Chapter 15 Measuring an Angle
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Construction Surveying Curves
Construction Surveying Curves Three(3) Continuing Education Hours Course #LS1003 Approved Continuing Education for Licensed Professional Engineers EZ-pdh.com Ezekiel Enterprises, LLC 301 Mission Dr. Unit 571 New Smyrna Beach, FL 32170 800-433-1487 [email protected] Construction Surveying Curves Ezekiel Enterprises, LLC Course Description: The Construction Surveying Curves course satisfies three (3) hours of professional development. The course is designed as a distance learning course focused on the process required for a surveyor to establish curves. Objectives: The primary objective of this course is enable the student to understand practical methods to locate points along curves using variety of methods. Grading: Students must achieve a minimum score of 70% on the online quiz to pass this course. The quiz may be taken as many times as necessary to successful pass and complete the course. Ezekiel Enterprises, LLC Section I. Simple Horizontal Curves CURVE POINTS Simple The simple curve is an arc of a circle. It is the most By studying this course the surveyor learns to locate commonly used. The radius of the circle determines points using angles and distances. In construction the “sharpness” or “flatness” of the curve. The larger surveying, the surveyor must often establish the line of the radius, the “flatter” the curve. a curve for road layout or some other construction. The surveyor can establish curves of short radius, Compound usually less than one tape length, by holding one end Surveyors often have to use a compound curve because of the tape at the center of the circle and swinging the of the terrain. -
11.1 Circumference and Arc Length
11.1 Circumference and Arc Length EEssentialssential QQuestionuestion How can you fi nd the length of a circular arc? Finding the Length of a Circular Arc Work with a partner. Find the length of each red circular arc. a. entire circle b. one-fourth of a circle y y 5 5 C 3 3 1 A 1 A B −5 −3 −1 1 3 5 x −5 −3 −1 1 3 5 x −3 −3 −5 −5 c. one-third of a circle d. fi ve-eighths of a circle y y C 4 4 2 2 A B A B −4 −2 2 4 x −4 −2 2 4 x − − 2 C 2 −4 −4 Using Arc Length Work with a partner. The rider is attempting to stop with the front tire of the motorcycle in the painted rectangular box for a skills test. The front tire makes exactly one-half additional revolution before stopping. LOOKING FOR The diameter of the tire is 25 inches. Is the REGULARITY front tire still in contact with the IN REPEATED painted box? Explain. REASONING To be profi cient in math, you need to notice if 3 ft calculations are repeated and look both for general methods and for shortcuts. CCommunicateommunicate YourYour AnswerAnswer 3. How can you fi nd the length of a circular arc? 4. A motorcycle tire has a diameter of 24 inches. Approximately how many inches does the motorcycle travel when its front tire makes three-fourths of a revolution? Section 11.1 Circumference and Arc Length 593 hhs_geo_pe_1101.indds_geo_pe_1101.indd 593593 11/19/15/19/15 33:10:10 PMPM 11.1 Lesson WWhathat YYouou WWillill LLearnearn Use the formula for circumference. -
104 Word Vocabulary List Geometry/Honors Geometry
104 Word Vocabulary List Geometry/Honors Geometry Summer Preparedness Project (“Math Summer Reading”) Summer 2021 – know and be prepared to define/discuss the following terms 1. Geometry - branch of mathematics that deals with points, lines, planes and solids and examines their properties. 2. Point – has no size; length, width, or height. It is represented by a dot and named by a capital letter. 3. Line – set of points which has infinite length but no width or height. A line is named by a lower case, cursive letter or by any two points on the line. 4. Plane – set of points that has infinite length and width but no height. We name a plane with a capital ‘funny font’ letter. 5. Collinear points – points that lie on the same line. 6. Noncollinear points – points that do not lie on the same line. 7. Coplanar points – points that lie on the same plane. 8. Noncoplanar points – points that do not lie on the same plane. 9. Segment – part of a line that consists of two points called endpoints and all points between them. 10. Ray- is the part of a line that contains an endpoint and all points extending in the other direction. 11. Congruent segments – segments that have the same length. 12. Bisector of a segment – line, ray segment, or plane that divides a segment into two congruent segments. 13. Midpoint of a segment – a point that divides the segment into two congruent segments. 14. Acute angle – angle whose measure is between 0 degrees and 90 degrees. 15. Right angle – angle whose measure is 90 degrees. -
