance of breccia pipes to exploration for porphyry systems .............................. 55 CONCLUSIONS ............................................................................................................. 57 ACKNOWLEDGMENTS .............................................................................................. 59 7 TABLE OF CONTENTS-Continued REFERENCES ................................................................................................................ 60 FIGURE CAPTIONS ..................................................................................................... 67 APPENDIX I Actlabs geochemistry procedures……...………………………………89 APPENDIX II Electron microprobe data...………………………………………….100 APPENDIX III Sombrero Butte geologic summary logs……………..………..…...109 APPENDIX IV Electron microprobe X-ray distribution maps………….………...112 8 List of Illustrations FIGURE 1, General location map of the Sombrero Butte Project……………………….71 FIGURE 2, General geologic map of Sombrero Butte……………………………..........72 FIGURE 3, Outcrop photographs at Sombrero Butte……………………………………73 FIGURE 4, Generalized geologic cross section of Sombrero Butte, looking northwest…………………………………………………………………………………74 FIGURE 5, Generalized geologic cross section of Sombrero Butte, looking northeast………………………………………………………………………………….75 FIGURE 6, Fabrics of breccia………………………………….......................................76 FIGURE 7, Drill hole photographs from SB-03, Campstool breccia pipe……………....77 FIGURE 8, Drill hole photographs from SB-02, Magna breccia pipe…………………..78 FIGURE 9, Photomicrographs showing alteration at Sombrero
Recommended publications
  • A K-Feldspar Breccia from the MO-Cu Stockwork Deposit in the Galway Granite, West of Ireland
    Journal ofthe Geological Sociefy, London, Vol. 145, 1988, pp. 661-667, 4 figs, 2 tables. Printed in Northern Ireland A K-feldspar breccia from the MO-Cu stockwork deposit in the Galway Granite, west of Ireland J. M. DERHAM & M. FEELY Department of Geology, University College, Galway, Ireland Abstrart: A K-feldspar breccia, spatially associated with the MO-Cu mineralization of a stockwork in the Late Caledonian Galway Granite at Mace Head, is described for the first time. Detailed mapping reveals a network of breccia pods and veins over an area of approximately 6000 m’. The breccia is clast-supportedand is composed of sub-angular fragments of perthiticK-feldspar megacrysts (<10cm), granite and microgranodiorite clasts (<25 m) set in a matrix of quartz (<l cm), biotite (<5 cm) and apatite (<3 mm). Field and textural studies indicated that the feldspar megacrysts and granite clasts were brecciated and silicified as they were carried (to the present structural level) by hydrous K- and Si0,-rich fluids. The residue of these fluids crystallized to form the breccia matrix. The formation of the breccia predates the mineralized quartz veins of the MO-Cu stockwork. It is concluded that the breccia formation is genetically related to ore-forming processes in the Galway Granite. Breccia lithologies with a wide spectrum of characteristics of the batholith. It is composed of concentric arcs of are associated worldwide with molybdenumand other metal K-feldspar-rich and K-feldspar-poor varieties of theCarna concentrations especially in mineralized graniteterrains granodiorite (Fig. 1). (Sham 1978; Norman & Sawkins 1985; Scherkenbach et al. 1985;- Warnaars et al.
    [Show full text]
  • Bulletin of the Geological Society of America Vol
    BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA VOL. 69, PP. 1071-1073 AUGUST 1953 DEFINITION OF VOLCANIC BRECCIA BY RICHARD V. FISHER Common usage of the term breccia by most usefulness because of these various definitions' geologists limits it to a rock composed of not only in the matter of grade size but, far angular fragments. The lower-size limit of the more importantly, in the matter of genetic fragments is generally set at 2 mm, the limiting implications. Indeed, in the most recent size for granules and larger particles (Went- glossary of geologic terms (American Geological worth, 1922; 1935). Logically it should follow Institute, 1957), volcanic breccia has been that a volcanic breccia is a breccia composed of defined as a "more or less indurated pyroclastic angular volcanic fragments larger than 2 mm. rock (author's italics) consisting chiefly of Norton (1917, p. 162), in his classification of accessory and accidental angular ejecta 32 mm breccias, includes volcanic breccias under the or more in diameter lying in a fine tuff matrix." heading of subaerial breccias, although he does It is commonly recognized that volcanic not set a size limit for the fragments. He breccias may originate in a variety of ways further subdivides volcanic breccias (p. 170) (Anderson, 1933, p. 215-276; Wentworth and into flow breccia, which forms by fragmentation Williams, 1932, p. 32-33; Gilluly, Waters, and of lava during its flow, and tuff breccia "made up Woodford, 1951, p. 606), and apparently most of fragmental products of explosive eruptions." geologists use the term in a broad sense, but in Reynolds (1928, p.
