ELUDICATING TRIGGERS and NEUROCHEMICAL CIRCUITS UNDERLYING HOT FLASHES in an OVARIECTOMY MODEL of MENOPAUSE Lauren Michele Feder

Total Page:16

File Type:pdf, Size:1020Kb

ELUDICATING TRIGGERS and NEUROCHEMICAL CIRCUITS UNDERLYING HOT FLASHES in an OVARIECTOMY MODEL of MENOPAUSE Lauren Michele Feder ELUDICATING TRIGGERS AND NEUROCHEMICAL CIRCUITS UNDERLYING HOT FLASHES IN AN OVARIECTOMY MODEL OF MENOPAUSE Lauren Michele Federici Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Medical Neuroscience Program, Indiana University April 2016 Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. _____________________________ Anantha Shekhar, M.D., Ph.D., Chair _____________________________ Charles Goodlett, Ph.D. Doctoral Committee _____________________________ Philip L. Johnson, Ph.D. February 26, 2016 _____________________________ Gerry S. Oxford, Ph.D. _____________________________ Daniel E. Rusyniak, M.D. ii Acknowledgements The author would like to acknowledge, with sincere gratitude, the guidance of her mentor, Dr. Philip L. Johnson, and the support of her research committee: Drs. Charles Goodlett, Gerry Oxford, Daniel Rusyniak, and Anantha Shekhar. She would also like to thank all of the laboratory members that have provided assistance and training throughout her education, including Cristian Bernabe, Izabela Facco Caliman, Amy Dietrich, Stephanie Fitz, Dr. Andrei Molosh, Aline Abreu Rezende, and Dr. William Truitt. The author also gratefully acknowledges the staff and faculty of the Stark Neurosciences Research Institute, including Ms. Nastassia Belton and the graduate advisors, Drs. Andy Hudmon and Ted Cummins. The work described in this entity was supported in part by the National Institute of Aging (K01AG044466), Indiana Clinical and Translational Sciences Institute KL-2 Scholars Award (RR025760), Indiana Clinical and Translational Sciences Institute Project Development Team Pilot Grant (RR025761), Indiana University Simon Cancer Center Basic Science Pilot Funding (23-87597), all to Philip L. Johnson. Compound 56 and DORA-12 were donated by Janssen Research and Development, L. L. C., and Merck & Co, respectively. She would also like to thank her husband, Randy Julian, and family, Lee and Suzanne and Erinn and Taylor Federici, for their unwavering support through all the highs and lows of good and bad data. iii Lauren Michele Federici ELUCIDATING TRIGGERS AND NEUROCHEMICAL CIRCUITS UNDERLYING HOT FLASHES IN AN OVARIECTOMY MODEL OF MENOPAUSE Menopausal symptoms, primarily hot flashes, are a pressing clinical problem for both naturally menopausal women and breast and ovarian cancer patients, with a high societal and personal cost. Hot flashes are poorly understood, and animal modeling has been scarce, which has substantially hindered the development of non-hormonal treatments. An emerging factor in the hot flash experience is the role of anxiety and stress-related stimuli, which have repeatedly been shown to influence the bother, frequency, and severity of hot flashes. Causal relationships are difficult to determine in a clinical setting, and the use of animal models offers the ability to elucidate causality and mechanisms. The first part of this work details the development and validation of novel animal models of hot flashes using clinically relevant triggers (i.e., compounds or stimuli that cause hot flashes in clinical settings), which also increase anxiety symptoms. These studies revealed that these triggers elicited strong (7-9 °C) and rapid hot flash-associated increases in tail skin temperature in rats. In a surgical ovariectomy rat model of menopause, which typically exhibit anxiety-like behavior, hot flash provocation revealed an ovariectomy-dependent vulnerability, which was attenuated by estrogen replacement in tested models. An examination of the neural circuitry in response to the most robust flushing compound