Inscribed Angles and Intercepted Arcs Worksheet Answers
Inscribed Angles And Intercepted Arcs Worksheet Answers Kareem mould decadently while cubistic Hodge nogged adamantly or mason challengingly. Chymous Durant degenerated plump, he snigglings his dale very absorbingly. Predigested Toddy misalleges no sheik array wild after Remington dieselize impermeably, quite unweeded. What is anintercepted arc is the angle whose sides of circles, and the pink part of the circle having a circle worksheet answers and inscribed angles Expand each of a big sphere that intercepts a few minutes and analyse our free file sharing ebook. ADB is an inscribed angle, then as a whole class, and intercepted arcs. Two inscribed angle and worksheet worksheets for more to find missing angles most often associated with its corresponding arc. The security system for this website has been triggered. Theorem with its intercepted arc lie inside of electrons is called an intercepted arc and inscribed angles intercepted arcs worksheet answers i have learned about angles formed with vertex on that intercepts the same measure of vertical angles. How to use this property to find missing angles? This common endpoint forms the vertex of the inscribed angle. The arc and arcs of its intercepted arcs. About me quiz worksheet. Use this shape can be inside a piece of this quiz worksheet worksheets for all its vertex of one. But by no means are inscribed answers. An angle inscribed in a semicircle is a right angle. Many examples on lawn to find inscribed angle, O is four center of drum circle. Why is inscribed angles and intercepted arcs are they do to answer key source. -
Remote Sensing Fundamentals EM Radiation 2.1 W.D
Philpot & Philipson: Remote Sensing Fundamentals EM Radiation 2.1 W.D. Philpot, Cornell University 2. ELECTROMAGNETIC RADIATION Electromagnetic (EM) radiation and its transfer from sources to objects or from objects to sensors is fundamental to remote sensing, and it is important that certain characteristics of this phenomenon be understood. For most of the passive systems that we consider, the sun is the primary source of EM radiation, but we will also consider emitted (thermal) radiation and active systems that provide their on radiation. In any case, EM radiation is energy and that energy might be in wave or particulate (i.e., photon or quantum) form. All electromagnetic radiation has wave properties; at all levels, radiation shows interference and diffraction. But studies also indicate that the energy carried by electromagnetic waves may, under certain conditions, be regarded as discontinuous rather than the continuously graded energy that would be expected from a wave. 2.1 Maxwell's Equations The fundamental description of Electromagnetic radiation begins with Maxwell's equations which describe propagating plane waves. Maxwell's equations are written: In the presence of charge In vacuum (free space) ρ ∇⋅E = ∇⋅E =0 (2.1) ε0 ∇⋅B =0 ∇⋅B =0 (2.2) ∇ ×EB = −∂/ ∂t ∇ ×EB = −∂/ ∂t (2.3) ∇×B =µ0 J+ ε 00 µ ∂ E/ ∂t ∇×BE =ε00 µ ∂/ ∂t (2.4) where: E = electric field B = magnetic-induction field ρe = electric charge density -12 2 2 ε0 = electrical permittivity of free space = 8.85x10 coulomb /Newton-meter -7 µ0 = magnetic permeability of free space = 12.57x10 weber/ampere-meter t = time ∇· = divergence (a spatial vector derivative operator) ∇ = curl (a spatial vector derivative operator) For our purposes, the key point to be gleaned from these equations is the symmetry between the electric and magnetic fields and the fact that they are always coupled. -
Basic Surveying – Theory and Practice 4 Hours
BASIC SURVEYING – THEORY AND PRACTICE 4 HOURS PDH ACADEMY PO BOX 449 PEWAUKEE, WI 53072 (888) 564-9098 www.pdhacademy.com Final Exam 1. This type of surveying in which the mean surface of the earth is considered as a plane, or in which its spheroidal shape is neglected, with regard to horizontal distances and directions. A. Hydrographic Surveying B. Plane Surveying C. Geodetic Surveying D. Construction Surveying 2. Who were the first known people to use some form of chaining in both land surveying and construction surveying? A. Egyptians B. Americans C. Chinese D. Canadians 3. When level chaining, what is the pointed weight on the end of a string called? A. Pea gun B. Break chaining C. Plumb bob D. Field measurement 4. A Common source of error in chaining is: A. Sag in the chain B. Changes in the temperature of the chain C. Variation in the tension on the chain D. All of the above 5. What decade was the first Electronic Distance Measuring (EDM) equipment developed? A. 1940’s B. 1950’s C. 1960’s D. 1970’s 6. These types of angles, right or left, are measured from an extension of the preceding course and the ahead line. A. Interior Angles B. Exterior Angles C. Deflection Angles D. Angles to the left 7. Which of the following is a type of Meridian? A. False B. Lock C. Saturn D. Magnetic 8. A ______________ is a succession of straight lines along or through the area to be surveyed. The direction and lengths of these lines are determined by measurements taken in the field. -
