Onchocerciasis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
12 Retina Gabriele K
299 12 Retina Gabriele K. Lang and Gerhard K. Lang 12.1 Basic Knowledge The retina is the innermost of three successive layers of the globe. It comprises two parts: ❖ A photoreceptive part (pars optica retinae), comprising the first nine of the 10 layers listed below. ❖ A nonreceptive part (pars caeca retinae) forming the epithelium of the cil- iary body and iris. The pars optica retinae merges with the pars ceca retinae at the ora serrata. Embryology: The retina develops from a diverticulum of the forebrain (proen- cephalon). Optic vesicles develop which then invaginate to form a double- walled bowl, the optic cup. The outer wall becomes the pigment epithelium, and the inner wall later differentiates into the nine layers of the retina. The retina remains linked to the forebrain throughout life through a structure known as the retinohypothalamic tract. Thickness of the retina (Fig. 12.1) Layers of the retina: Moving inward along the path of incident light, the individual layers of the retina are as follows (Fig. 12.2): 1. Inner limiting membrane (glial cell fibers separating the retina from the vitreous body). 2. Layer of optic nerve fibers (axons of the third neuron). 3. Layer of ganglion cells (cell nuclei of the multipolar ganglion cells of the third neuron; “data acquisition system”). 4. Inner plexiform layer (synapses between the axons of the second neuron and dendrites of the third neuron). 5. Inner nuclear layer (cell nuclei of the bipolar nerve cells of the second neuron, horizontal cells, and amacrine cells). 6. Outer plexiform layer (synapses between the axons of the first neuron and dendrites of the second neuron). -
Trichinosis (Trichinellosis) Case Reporting and Investigation Protocol
Wisconsin Department of Health Services Division of Public Health P-01912 (Rev 08/2017) Communicable Disease Case Reporting and Investigation Protocol TRICHINOSIS (TRICHINELLOSIS) I. IDENTIFICATION AND DEFINITION OF CASES A. Clinical Description: A parasitic disease caused by ingestion of Trichinella species larvae. The disease causes a variety of clinical manifestations. Common signs and symptoms among symptomatic persons include eosinophilia, fever, myalgia, and periorbital edema. B. Laboratory Criteria: Confirmatory laboratory evidence: • Demonstration of Trichinella larvae on muscle biopsy, OR • A positive serology for Trichinella. C. Wisconsin Surveillance Case Definition: A clinically compatible illness that is laboratory confirmed. NOTE: In an outbreak setting, at least one case must be laboratory confirmed. Associated cases are considered confirmed if the patient shared an epidemiologically implicated meal or ate an epidemiologically implicated meat product and has either a positive serology for trichinosis or a clinically compatible illness. II. REPORTING A. Wisconsin Disease Surveillance Category II – Methods for Reporting: This disease shall be reported to the patient’s local health officer or to the local health officer’s designee within 72 hours of recognition of a case or suspected case, per Wis. Admin. Code § DHS 145.04 (3) (b). Report electronically through the Wisconsin Electronic Disease Surveillance System (WEDSS), or mail or fax a completed Acute and Communicable Disease Case Report (F-44151) to the address on the form. B. Responsibility for Reporting: According to Wis. Admin. Code § DHS 145.04(1), persons licensed under Wis. Stat. ch. 441 or 448, laboratories, health care facilities, teachers, principals, or nurses serving a school or day care center, and any person who knows or suspects that a person has a communicable disease identified in Appendix A. -
Unusual Ocular Presentation Ofacute Toxoplasmosis 697
Br J Ophthalmol: first published as 10.1136/bjo.61.11.693 on 1 November 1977. Downloaded from British Journal of Ophthalmology, 1977, 61, 693-698 Unusual ocular presentation of acute toxoplasmosis DARRELL WILLERSON, JR., THOMAS M. AABERG, FREDERICK REESER, AND TRAVIS A. MEREDITH From the Medical College of Wisconsin, Eye Institute, Milwaukee, USA SUMMARY Four patients with toxoplasmosis are reported with unusual presenting ocular lesions. One patient had an active lesion that appeared to involve the optic nerve as well as focal toxoplas- mosis chorioretinitis at the macula. A second patient had a pale optic nerve in association with the classical chorioretinal scars of toxoplasmosis. The third