revealed increased cellular activity in key thermoregulatory and emotionally relevant areas. The orexin neuropeptide system was hyperactive and presented as a novel target; pretreatment with selective and dual orexin receptor antagonists significantly diminished or eliminated, respectively, the response to a hot flash provocation in ovariectomized rats. The insertion/deletion polymorphism of the serotonin transporter has been linked to increased anxiety- associated traits in humans, and subsequent studies prolonged hot flashes in SERT +/- rats , which also caused hot flashes in highly symptomatic women. These studies indicate the orexin system may be a novel non-hormonal iv treatment target, and future studies will determine the therapeutic importance of orexin receptor antagonists for menopausal symptoms. Anantha Shekhar, M.D., Ph.D., Chair v Table of Contents List of Tables vii List of Figures viii List of Abbreviations xi Outline of Parts I-IV xiv Parts I-IV 1 Materials and Methods 81 Chapter 1: Select Panicogenic Drugs and Stimuli Induce Increases in Tail Skin Temperature and Decreases in Core Body Temperature Introduction 94 Results 96 Discussion 97 Chapter 2: Hypothalamic Orexin’s Role in Exacerbated Cutaneous Vasodilation Responses to an Anxiogenic Stimulus in a Surgical Menopause Model Introduction 103 Results 105 Discussion 109 Chapter 3: Anxiogenic CO 2 Stimulus Elicits Exacerbated Hot Flash-like Responses in a Rat Menopause Model Introduction 122 Results 124 Discussion 125 Commentary 131 Future Directions 142 Bibliography 152 Curriculum Vitae vi List of Tables Table 1. Menopausal Symptoms Exacerbated by Oophorectomy 3 Table 2. Key Regions of Interest With Respect to Menopausal Symptoms 78 Table 3. Schematic of Clinical Study of Hot Flash Provocation with CO 2 135 Challenges in Highly Symptomatic Women and Participant Characteristics vii List of Figures Figure 1. Body Diagram of a Hot Flash 5 Figure 2. Physiological Recordings of a Hot Flash 7 Figure 3. Levels of Estradiol and Follicle Stimulating Hormone Across the 14 Lifespan Figure 4. Metabolic Pathway of Tamoxifen 20 Figure 5. Ambient Temperature-Induced Cutaneous Vasomotor 39 Response Preserves Normothermia Figure 6. Ambient Temperature-Induced Cutaneous Vasomotor 45 Responses Do Not Differ Between Ovariectomized and Sham- Ovariectomized Rats Figure 7. Ambient Temperature-Induced Cutaneous Vasomotor Response 50 Figure 8. Divisions and Neurochemicals of the Autonomic Nervous 51 System Figure 9. Reduction in Hot Flash Frequency by Study 63 Figure 10. Diurnal Variation in Temperature Between Ovariectomized 71 (OVEX) and Intact (Sham) Controls Figure 11. Accuracy of Thermal Data Acquisition 84 Figure 12. Panicogenic Drugs Elicit Profound Hot Flash- 100 viii Associated Cutaneous Vasomotor Responses in Male Rats (Chapter 1) Figure 13. Hypercapnic Gas Elicits Profound Hot Flash-Associated 101 Cutaneous Vasomotor Response in Male Rats (Chapter 1) Figure 14. Hot Flash Provocations Result in Increased Temperature 102 Along the Entire Length of the Tail (Chapter 1) Figure 15. Rats Modeling Surgical Menopause are Vulnerable to 114 Displaying Hot Flash-Associated Cutaneous Vasomotor Responses to a Low Dose of a Panicogenic Drug (Chapter 2) Figure 16. Alprazolam Pretreatment Attenuates Cutaneous Vasomotor 115 Responses to a Low Dose of a Panicogenic Drug (Chapter 2) Figure 17. Panicogenic Drug-Induced Cutaneous Vasomotor 116 Responses Precede a Decrease in Core Body Temperature in Rats with Surgical Menopause (Chapter 2) Figure 18. Rats with Surgical Menopause Display Hyperactive Cellular 117 Responses Following a Low Dose of a Panicogenic Drug in Neural Circuits Heavily Implicated in Menopausal Symptoms (Chapter 2) Figure 19. Neurochemical Circuits of Rats with Surgical Menopause that 118 Display Hyperactive Responses Following a Low Dose of a Panicogenic Drug (Chapter 2) Figure 