    [Show full text]
  • Magmatism and the Baraboo Interval: Breccia, Metasomatism, and Intrusion
    MAGMATISM AND THE BARABOO INTERVAL: BRECCIA, METASOMATISM, AND INTRUSION by J.K. Greenbergl. ABSTRACT Breccia consisting of quartzite fragments surrounded by wh ite, vein quartz is known to occur in Wisconsin at several exposures of Baraboo-type metasedimentary rock. These quartzite breccias include those at Rock Springs on the north limb of the Baraboo Syncline, Hamilton Mound. Necedah, Battle Point, Vesper, Waterloo , and McCaslin Mountain. with the exception of McCaslin Mountain in the northeast, all the breccias occur in the central or south-central part of the state. Most of the brecciated quartzite has intrusive contact with plutonic rock. Various types of hydrothe�al alteration (metasomatism) are apparent in the brecciated outcrop and other exposures of quartzite intruded by granitic or dioritic magma . The most common metasomatic features are quartz crystal­ lined pockets and clay-mica segregations , feldspar porphyroblasts in altered quartz ite , hematite segregations , and quartz-tourmaline veinlets . A present interpretation of the breccias is that they are analogous to the stockwork of quartz veins produced around the upper levels of porphyry- copper mineralized plutons. During mag­ ma intrusion, the roof rock of quartzite was fractured and soaked in hyd rous granitic fluids. The fluids and their particular effects vary with distance from source plutons . Thus, as in some Wis­ consin examples quartz veins and breccia grade into pegmatite dikes as an intrusion is approached . Another possible analogue for the Wisconsin examp les are explosive breccias developed in quartzite above volatile-rich appinite intrusions . INTRODUCTION Several exposures of quart zite deposited during the Proterozoic Baraboo tectonic interval (Dott, 1983; Greenberg and Brown , 1983, 1984) contain breccia with a white vein·-quartz matrix.
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • Supergene Mineralisation of the Boyongan Porphyry Copper-Gold Deposit, Surigao Del Norte, Philippines
    Supergene Mineralisation of the Boyongan Porphyry Copper-Gold Deposit, Surigao del Norte, Philippines by Allan Maglaya Ignacio B.Sc. Geology, National Institute of Geological Sciences University of the Philippines Thesis submitted in partial fulfilment of the requirements of the Masters of Economic Geology Degree Centre for Ore Deposit Research, University of Tasmania December, 2005 DECLARATION OF ORIGINALITY This thesis contains no material which has been accepted for a degree of diploma by the University of Tasmania or any other institution, except by way of background information and duly acknowledged in the thesis, and contains no previous material previously pub- lished or written by another person except where due acknowledgement is given. Allan Maglaya Ignacio 01 December 2005 _________________________ STATEMENT OF AUTHORITY OF ACCESS This thesis may not to be made available for loan or copying for 1.5 years following the date this statement was signed. Following that time, the thesis may be available for loan and lim- ited copying in accordance with Copyright Act 1968. Allan Maglaya Ignacio 01 December 2005 _________________________ TABLE OF CONTENTS Page (s) LIST OF FIGURES …………………………………………………….. i - iii LIST OF APPENDICES ………………………………………………… iv ACKNOWLEDGMENTS ………………………………………………. v ABSTRACT ……………………………………………………………... vi - vii 1.0 INTRODUCTION ………………………………………………………. 1 - 8 1.1 Introduction …………………………………………………………. 1 1.2 Aims and Objectives ……………………………………………….. 1 1.3 Methods Employed …………………………………………………. 2 1.4 Location and Accessibility …………………………………………. 3 1.5 Climate ……………………………………………………………... 5 1.6 Previous Work ……………………………………………………… 5 2.0 GEOLOGICAL SETTING ………………………………………………. 9 - 37 2.1 Introduction ………………………………………………………. 9 2.2 Regional Tectonics …………….…………………………………. 9 2.3 Regional and Local Stratigraphy ………………………………... 11 2.3.1 Basement (Cretaceous-Paleogene) ………………………. 11 2.3.2 Bacuag Formation (Oliogocene-Miocene) .……………..