patient had toxoplasmosis chorioretinitis of the macula with subretinal neovascularisation. The fourth patient had a branch artery occlusion complicating acute retinitis. Our report includes 4 patients with unusual mani- mutton-fat keratic precipitates (kp) OD, but not OS. festations of toxoplasmosis. Optic neuritis and/or The anterior chamber had 2+ cells OD and 1+ optic atrophy was present in 2 patients. A sub- flare. The vitreous had 1 to 2+ cells anteriorly and retinal neovascular frond was present in a third 3 to 4+ posteriorly. An elevated, one disc diameter, patient. The fourth individual had a branch artery intraretinal exudative lesion of the macula was occlusion involving a vessel which passed through an present with overlying vitreous cells (Fig. 1). The area of acute toxoplasmosis chorioretinitis. disc was oedematous; at the temporal margin there Although retinitis occurring at the macula, the copyright. retinal periphery, or even in a juxtapapillary position occurs commonly, optic nerve involvement in toxo- plasmosis is rare (Hogan et al., 1964). -
Differentiate Red Eye Disorders
Introduction DIFFERENTIATE RED EYE DISORDERS • Needs immediate treatment • Needs treatment within a few days • Does not require treatment Introduction SUBJECTIVE EYE COMPLAINTS • Decreased vision • Pain • Redness Characterize the complaint through history and exam. Introduction TYPES OF RED EYE DISORDERS • Mechanical trauma • Chemical trauma • Inflammation/infection Introduction ETIOLOGIES OF RED EYE 1. Chemical injury 2. Angle-closure glaucoma 3. Ocular foreign body 4. Corneal abrasion 5. Uveitis 6. Conjunctivitis 7. Ocular surface disease 8. Subconjunctival hemorrhage Evaluation RED EYE: POSSIBLE CAUSES • Trauma • Chemicals • Infection • Allergy • Systemic conditions Evaluation RED EYE: CAUSE AND EFFECT Symptom Cause Itching Allergy Burning Lid disorders, dry eye Foreign body sensation Foreign body, corneal abrasion Localized lid tenderness Hordeolum, chalazion Evaluation RED EYE: CAUSE AND EFFECT (Continued) Symptom Cause Deep, intense pain Corneal abrasions, scleritis, iritis, acute glaucoma, sinusitis, etc. Photophobia Corneal abrasions, iritis, acute glaucoma Halo vision Corneal edema (acute glaucoma, uveitis) Evaluation Equipment needed to evaluate red eye Evaluation Refer red eye with vision loss to ophthalmologist for evaluation Evaluation RED EYE DISORDERS: AN ANATOMIC APPROACH • Face • Adnexa – Orbital area – Lids – Ocular movements • Globe – Conjunctiva, sclera – Anterior chamber (using slit lamp if possible) – Intraocular pressure Disorders of the Ocular Adnexa Disorders of the Ocular Adnexa Hordeolum Disorders of the Ocular -
Vitreitis and Movement Disorder Associated with Neurosyphilis and Human Immunodeficiency Virus (HIV) Infection: Case Report
RELATOS DE CASOS Vitreitis and movement disorder associated with neurosyphilis and human immunodeficiency virus (HIV) infection: case report Vitreíte e distúrbio motor associados à neurosífilis e infecção pelo vírus da imunodeficiência humana (HIV): relato de caso Luciano Sousa Pereira1 ABSTRACT Amy P Wu2 Ganesha Kandavel3 In this report, we describe an unusual patient with a choreiform movement Farnaz Memarzadeh4 disorder, misdiagnosed as Huntington disease, who later developed Timothy James McCulley5 dense vitreitis leading to the identification of Treponema pallidum as the underlying pathogen of both abnormalities. Keywords: Vitreous body/pathology; Neurosyphilis; Treponema pallidum; HIV infections/ complications; Oftalmopatias/etiologia INTRODUCTION Syphilis, Treponema pallidum infection, with its numerous presenta- tions has been nicknamed “the great imitator”. Potential ophthalmic mani- festations are many and can aid in pathogen identification; however, isola- ted vitreitis has rarely been described(1-3). Although not infrequent, move- ment disorders are rarely the predominating abnormality in patients with neurosyphilis(4). In this report we describe a unique patient with severe choreiform movement disorder, misdiagnosed as Huntington’s disease (HD), who later developed a dense vitreitis leading to the identification of Trabalho realizado na University of California, San T. pallidum as the underlying pathogen. Francisco - UCSF - USA. 1 Department of Ophthalmology, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo (SP) - Brasil. Department of Ophthalmology, University of Cali- CASE REPORT fórnia, San Francisco, San Francisco - California (CA) - USA. 2 Department of Ophthalmology, Stanford University A 35-year-old male presented with unilateral decreased vision, photo- School of Medicine, Stanford - California (CA) - USA. phobia and conjunctival injection. -