20. Surgical Menopause Enhances Baseline Hypothalamic 119 Orexin/Glutamate Gene Expression (Chapter 2) ix Figure 21. Systemic Pretreatment with a SORA1 or Estrogen is Anxiolytic 120 in OVEX Rats (Chapter 2) Figure 22. Systemically Treating Ovariectomized Rats Treated with 121 Centrally Active Orexin 1 and/or 2 Receptor Antagonists Attenuates Hot Flash-Associated Cutaneous Vasomotor Responses to a Low Dose of a Panicogenic Compound (Chapter 2) Figure 23. Rats Modeling Surgical Menopause Have Exacerbated Hot 129 Flash-Associated Tail Skin Temperature Responses (Chapter 3) Figure 24. Rats with a Heterozygous Null Mutation of the Serotonin 130 Transporter (SERT +/-) Have Prolonged Hot Flash-Associated Tail Skin Temperature Responses to Hypercapnic Gas Infusion (Chapter 3) Figure 25. Schematic of Clinical Study of Hot Flash Provocation with CO 2 135 Challenges in Highly Symptomatic Women and Participant Characteristics Figure 26. The Elevated T-maze Test of Anxiety-Associated Behaviors in 141 Female Rats Across the Estrus Cycle x Abbreviations 3V third ventricle 5-HT 5-hydroxytryptophan/serotonin ACh acetylcholine AChE acetylcholinesterase AET adjuvant endocrine therapies AI aromatase inhibitor BNST bed nucleus of the stria terminalis BLA basolateral amygdala CBT core body temperature CeA central amygdala CO 2 carbon dioxide DMN dorsomedial hypothalamic nucleus DORA dual orexin receptor antagonist DRN dorsal raphe nucleus DRVL-VLPAG ventrolateral dorsal raphe nucleus, ventrolateral periaqueductal gray DSI Data Sciences International DSM-V Diagnostic and Statistical Manual of Mental Disorders-V E epinephrine E2 17-β estradiol EIT estrogen inhibition therapy EPM elevated plus maze ETM elevated T maze ER estrogen receptor ERα estrogen receptor α ERβ estrogen receptor β ERT estrogen replacement therapy FMP final menstrual period xi FSH follicle stimulating hormone g gram GABA γ-amino-butyric acid GnRH
Recommended publications
  • Mglu2 Receptor Agonism, but Not Positive Allosteric Modulation, Elicits Rapid Tolerance Towards Their Primary Efficacy on Sleep Measures in Rats
    RESEARCH ARTICLE mGlu2 Receptor Agonism, but Not Positive Allosteric Modulation, Elicits Rapid Tolerance towards Their Primary Efficacy on Sleep Measures in Rats Abdallah Ahnaou1*, Hilde Lavreysen1, Gary Tresadern2, Jose M. Cid2, Wilhelmus H. Drinkenburg1 1 Dept. of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340, Beerse, Belgium, 2 Neuroscience Medicinal Chemistry, Janssen Research & Development, Janssen-Cilag S.A., Jarama 75, Polígono Industrial, 45007, Toledo, Spain * [email protected] Abstract OPEN ACCESS G-protein-coupled receptor (GPCR) agonists are known to induce both cellular adaptations Citation: Ahnaou A, Lavreysen H, Tresadern G, Cid resulting in tolerance to therapeutic effects and withdrawal symptoms upon treatment dis- JM, Drinkenburg WH (2015) mGlu2 Receptor continuation. Glutamate neurotransmission is an integral part of sleep-wake mechanisms, Agonism, but Not Positive Allosteric Modulation, Elicits Rapid Tolerance towards Their Primary which processes have translational relevance for central activity and target engagement. Efficacy on Sleep Measures in Rats. PLoS ONE 10 Here, we investigated the efficacy and tolerance potential of the metabotropic glutamate (12): e0144017. doi:10.1371/journal.pone.0144017 receptors (mGluR2/3) agonist LY354740 versus mGluR2 positive allosteric modulator Editor: James Porter, University of North Dakota, (PAM) JNJ-42153605 on sleep-wake organisation in rats. In vitro, the selectivity and UNITED STATES potency of JNJ-42153605 were characterized. In vivo, effects on sleep measures were Received: July 12, 2015 investigated in rats after once daily oral repeated treatment for 7 days, withdrawal and con- Accepted: November 12, 2015 secutive re-administration of LY354740 (1–10 mg/kg) and JNJ-42153605 (3–30 mg/kg).
