Brigham Young University BYU ScholarsArchive Faculty Publications 2002-08-13 Algebraic Methods for Computer Aided Geometric Design Thomas W. Sederberg
[email protected] Jianmin Zheng Follow this and additional works at: https://scholarsarchive.byu.edu/facpub Part of the Computer Sciences Commons BYU ScholarsArchive Citation Sederberg, Thomas W. and Zheng, Jianmin, "Algebraic Methods for Computer Aided Geometric Design" (2002). Faculty Publications. 5. https://scholarsarchive.byu.edu/facpub/5 This Book Chapter is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more information, please contact
[email protected],
[email protected]. 1 Algebraic Methods for Computer Aided Geometric Design Thomas W. Sederbergaand Jianmin Zhengb aDepartment of Computer Science, Brigham Young University, Provo, UT 84602 USA bDepartment of Mathematics, Zhejiang University, Hangzhou, Zhejiang, China Silhouettes (polar curves), blend curves, inversion, implicitization, offset curves, singu- larities, 1. Introduction CAGD draws from several branches of mathematics and computer science, such as approximation theory, differential geometry, and numerical analysis. This chapter reviews some of the tools of algebra and algebraic geometry that have been brought to bear on problems in CAGD. Most of the free-form curves and surfaces used in CAGD are given by parametric equations. Planar curves in CAGD are typically defined as a(t) b(t) x = ; y = (1) c(t) c(t) where a(t), b(t), and c(t) are polynomials in the Bernstein basis for rational B´eziercurves or in the B-spline basis for NURBS. Algebraic methods most commonly use polynomials n in the power basis: a(t) = a0 + a1t + ··· + ant , etc.