STUDY of PARASITIC INFESTATION and ITS EFFECT on the HEALTH STATUS of PRIMARY SCHOOL CHILDREN in TANTA CITY Nour Abd El Azize Mohammed Mealy, Prof
STUDY OF PARASITIC INFESTATION AND ITS EFFECT ON THE HEALTH STATUS OF PRIMARY SCHOOL CHILDREN IN TANTA CITY Nour Abd El Azize Mohammed Mealy, Prof. Dr. Nadia Yahia Ismaiel, Prof. Dr. Hassan Saad Abu Saif, Prof. Dr. Wael Refaat Hablas STUDY OF PARASITIC INFESTATION AND ITS EFFECT ON THE HEALTH STATUS OF PRIMARY SCHOOL CHILDREN IN TANTA CITY By Nour Abd El Azize Mohammed Mealy, Prof. Dr. Nadia Yahia Ismaiel*, Prof. Dr. Hassan Saad Abu Saif*, Prof. Dr. Wael Refaat Hablas** Pediatric*& Clinical Pathology** Depts. Al-Azhar University- Faculty of Medicine ABSTRACT Background: School age children are one of the groups at high-risk for intestinal parasitic infestations. Factors like poor developments of hygienic habits, immune system and over-crowding contributes for infestation. The adverse effects of intestinal parasites among children are diverse and alarming. Intestinal parasitic infestations have detrimental effects on the survival, appetite, growth and physical fitness, school attendance and cognitive performance of school age children (Alemu et al., 2011). Objectives: We aimed to 1. Assess the prevalence of parasitic infestation and its effect on the health status of primary school children in Tanta City (5 schools from 3 areas at Tanta city) 2. Determine the prevalence of intestinal parasitic infestation among primary school children in some urban communities of Tanta City 3. Identify associated risk factors of school children for parasitic infestations in some urban communities of Tanta City. Design: This is descriptive cross sectional study that was carried out on 1000 students (boys &girls) at governmental primary schools at Tanta rural areas. This research was continued until fulfillment of the study from April 2017 to May 2018. -
The Core Neglected Tropical Diseases
s 30 COMMUNITY EY At a glance: the core E H E ALT H JOURNAL neglected tropical diseases (NTDs) Trachoma Onchocerciasis Soil-transmitted Lymphatic Schistosomiasis | VOL helminths filariasis UM E 26 CDC CDC CBM WHO I SS U E 82 | 2013 Swiss Tropical Institute courtesy M Tanner Swiss Tropical Trachomatous trichiasis A woman blinded by Adult female Ascaris lumbricoides Elephantiasis due to lymphatic Dipstick testing to detect onchocerciasis worm filariasis haematuria. The sample on the left is negative for haematuria – the other two are both positive Where • Africa • Africa • Worldwide • Africa, • Africa • Latin America • Latin America (see www.thiswormyworld.org) • Asia • Asia • Yemen • Yemen • Latin America • Latin America • China • Pacific Islands (see www.thiswormyworld.org) • India (see www.thiswormyworld.org) • Australia • South-East Asia • Pacific Islands (see www.trachomaatlas.org) How • Discharge from • Acquired by the bite of • Eggs are passed out in • Acquired by the bite of • Acquired by contact infected eyes spreads an infected blackfly faeces and then infected mosquitoes with standing fresh via fingers, fomites (Simulium sp.) swallowed by another water (e.g. lakes) in and eye-seeking flies host (Ascaris, Trichuris) which there are (especially Musca or develop into infective infected snails sorbens) larvae and penetrate intact skin (hookworm) Who • Pre-school-age children • People living near • People living in • Children aquire the • Children and adults have the highest rivers where blackflies communities with infection, but who -
Approach to the Patient with Presumed Cellulitis Daniela Kroshinsky, MD,* Marc E