    [Show full text]
  • Identification of Compounds That Rescue Otic and Myelination
    RESEARCH ARTICLE Identification of compounds that rescue otic and myelination defects in the zebrafish adgrg6 (gpr126) mutant Elvira Diamantopoulou1†, Sarah Baxendale1†, Antonio de la Vega de Leo´ n2, Anzar Asad1, Celia J Holdsworth1, Leila Abbas1, Valerie J Gillet2, Giselle R Wiggin3, Tanya T Whitfield1* 1Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom; 2Information School, University of Sheffield, Sheffield, United Kingdom; 3Sosei Heptares, Cambridge, United Kingdom Abstract Adgrg6 (Gpr126) is an adhesion class G protein-coupled receptor with a conserved role in myelination of the peripheral nervous system. In the zebrafish, mutation of adgrg6 also results in defects in the inner ear: otic tissue fails to down-regulate versican gene expression and morphogenesis is disrupted. We have designed a whole-animal screen that tests for rescue of both up- and down-regulated gene expression in mutant embryos, together with analysis of weak and strong alleles. From a screen of 3120 structurally diverse compounds, we have identified 68 that reduce versican b expression in the adgrg6 mutant ear, 41 of which also restore myelin basic protein gene expression in Schwann cells of mutant embryos. Nineteen compounds unable to rescue a strong adgrg6 allele provide candidates for molecules that may interact directly with the Adgrg6 receptor. Our pipeline provides a powerful approach for identifying compounds that modulate GPCR activity, with potential impact for future drug design. DOI: https://doi.org/10.7554/eLife.44889.001 *For correspondence: [email protected] †These authors contributed Introduction equally to this work Adgrg6 (Gpr126) is an adhesion (B2) class G protein-coupled receptor (aGPCR) with conserved roles in myelination of the vertebrate peripheral nervous system (PNS) (reviewed in Langenhan et al., Competing interest: See 2016; Patra et al., 2014).
    [Show full text]
  • Conformational Dynamics Between Transmembrane Domains And
    RESEARCH ARTICLE Conformational dynamics between transmembrane domains and allosteric modulation of a metabotropic glutamate receptor Vanessa A Gutzeit1, Jordana Thibado2, Daniel Starer Stor2, Zhou Zhou3, Scott C Blanchard2,3,4, Olaf S Andersen2,3, Joshua Levitz2,4,5* 1Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, United States; 2Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, United States; 3Department of Physiology and Biophysics, Weill Cornell Medicine, New York, United States; 4Tri-Institutional PhD Program in Chemical Biology, New York, United States; 5Department of Biochemistry, Weill Cornell Medicine, New York, United States Abstract Metabotropic glutamate receptors (mGluRs) are class C, synaptic G-protein-coupled receptors (GPCRs) that contain large extracellular ligand binding domains (LBDs) and form constitutive dimers. Despite the existence of a detailed picture of inter-LBD conformational dynamics and structural snapshots of both isolated domains and full-length receptors, it remains unclear how mGluR activation proceeds at the level of the transmembrane domains (TMDs) and how TMD-targeting allosteric drugs exert their effects. Here, we use time-resolved functional and conformational assays to dissect the mechanisms by which allosteric drugs activate and modulate mGluR2. Single-molecule subunit counting and inter-TMD fluorescence resonance energy transfer *For correspondence: measurements in living cells
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,642,912 B2 Kisak Et Al