    [Show full text]
  • OIL & GAS GLOSSARY Anticline (Geology) Breccia Pipe (Geology
    OIL & GAS GLOSSARY Oil Seeps Anticline (Geology) Many oilfields have been found by the presence of oil seeping to the surface. Oil is literally seeping out of the ground. An arch-shaped fold in rock in which rock layers are upwardly convex. The oldest rock layers form the core of the fold, and outward from the core progressively younger rocks occur. Anticlines form many excellent Paleontology (Geology) hydrocarbon traps, particularly in folds with reservoir-quality rocks in their The study of fossilized, or preserved, remnants of plant and animal life. core and impermeable seals in the outer layers of the fold.A syncline is Changes in the Earth through time can be documented by observing the opposite type of fold, having downwardly convex layers with young changes in the fossils in successive strata and the environments in which rocks in the core. they formed or were preserved. Fossils can also be compared with their extant relatives to assess evolutionary changes. Correlations of strata Breccia Pipe (Geology) can be aided by studying their fossil content, a discipline called A cylindrical shape averaging 100-300 feet in diameter that originated in biostratigraphy. the Karst at the top of the Mississippian and extends vertically upward. Formation of the pipe was triggered by solution and removal of carbonate Production (Geology) material by circulating waters (through the porous Karst surface). The phase that occurs after successful exploration and development and during which hydrocarbons are drained from an oil or gas field. Cap Rock (Geology) Synonym: Top Seal A relatively impermeable rock, commonly shale, anhydrite or salt, that Reservoir Rock (Geology) forms a barrier, cap or seal above and around reservoir rock so that A subsurface body of rock having sufficient porosity and permeability to fluids cannot migrate beyond the reservoir.
    [Show full text]
  • PORPHYRY CU DEPOSITS (MODEL 17; Cox, 1986) by Leslie J. Cox
    PORPHYRY CU DEPOSITS (MODEL 17; Cox, 1986) by Leslie J. Cox, Maurice A. Chaffee, Dennis P. Cox, and Douglas P. Klein SUMMARY OF RELEVANT GEOLOGIC, GEOENVIRONMENTAL, AND GEOPHYSICAL INFORMATION Deposit geology Porphyry copper deposits contain copper, molybdenum, and gold minerals, disseminated or in a stockwork of small veinlets within a large mass of altered rock (Singer and Mosier, 1981). The host rock is commonly a pyrite-rich porphyry ranging in composition from granodiorite to tonalite, but alkalic porphyries are locally important. In the southwestern United States, where porphyry copper deposits are abundant, associated igneous rocks are mainly Mesozoic and Cenozoic. Older plutonic, volcanic, sedimentary, and metamorphic rocks intruded by these porphyries also host ore minerals; the highest grades are found in reactive rocks such as limestone, or rocks, such as diabase, which contain abundant iron-rich minerals prior to alteration. Porphyry deposits exhibit a characteristic pattern of hydrothermal alteration, which includes biotite and K-feldspar assemblages in the center and grades outward to chlorite, actinolite, and epidote assemblages. Most deposits have a late-stage alteration assemblage that contains abundant white mica, clay, and carbonate minerals. Examples Bingham, Utah (Lanier and others, 1978); San Manuel, Ariz. (Lowell and Guilbert, 1970); El Salvador, Chile (Gustafson and Hunt, 1975). Spatially and (or) genetically related deposit types Related deposit types (Cox and Singer, 1986) include porphyry copper, skarn-related (Model 18a), base-metal skarn (Model 18c), porphyry copper-gold (Model 20c), porphyry copper-molybdenum (Model 21a), polymetallic vein (Model 22c), polymetallic replacement (Model 19a), volcanic-hosted copper-arsenic-antimony (Model 22a), quartz- alunite gold (Model 25e), distal disseminated silver-gold (Model 19c; Cox, 1992), and gold-skarn deposits.