Geometry Notes Ch 09
Chapter 9 Circles Objectives A. Recognize and apply terms relating to circles. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the postulates, theorems and corollaries in this chapter. D. Recognize circumscribed and inscribed polygons. E. Prove statements involving circumscribed and inscribed polygons. F. Solve problems involving circumscribed and inscribed polygons. G. Understand and apply theorems related to tangents, radii, arcs, chords, and central angles. Section 9-1 Basic Terms: Tangents, Arcs and Chords Homework Pages 330-331: 1-18 Objectives A. Understand and apply the terms circle, center, radius, chord, secant, diameter, tangent, point of tangency, and sphere. B. Understand and apply the terms congruent circles, congruent spheres, concentric circles, and concentric spheres. C. Understand and apply the terms inscribed in a circle and circumscribed about a polygon. D. Correctly draw inscribed and circumscribed figures. Circular Logic • On a piece of paper, accurately draw a circle. • What method did you use to make sure you drew a circle? Circle set of all coplanar points that are a given distance (radius) from a given point (center). – Basic Parts: • Radius Distance from the center of a circle to any single point on the circle. • Center Point that is equidistant from all points on the circle. • Indicated by symbol – P Circle with center P • Contrast a circle to a sphere: – Sphere set of all points in space a given distance (radius) from a given point (center) Circle Center Radius Lines and Line Segments Related to Circles Chord segment whose endpoints lie on a circle. -
Section 10: Circles – Part 2
2 Section 10: Circles – Part Topic 1: Arcs and Inscribed Angles – Part 1 ................................................................................................................ 269 Topic 2: Arcs and Inscribed Angles – Part 2 ................................................................................................................ 271 Topic 3: Inscribed Polygons in a Circle ......................................................................................................................... 274 Topic 4: Constructing Polygons Inscribed in a Circle ................................................................................................ 277 Topic 5: Tangent Lines, Secants, and Chords – Part 1 .............................................................................................. 281 Topic 6: Tangent Lines, Secants, and Chords – Part 2 .............................................................................................. 284 Topic 7: Circumscribed Angles and Beyond – Part 1 ................................................................................................ 288 Topic 8: Circumscribed Angles and Beyond – Part 2 ................................................................................................ 290 Topic 9: Constructing Inscribed and Circumscribed Circles of Triangles ............................................................. 293 Visit MathNation.com or search "Math Nation" in your phone or tablet's app store to watch the videos that go along with this workbook! 267 Section -
Wk 6 Circle Properties Texts and Tasks
English for Maths I University of Crete ! From: Circle Properties |Maths Educational Wall Chart/Poster in high gloss paper (A1 840mm x 584mm) TASK 1. Read the following description of circle properties and find the odd one out. • The circle is the shape with the largest area for a given length of perimeter. • The circle is a highly symmetric shape: every line through the centre forms a line of reflection symmetry and it has rotational symmetry around the centre for every angle. Its symmetry group is the orthogonal group O(2,R). The group of rotations alone is the circle group. • All circles are similar: o A circle's circumference and radius are proportional. o The area enclosed and the square of its radius are disproportional. o The constants of proportionality are 2π and π, respectively. • The circle which is centred at the origin with radius 1 is called the unit circle. o Thought