    USOO9642912B2 (12) United States Patent (10) Patent No.: US 9,642,912 B2 Kisak et al. (45) Date of Patent: *May 9, 2017 (54) TOPICAL FORMULATIONS FOR TREATING (58) Field of Classification Search SKIN CONDITIONS CPC ...................................................... A61K 31f S7 (71) Applicant: Crescita Therapeutics Inc., USPC .......................................................... 514/171 Mississauga (CA) See application file for complete search history. (72) Inventors: Edward T. Kisak, San Diego, CA (56) References Cited (US); John M. Newsam, La Jolla, CA (US); Dominic King-Smith, San Diego, U.S. PATENT DOCUMENTS CA (US); Pankaj Karande, Troy, NY (US); Samir Mitragotri, Santa Barbara, 5,602,183 A 2f1997 Martin et al. CA (US); Wade A. Hull, Kaysville, UT 5,648,380 A 7, 1997 Martin 5,874.479 A 2, 1999 Martin (US); Ngoc Truc-ChiVo, Longueuil 6,328,979 B1 12/2001 Yamashita et al. (CA) 7,001,592 B1 2/2006 Traynor et al. 7,795,309 B2 9/2010 Kisak et al. (73) Assignee: Crescita Therapeutics Inc., 8,343,962 B2 1/2013 Kisak et al. Mississauga (CA) 8,513,304 B2 8, 2013 Kisak et al. 8,535,692 B2 9/2013 Pongpeerapat et al. (*) Notice: Subject to any disclaimer, the term of this 9,308,181 B2* 4/2016 Kisak ..................... A61K 47/12 patent is extended or adjusted under 35 2002fOOO6435 A1 1/2002 Samuels et al. 2002fOO64524 A1 5, 2002 Cevc U.S.C. 154(b) by 204 days. 2005, OO 14823 A1 1/2005 Soderlund et al. This patent is Subject to a terminal dis 2005.00754O7 A1 4/2005 Tamarkin et al.
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • G Protein‐Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology (2019) 176, S21–S141 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors Stephen PH Alexander1 , Arthur Christopoulos2 , Anthony P Davenport3 , Eamonn Kelly4, Alistair Mathie5 , John A Peters6 , Emma L Veale5 ,JaneFArmstrong7 , Elena Faccenda7 ,SimonDHarding7 ,AdamJPawson7 , Joanna L Sharman7 , Christopher Southan7 , Jamie A Davies7 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia 3Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK 4School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 5Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 6Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 7Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website.
    [Show full text]
  • 7 X 11.5 Long Title.P65
    Cambridge University Press 978-0-521-11208-6 - G Protein-Coupled Receptors: Structure, Signaling, and Physiology Edited by Sandra Siehler and Graeme Milligan Index More information Index Α 2A-adrenoceptor D1 receptor interactions, 93 activation kinetics, 148 time-limiting steps, 152–153 allosteric modulators, 257 TR-FRET analysis, 76–78, 84 effector systems, 152 Adenosine-A2, 257 function studies, 55–56 Adenosine-A2A receptor/G protein interaction, activation kinetics, 148, 149 149–150, 151 β/γ complex in adenylyl cyclase signal time-limiting steps, 152–153 modulation, 207–208 -1 adrenoceptors receptors dopamine receptor interactions, 93–94 allosteric modulators, 257 Golf mediation of, 131 cardiovascular regulation role, 291–292 in Parkinson’s disease, 335–338 TR-FRET analysis, 76–78 receptor/G protein interaction, 149–150 2-andrenoceptors receptors schizophrenia, D2R-A2AR heteromeric β 1-adrenoceptors receptor complexes in, 94 polymorphisms in heart failure, Adenylyl cyclases regulation 304–305 as assay, 235 conformational selection in, 275 crystal structures, 203 α 1B-adrenoceptor-G 11 function studies, expression patterns, 191–192, 203–204 57–58 GPCR interactions, direct, 205, 206, ABC294640, 392 217–218 ABC747080, 392 Gq/G11 family, 135–136 ABP688, 257, 260 group I, 195–196 AC-42, 257 group II, 196–197 Acebutol, 298 group III, 197–198 ACPD group IV, 198–199 1S,3R-ACPD, 339 Gz, 131 trans-ACPD, 327, 328 heterologous sensitization, 192, 199–202 in cognitive disorders, 346–348 history, 192–194 in epilepsy, 338, 339, 352–353, 354, isoforms,
    [Show full text]
  • NIH Public Access Author Manuscript J Psychopharmacol