    [Show full text]
  • Porphyry Deposits
    PORPHYRY DEPOSITS W.D. SINCLAIR Geological Survey of Canada, 601 Booth St., Ottawa, Ontario, K1A 0E8 E-mail: [email protected] Definition Au (±Ag, Cu, Mo) Mo (±W, Sn) Porphyry deposits are large, low- to medium-grade W-Mo (±Bi, Sn) deposits in which primary (hypogene) ore minerals are dom- Sn (±W, Mo, Ag, Bi, Cu, Zn, In) inantly structurally controlled and which are spatially and Sn-Ag (±W, Cu, Zn, Mo, Bi) genetically related to felsic to intermediate porphyritic intru- Ag (±Au, Zn, Pb) sions (Kirkham, 1972). The large size and structural control (e.g., veins, vein sets, stockworks, fractures, 'crackled zones' For deposits with currently subeconomic grades and and breccia pipes) serve to distinguish porphyry deposits tonnages, subtypes are based on probable coproduct and from a variety of deposits that may be peripherally associat- byproduct metals, assuming that the deposits were econom- ed, including skarns, high-temperature mantos, breccia ic. pipes, peripheral mesothermal veins, and epithermal pre- Geographical Distribution cious-metal deposits. Secondary minerals may be developed in supergene-enriched zones in porphyry Cu deposits by weathering of primary sulphides. Such zones typically have Porphyry deposits occur throughout the world in a series significantly higher Cu grades, thereby enhancing the poten- of extensive, relatively narrow, linear metallogenic tial for economic exploitation. provinces (Fig. 1). They are predominantly associated with The following subtypes of porphyry deposits are Mesozoic to Cenozoic orogenic belts in western North and defined according to the metals that are essential to the eco- South America and around the western margin of the Pacific nomics of the deposit (metals that are byproducts or poten- Basin, particularly within the South East Asian Archipelago.
    [Show full text]
  • Sediment-Hosted Copper Deposits of the World: Deposit Models and Database
    Sediment-Hosted Copper Deposits of the World: Deposit Models and Database By Dennis P. Cox1, David A. Lindsey2 Donald A. Singer1, Barry C. Moring1, and Michael F. Diggles1 Including: Descriptive Model of Sediment-Hosted Cu 30b.1 by Dennis P. Cox1 Grade and Tonnage Model of Sediment-Hosted Cu by Dennis P. Cox1 and Donald A. Singer1 Descriptive Model of Reduced-Facies Cu 30b.2 By Dennis P. Cox1 Grade and Tonnage Model of Reduced Facies Cu by Dennis P. Cox1 and Donald A. Singer1 Descriptive Model of Redbed Cu 30b.3, by David A. Lindsey2 and Dennis P. Cox1 Grade and Tonnage Model of Redbed Cu by Dennis P. Cox1 and Donald A. Singer1 Descriptive Model of Revett Cu 30b.4, by Dennis P. Cox1 Grade and Tonnage Model of Revett Cu by Dennis P. Cox1 and Donald A. Singer1 Open-File Report 03-107 Version 1.3 2003, revised 2007 Available online at http://pubs.usgs.gov/of/2003/of03-107/ Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY 1 345 Middlefield Road, Menlo Park, CA 94025 2 Box 25046, Denver Federal Center, Denver, CO 80225 Introduction This publication contains four descriptive models and four grade-tonnage models for sediment hosted copper deposits. Descriptive models are useful in exploration planning and resource assessment because they enable the user to identify deposits in the field and to identify areas on geologic and geophysical maps where deposits could occur.
    [Show full text]
  • Heinrich&Candela TOG2 For
    Research Collection Book Chapter Fluids and Ore Formation in the Earth's Crust Author(s): Heinrich, Christoph A.; Candela, Philip A. Publication Date: 2014 Permanent Link: https://doi.org/10.3929/ethz-b-000095425 Originally published in: 13, http://doi.org/10.1016/B978-0-08-095975-7.01101-3 Rights / License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library This is the Green Open Access version of: Heinrich C.A., and Candela P.A. (2014) Fluids and Ore Formation in the Earth's Crust. In: Holland H.D. & Turekian K.K. (eds.) Treatise on Geochemistry, 2nd Edition, vol. 13 (Geochemistry of Mineral Deposits, S. D. Scott, ed.), p. 1-28. Original publication see http://dx.doi.org/10.1016/B978-0-08-095975-7.01101-3 Fluids and Ore Formation in the Earth’s Crust Christoph A. Heinrich1 and Philip A. Candela2 1 ETH Zurich, Department of Earth Sciences, and University of Zurich, Faculty of Mathematics and Natural Sciences, Clausiusstr. 25, 8092 Zurich, Switzerland 2 Laboratory for Mineral Deposits Research, Department of Geology, University of Maryland, College Park, MD,20742, USA Synopsis Ore deposits are rock volumes containing selected elements in sufficient concentration and quantity that they can Be extracted economically. Except for Fe and Al, all technically important metals and other elements are scarce, in total constituting less that 1% of the Earth’s crust. Depending on the element and its mineralogy, a 10- to 10,000-fold enrichment is required for economic extraction today.