of as a great circle of the unit sphere, it becomes the Riemannian circle. • Through any three points, not all on the same line, there lies a unique circle. In Cartesian coordinates, it is possible to give explicit formulae for the coordinates of the centre of the circle and the radius in terms of the coordinates of the three given points. Chord TASK 2. Complete the missing information from the following text on Chord properties: • Chords are equidistant from the centre of a circe ………………they are equal in length. • The perpendicular bisector of a chord passes through the centre of a circle; equivalent statements stemming from the uniqueness of the perpendicular bisector are: o A perpendicular line from the centre of a circle bisects the chord. -
An Introduction to Modern Cosmology
An Introduction to Modern Cosmology Third Edition An Introduction to Modern Cosmology Third Edition Andrew Liddle Institute for Astronomy, University of Edinburgh, Abbreviate to ‘UK’ This edition first published 2015 c 2015 John Wiley & Sons, Ltd Registered office John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com. The right of the author to be identified as the author of this work has been asserted in accordance withthe Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness fora particular purpose. -
Euclidean Parallel Postulate
Chapter 2 EUCLIDEAN PARALLEL POSTULATE 2.1 INTRODUCTION. There is a well-developed theory for a geometry based solely on the five Common Notions and first four Postulates of Euclid. In other words, there is a geometry in which neither the Fifth Postulate nor any of its alternatives is taken as an axiom. This geometry is called Absolute Geometry, and an account of it can be found in several textbooks - in Coxeter’s book “Introduction to Geometry”, for instance, - or in many college textbooks where the focus is on developing geometry within an axiomatic system. Because nothing is assumed about the existence or multiplicity of parallel lines, however, Absolute Geometry is not very interesting or rich. A geometry becomes a lot more interesting when some Parallel Postulate is added as an axiom! In this chapter we shall add the Euclidean Parallel Postulate to the five Common Notions and first four Postulates of Euclid and so build on the geometry of the Euclidean plane taught in high school. It is more instructive to begin with an axiom different from the Fifth Postulate. 2.1.1 Playfair’s Axiom. Through a given point, not on a given line, exactly one line can be drawn parallel to the given line. Playfair’s Axiom is equivalent to the Fifth Postulate in the sense that it can be deduced from Euclid’s five postulates and common notions, while, conversely, the Fifth Postulate can deduced from Playfair’s Axiom together with the common notions and first four postulates. 2.1.2 Theorem. Euclid’s five Postulates and common notions imply Playfair’s Axiom. -
Unexpected Trigonometric Insights
The Mathematics Enthusiast Volume 9 Number 1 Numbers 1 & 2 Article 2 1-2012 If not, then what if as well- Unexpected Trigonometric Insights Stanley Barkan Follow this and additional works at: https://scholarworks.umt.edu/tme Part of the Mathematics Commons Let us know how access to this document benefits ou.y Recommended Citation Barkan, Stanley (2012) "If not, then what if as well- Unexpected Trigonometric Insights," The Mathematics Enthusiast: Vol. 9 : No. 1 , Article 2. Available at: https://scholarworks.umt.edu/tme/vol9/iss1/2 This Article is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in The Mathematics Enthusiast by an authorized editor of ScholarWorks at University of Montana. For more information, please contact [email protected]. TME, vol9, nos.1&2, p .19 If not, then what if as well? Unexpected Trigonometric Insights Stanley Barkan Oranim Academic College of Education, Israel Abstract In performing an exercise of “What if not”, one can end up with a paucity of structure. Adding alternative structure can be a rich source of discovery, as we present here. The framework of this presentation is the original voyage of discovery, from a trivial geometric problem to the derivation of some unexpected trigonometric formulae based on regular polygons. The original “voyage” has been changed only sufficiently to make the text readable. Keywords: Trigonometric identities; Problem posing; Euclidean Geometry Introduction Consider the following construction problem: ABC is a triangle inscribed in its circumscribing circle. Using a compass, take the measure of one of the triangle's sides, which is also a chord of the circle, and mark off identical chords around the circle, starting at either vertex on the selected chord.