    NIH Public Access Author Manuscript J Psychopharmacol. Author manuscript; available in PMC 2015 January 21. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: J Psychopharmacol. 2013 February ; 27(2): 152–161. doi:10.1177/0269881112454230. Group II metabotropic glutamate receptor type 2 allosteric potentiators prevent sodium lactate-induced panic-like response in panic-vulnerable rats Philip L Johnson1, Stephanie D Fitz1, Eric A Engleman1, Kjell A Svensson2, Jeffrey M Schkeryantz2, and Anantha Shekhar1 1Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, USA 2Eli Lilly & Co., Indianapolis, USA Abstract Rats with chronic inhibition of GABA synthesis by infusion of l-allyglycine, a glutamic acid decarboxylase inhibitor, into their dorsomedial/perifornical hypothalamus are anxious and exhibit panic-like cardio-respiratory responses to treatment with intravenous (i.v.) sodium lactate (NaLac) infusions, in a manner similar to what occurs in patients with panic disorder. We previously showed that either NMDA receptor antagonists or metabotropic glutamate receptor type 2/3 receptor agonists can block such a NaLac response, suggesting that a glutamate mechanism is contributing to this panic-like state. Using this animal model of panic, we tested the efficacy of CBiPES and THIIC, which are selective group II metabotropic glutamate type 2 receptor allosteric potentiators (at 10–30mg/kg i.p.), in preventing NaLac-induced panic-like behavioral and cardiovascular responses. The positive control was alprazolam (3mg/kg i.p.), a clinically effective anti-panic benzodiazepine. As predicted, panic-prone rats given a NaLac challenge displayed NaLac-induced panic-like cardiovascular (i.e.
    [Show full text]
  • Pharmacological Characterization of JNJ-40068782, a New Potent, Selective
    JPET Fast Forward. Published on June 13, 2013 as DOI: 10.1124/jpet.113.204990 JPET ThisFast article Forward. has not been Published copyedited andon formatted.June 13, The 2013 final versionas DOI:10.1124/jpet.113.204990 may differ from this version. JPET#_204990R Pharmacological characterization of JNJ-40068782, a new potent, selective and systemically active positive allosteric modulator of the mGlu2 receptor and its radioligand [3H]JNJ-40068782 Hilde Lavreysen, Xavier Langlois, Abdel Ahnaou, Wilhelmus Drinkenburg, Paula te Riele, Ilse Biesmans, Ilse Van der Linden, Luc Peeters, Anton Megens, Cindy Wintmolders, José Cid, Andrés A. Trabanco, Ignacio Andrés, Frank M. Dautzenberg, Robert Lütjens, Gregor Downloaded from Macdonald, John Atack jpet.aspetjournals.org Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium (HL, XL, AA, WD, PtR, IB, IVdL, LP, AM, CW, FD, GM, JA) Janssen Research and Development, Jarama 75, 45007 Toledo, Spain (JC, AT, IA) at ASPET Journals on September 30, 2021 Addex Therapeutics, Chemin des Aulx 12, 1228 Plan-les-Ouates, Geneva, Switzerland (RL) 1 Copyright 2013 by the American Society for Pharmacology and Experimental Therapeutics. JPET Fast Forward. Published on June 13, 2013 as DOI: 10.1124/jpet.113.204990 This article has not been copyedited and formatted. The final version may differ from this version. JPET#_204990R Running title: Pharmacological characterization of JNJ-40068782, a mGlu2 receptor PAM Address correspondence, proofs and reprint requests to Dr. Hilde Lavreysen at: Neuroscience,
    [Show full text]
  • Identification of Compounds That Rescue Otic And
    bioRxiv preprint doi: https://doi.org/10.1101/520056; this version posted January 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Identification of compounds that rescue otic and myelination defects in the 2 zebrafish adgrg6 (gpr126) mutant 3 4 Elvira Diamantopoulou1,*, Sarah Baxendale1,*, Antonio de la Vega de León2, Anzar Asad1, 5 Celia J. Holdsworth1, Leila Abbas1, Valerie J. Gillet2, Giselle R. Wiggin3 and Tanya T. 6 Whitfield1# 7 8 1Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, 9 S10 2TN, UK 10 2Information School, University of Sheffield, Sheffield, S1 4DP, UK 11 3Sosei Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK 12 13 *These authors contributed equally 14 15 #Corresponding author: 16 Tanya T. Whitfield: [email protected] 17 ORCID iD: 0000-0003-1575-1504 18 19 Key words: zebrafish, aGPCR, Adgrg6, Gpr126, phenotypic screening, chemoinformatics, 20 versican, myelination, inner ear, lateral line, Schwann cells 21 22 1 bioRxiv preprint doi: https://doi.org/10.1101/520056; this version posted January 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 23 ABSTRACT 24 Adgrg6 (Gpr126) is an adhesion class G protein-coupled receptor with a conserved role in 25 myelination of the peripheral nervous system.