    [Show full text]
  • Paleozoic–Mesozoic Porphyry Cu(Mo) and Mo(Cu) Deposits Within the Southern Margin of the Siberian Craton: Geochemistry, Geochronology, and Petrogenesis (A Review)
    minerals Review Paleozoic–Mesozoic Porphyry Cu(Mo) and Mo(Cu) Deposits within the Southern Margin of the Siberian Craton: Geochemistry, Geochronology, and Petrogenesis (a Review) Anita N. Berzina *, Adel P. Berzina and Victor O. Gimon V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the RAS, Koptyug Ave. 3, Novosibirsk 630090, Russia; [email protected] (A.P.B.); [email protected] (V.O.G.) * Correspondence: [email protected]; Tel.: +7-383-333-2304 Academic Editor: Maria Economou-Eliopoulos Received: 31 July 2016; Accepted: 21 November 2016; Published: 29 November 2016 Abstract: The southern margin of the Siberian craton hosts numerous Cu(Mo) and Mo(Cu) porphyry deposits. This review provides the first comprehensive set of geological characteristics, geochronological data, petrochemistry, and Sr–Nd isotopic data of representative porphyry Cu(Mo) and Mo(Cu) deposits within the southern margin of the Siberian craton and discusses the igneous processes that controlled the evolution of these magmatic systems related to mineralization. Geochronological data show that these porphyry deposits have an eastward-younging trend evolving from the Early Paleozoic to Middle Mesozoic. The western part of the area (Altay-Sayan segment) hosts porphyry Cu and Mo–Cu deposits that generally formed in the Early Paleozoic time, whereas porphyry Cu–Mo deposits in the central part (Northern Mongolia) formed in the Late Paleozoic–Early Mesozoic. The geodynamic setting of the region during these mineralizing events is consistent with Early Paleozoic subduction of Paleo-Asian Ocean plate with the continuous accretion of oceanic components to the Siberian continent and Late Paleozoic–Early Mesozoic subduction of the west gulf of the Mongol–Okhotsk Ocean under the Siberian continent.
    [Show full text]
  • Trace-Element Geochemistry of Molybdenite from Porphyry Cu Deposits of the Birgilda-Tomino Ore Cluster (South Urals, Russia)
    Mineralogical Magazine, May 2018, Vol. 82(S1), pp. S281–S306 Trace-element geochemistry of molybdenite from porphyry Cu deposits of the Birgilda-Tomino ore cluster (South Urals, Russia) 1,* 1 1,2 3 OLGA Y. P LOTINSKAYA ,VERA D. ABRAMOVA ,ELENA O. GROZNOVA ,SVETLANA G. TESSALINA , 4 4 REIMAR SELTMANN AND JOHN SPRATT 1 Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry Russian Academy of Sciences (IGEM RAS), Staromonetny per. 35, Moscow 119017, Russia 2 Institute of Experimental Mineralogy Russian Academy of Sciences (IEM RAS), Chernogolovka, Moscow region 142432, Russia 3 John de Laeter Centre for Isotope Research & The Institute for Geoscience Research (TIGeR), Curtin University, Kent St, Bentley, WA 6102, Australia 4 Natural History Museum, London SW7 5BD, UK [Received 16 January 2017; Accepted 23 December 2017; Associate Editor: Krister Sundblad] ABSTRACT Mineralogical, electron microprobe analysis and laser ablation-inductively coupled plasma-mass spectrometry data from molybdenite within two porphyry copper deposits (Kalinovskoe and Birgilda) of the Birgilda-Tomino ore cluster (South Urals) are presented.† The results provide evidence that molybdenites from these two sites have similar trace-element chemistry. Most trace elements (Si, Fe, Co, Cu, Zn, Ag, Sb, Te, Pb, Bi, Au, As and Se) form mineral inclusions within molybdenite. The Re contents in molybdenite vary from 8.7 ppm to 1.13 wt.%. The Re distribution within single molybdenite flakes is always extremely heterogeneous. It is argued that a temperature decrease favours the formation of Re-rich molybdenite. The high Re content of molybdenite observed points to a mantle-derived source. K EYWORDS: molybdenite, LA-ICP-MS, porphyry copper deposits, Urals.
    [Show full text]