An Introduction to Rotation Theory Christian Kuehn
[email protected] Abstract This tutorial introduces one of the most fundamental dynamical systems by studying maps of the circle to itself. We are mainly going to investigate homeomorphisms of the circle. Homeomorphisms look easy at first sight, but this tutorial should convince you that this first impression is not quite correct. Indeed, we shall meet several surprising phenomena and discuss results, which demonstrate the complications arising already in 1-dimensional dynamics. Even in higher-dimensional problems it often turns out that we can reduce our system to a 1-dimensional setup, so that we are also trying to give major tools and results, which should be helpful even if you are not planning to stay in the 1-dimensional world. The theory associated with self-maps on the circle sometimes goes by the name “Rotation Theory” and as we shall see: This name is justified. Contents 1 Preface 3 2 Circle maps 5 3 Weyl’s Theorem 9 4 Ergodic Theory 13 5 Rotation numbers 16 6 Rational Rotation Numbers 19 7 Limit Sets 24 8 Wandering Intervals 27 9 Families of Diffeomorphisms 31 10 Further Steps and References... 37 11 Hints 41 12 Answers 53 1 Preface The tutorial is set up so that a beginning junior or senior undergraduate student from mathematics or a mathematics-related field with a basic course in analysis should be able to follow the main line of argument. Also, beginning graduate students with little background in dynamical systems beyond differential equations are hopefully able to benefit.