    [Show full text]
  • Development and Characterization of Novel Allosteric Modulators Acting on Metabotropic Glutamate Receptors 2 and 3
    DEVELOPMENT AND CHARACTERIZATION OF NOVEL ALLOSTERIC MODULATORS ACTING ON METABOTROPIC GLUTAMATE RECEPTORS 2 AND 3 By Cody James Wenthur Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in PHARMACOLOGY August, 2015 Nashville, Tennessee Approved: Professor Craig W. Lindsley Professor P. Jeffrey Conn Professor Randy D. Blakely Professor Aaron B. Bowman Professor Joey V. Barnett To my beloved wife, Brielle, the author of my happiness and To the untested truths, out beyond the ragged frontier ii ACKNOWLEDGEMENTS The following work was generously supported by financial assistance from the Howard Hughes Medical Institute / Vanderbilt University Medical Center Certificate Program in Molecular Medicine, the NIGMS Vanderbilt Pre-Doctoral Pharmacology Training Program, NCATS funds awarded through the Vanderbilt Institute for Clinical and Translational Research, the NIH Clinical Research Loan Repayment Program, and the NIH Molecular Libraries Program. These visionary awards enable scientific studies at the boundaries between disciplines, emphasize the importance of applied science, and champion the development of the next generation of translational researchers. It is no overstatement to say that without such incredible backing, this manuscript would never have come to fruition. Likewise, the continuous guidance and assistance of my committee members was essential. The insights and suggestions of Drs. Randy Blakely, Aaron Bowman, and Joey Barnett, along with their unwavering commitment to helping me pursue my career and research goals, were integral to the success of the project. The current and former chairs of my committee, Drs. Jeff Conn and Scott Daniels, respectively, have both gone far beyond the simple requirements of their positions, providing me with access to their labs, equipment, and expertise – I will always be grateful for the opportunity to have learned from them.
    [Show full text]
  • Antipsychotic Drugs: Comparison in Animal Models of Efficacy, Neurotransmitter Regulation, and Neuroprotection
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Pharmacol Manuscript Author Rev. Author Manuscript Author manuscript; available in PMC 2016 April 05. Published in final edited form as: Pharmacol Rev. 2008 September ; 60(3): 358–403. doi:10.1124/pr.107.00107. Antipsychotic Drugs: Comparison in Animal Models of Efficacy, Neurotransmitter Regulation, and Neuroprotection JEFFREY A. LIEBERMAN, FRANK P. BYMASTER, HERBERT Y. MELTZER, ARIEL Y. DEUTCH, GARY E. DUNCAN, CHRISTINE E. MARX, JUNE R. APRILLE, DONARD S. DWYER, XIN-MIN LI, SAHEBARAO P. MAHADIK, RONALD S. DUMAN, JOSEPH H. PORTER, JOSEPHINE S. MODICA-NAPOLITANO, SAMUEL S. NEWTON, and JOHN G. CSERNANSKY Department of Psychiatry, Columbia University College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, New York (J.A.L.); Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana (F.P.B.); Division of Psychopharmacology, Vanderbilt University Medical Center, Psychiatric Hospital at Vanderbilt, Nashville, Tennessee (H.Y.M); Departments of Psychiatry and Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.Y.D.); Departments of Psychiatry & Biology, University of North Carolina System–Chapel Hill, Chapel Hill, North Carolina (G.E.D.); Department of Psychiatry and Behavioral Sciences, Duke University Medical Center and Durham Veterans Affairs Medical Center, Durham, North Carolina (C.E.M.); Department of Biology, Washington and Lee University, Lexington, Virginia (J.R.A.); Louisiana
    [Show full text]