Approach to the Patient With Presumed Cellulitis Daniela Kroshinsky, MD,* Marc E. Grossman, MD, FACP,† and Lindy P. Fox, MD‡ Dermatologists frequently are consulted in the evaluation and management of the patient with cellulitic-appearing skin. For routine cellulitis, the clinical presentation and patient symptoms are usually sufficient for an accurate diagnosis. However, when the clinical presentation is somewhat atypical, or if the patient fails to respond to appropriate therapy for cellulitis because of routine bacterial pathogens, the differential diagnosis should be rapidly expanded. We discuss the approach to the patient with presumed cellulitis, with an emphasis on the differential diagnosis of cellulitis in both the immunocompetent and immunucompromised patient. Semin Cutan Med Surg 26:168-178 © 2007 Elsevier Inc. All rights reserved. KEYWORDS cellulitis, erysipelas 53-year-old woman with a history of recurrent breast of cellulitis, and telangiectasia and scattered enlarged mes- Acancer diagnosed 2 years before presentation and treated enchymal cells, characteristic of radiation changes. with radiation and chemotherapy (docetaxel, anastrozole, exemestane, gemcitabine) most recently 6 months before presentation was admitted for 3 weeks of worsening chest Clinical Problem wall pain and a rash over her mastectomy scar. Despite 5 days Dermatologists frequently are consulted in the evaluation of empiric antibiotic therapy with doxycycline and vancomy- and management of the patient with cellulitic-appearing cin, the chest wall erythema and pain were increasing. A dermatology consultation was called. An ulceration and sur- skin. Although the dermatologist may be consulted early on rounding erythematous papules were concentrated over the in the patient’s course, more often a dermatology consult is mastectomy scar with ill-defined erythematous patches that requested when a patient fails to respond to treatment. -
Subretinal Exudative Deposits in Central Serous Chorioretinopathy 351
BritishJournal ofOphthalmology 1993; 77: 349-353 3349 Subretinal exudative deposits in central serous chorioretinopathy Br J Ophthalmol: first published as 10.1136/bjo.77.6.349 on 1 June 1993. Downloaded from Darmakusuma Ie, Lawrence A Yannuzzi, Richard F Spaide, Maurice F Rabb, Norman P Blair, Mark J Daily Abstract ments,' are generally not associated with sub- The presence of subretinal exudation in a retinal exudative deposits. patient with neurosensory detachment of the We evaluated a group of 11 patients with macula frequently suggests the diagnosis of central serous chorioretinopathy who had sub- choroidal neovascularisation. A retrospective retinal exudative deposits for the following chart review of newly diagnosed cases of purposes: firstly, to identify non-pregnant central serous chorioretinopathy revealed 11 women as another subgroup of central serous patients, seven men and four non-pregnant chorioretinopathy patients who develop sub- women, who had plaques of subretinal retinal exudative deposits; secondly, to describe exudate, which presumably were fibrin. the findings and clinical course of these patients Department of Ophthalmology, Each of these patients had a solitary plaque more completely than in previous papers; Manhattan Eye, Ear and that ranged in size from 300 to 1500 tim in thirdly, to define characteristics of subretinal Throat Hospital, New diameter. These patients had no signs or a exudative deposits that differentiate them from York DIe clinical course suggestive of choroidal neo- the typical exudate seen in choroidal neovascu- L A Yannuzzi vascularisation. In each case the subretinal larisation; fourthly, to hypothesise a mechanism R F Spaide plaque was overlying an exuberant leak in the integrating results from previous studies by pigment was Department of retinal epithelium. -
Public Health Significance of Intestinal Parasitic Infections*
Articles in the Update series Les articles de la rubrique give a concise, authoritative, Le pointfournissent un bilan and up-to-date survey of concis et fiable de la situa- the present position in the tion actuelle dans les do- Update selectedfields, coveringmany maines consideres, couvrant different aspects of the de nombreux aspects des biomedical sciences and sciences biomedicales et de la , po n t , , public health. Most of santepublique. Laplupartde the articles are written by ces articles auront donc ete acknowledged experts on the redigeis par les specialistes subject. les plus autorises. Bulletin of the World Health Organization, 65 (5): 575-588 (1987) © World Health Organization 1987 Public health significance of intestinal parasitic infections* WHO EXPERT COMMITTEE' Intestinal parasitic infections are distributed virtually throughout the world, with high prevalence rates in many regions. Amoebiasis, ascariasis, hookworm infection and trichuriasis are among the ten most common infections in the world. Other parasitic infections such as abdominal angiostrongyliasis, intestinal capil- lariasis, and strongyloidiasis are of local or regional public health concern. The prevention and control of these infections are now more feasible than ever before owing to the discovery of safe and efficacious drugs, the improvement and sim- plification of some diagnostic procedures, and advances in parasite population biology. METHODS OF ASSESSMENT The amount of harm caused by intestinal parasitic infections to the health and welfare of individuals and communities depends on: (a) the parasite species; (b) the intensity and course of the infection; (c) the nature of the interactions between the parasite species and concurrent infections; (d) the nutritional and immunological status of the population; and (e) numerous socioeconomic factors. -
Immune Defense at the Ocular Surface
Eye (2003) 17, 949–956 & 2003 Nature Publishing Group All rights reserved 0950-222X/03 $25.00 www.nature.com/eye Immune defense at EK Akpek and JD Gottsch CAMBRIDGE OPHTHALMOLOGICAL SYMPOSIUM the ocular surface Abstract vertebrates. Improved visual acuity would have increased the fitness of these animals and would The ocular surface is constantly exposed to a have outweighed the disadvantage of having wide array of microorganisms. The ability of local immune cells and blood vessels at a the outer ocular system to recognize pathogens distance where a time delay in addressing a as foreign and eliminate them is critical to central corneal infection could lead to blindness. retain corneal transparency, hence The first vertebrates were jawless fish that preservation of sight. Therefore, a were believed to have evolved some 470 million combination of mechanical, anatomical, and years ago.1 These creatures had frontal eyes and immunological defense mechanisms has inhabited the shorelines of ancient oceans. With evolved to protect the outer eye. These host better vision, these creatures were likely more defense mechanisms are classified as either a active and predatory. This advantage along with native, nonspecific defense or a specifically the later development of jaws enabled bony fish acquired immunological defense requiring to flourish and establish other habitats. One previous exposure to an antigen and the such habitat was shallow waters where lunged development of specific immunity. Sight- fish made the transition to land several hundred threatening immunopathology with thousand years later.2 To become established in autologous cell damage also can take place this terrestrial environment, the new vertebrates after these reactions. -
Screening for Retinopathy of Prematurity L Andruscavage, D J Weissgold
1127 CLINICAL SCIENCE Br J Ophthalmol: first published as 10.1136/bjo.86.10.1127 on 1 October 2002. Downloaded from Screening for retinopathy of prematurity L Andruscavage, D J Weissgold ............................................................................................................................. Br J Ophthalmol 2002;86:1127–1130 Aim: A cross sectional (prevalence) study was performed to assess the usefulness and sensitivity of See end of article for commonly employed criteria to identify infants for routine ophthalmoscopic screening for retinopathy of authors’ affiliations prematurity (ROP). ....................... Methods: At a tertiary care centre between 1 January 1992 and 30 June 1998, experienced Correspondence to: vitreoretinal specialists screened 438 premature infants for ROP. Retinal maturity and the presence of David Weissgold, MD, ROP were determined by indirect ophthalmoscopic examinations. UVM/FAHC, Results: Of the eligible infants surviving 28 days, 276 (91.7%) of 301 infants with birth weights Ophthalmology, <1500 g and 162 (52.3%) of 310 infants with birth weights between 1501 and 2500 g were 1 S Prospect Street, Burlington, VT 05401, screened for ROP. 10 (3.9%) of the 310 infants with larger birth weights developed stage 1 or 2 ROP. USA; david.weissgold@ Two (0.6%) of the 310 infants with larger birth weights developed stage 3 ROP. These two infants pro- vtmednet.org gressed to threshold ROP and required treatment. Accepted for publication Conclusions: Relatively restrictive criteria to identify premature infants eligible for routine ophthalmo- 29 April 2002 scopic screening for ROP may be the cause for some infants going unexamined and their ROP unde- ....................... tected. lindness and poor visual acuity due to retinopathy of 1997 and again in 2001, the AAP,the American Association for prematurity (ROP) are serious morbidities of premature Pediatric Ophthalmology and Strabismus, and the American birth.