Software Fault Isolation with Api Integrity and Multi-Principal Modules
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Measuring Software Performance on Linux Technical Report
Measuring Software Performance on Linux Technical Report November 21, 2018 Martin Becker Samarjit Chakraborty Chair of Real-Time Computer Systems Chair of Real-Time Computer Systems Technical University of Munich Technical University of Munich Munich, Germany Munich, Germany [email protected] [email protected] OS program program CPU .text .bss + + .data +/- + instructions cache branch + coherency scheduler misprediction core + pollution + migrations data + + interrupt L1i$ miss access + + + + + + context mode + + (TLB flush) TLB + switch data switch miss L1d$ +/- + (KPTI TLB flush) miss prefetch +/- + + + higher-level readahead + page cache miss walk + + multicore + + (TLB shootdown) TLB coherency page DRAM + page fault + cache miss + + + disk + major minor I/O Figure 1. Event interaction map for a program running on an Intel Core processor on Linux. Each event itself may cause processor cycles, and inhibit (−), enable (+), or modulate (⊗) others. Abstract that our measurement setup has a large impact on the results. Measuring and analyzing the performance of software has More surprisingly, however, they also suggest that the setup reached a high complexity, caused by more advanced pro- can be negligible for certain analysis methods. Furthermore, cessor designs and the intricate interaction between user we found that our setup maintains significantly better per- formance under background load conditions, which means arXiv:1811.01412v2 [cs.PF] 20 Nov 2018 programs, the operating system, and the processor’s microar- chitecture. In this report, we summarize our experience on it can be used to improve high-performance applications. how performance characteristics of software should be mea- CCS Concepts • Software and its engineering → Soft- sured when running on a Linux operating system and a ware performance; modern processor. -
Communicating Between the Kernel and User-Space in Linux Using Netlink Sockets
SOFTWARE—PRACTICE AND EXPERIENCE Softw. Pract. Exper. 2010; 00:1–7 Prepared using speauth.cls [Version: 2002/09/23 v2.2] Communicating between the kernel and user-space in Linux using Netlink sockets Pablo Neira Ayuso∗,∗1, Rafael M. Gasca1 and Laurent Lefevre2 1 QUIVIR Research Group, Departament of Computer Languages and Systems, University of Seville, Spain. 2 RESO/LIP team, INRIA, University of Lyon, France. SUMMARY When developing Linux kernel features, it is a good practise to expose the necessary details to user-space to enable extensibility. This allows the development of new features and sophisticated configurations from user-space. Commonly, software developers have to face the task of looking for a good way to communicate between kernel and user-space in Linux. This tutorial introduces you to Netlink sockets, a flexible and extensible messaging system that provides communication between kernel and user-space. In this tutorial, we provide fundamental guidelines for practitioners who wish to develop Netlink-based interfaces. key words: kernel interfaces, netlink, linux 1. INTRODUCTION Portable open-source operating systems like Linux [1] provide a good environment to develop applications for the real-world since they can be used in very different platforms: from very small embedded devices, like smartphones and PDAs, to standalone computers and large scale clusters. Moreover, the availability of the source code also allows its study and modification, this renders Linux useful for both the industry and the academia. The core of Linux, like many modern operating systems, follows a monolithic † design for performance reasons. The main bricks that compose the operating system are implemented ∗Correspondence to: Pablo Neira Ayuso, ETS Ingenieria Informatica, Department of Computer Languages and Systems. -
Linux Kernel and Driver Development Training Slides
Linux Kernel and Driver Development Training Linux Kernel and Driver Development Training © Copyright 2004-2021, Bootlin. Creative Commons BY-SA 3.0 license. Latest update: October 9, 2021. Document updates and sources: https://bootlin.com/doc/training/linux-kernel Corrections, suggestions, contributions and translations are welcome! embedded Linux and kernel engineering Send them to [email protected] - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/470 Rights to copy © Copyright 2004-2021, Bootlin License: Creative Commons Attribution - Share Alike 3.0 https://creativecommons.org/licenses/by-sa/3.0/legalcode You are free: I to copy, distribute, display, and perform the work I to make derivative works I to make commercial use of the work Under the following conditions: I Attribution. You must give the original author credit. I Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one. I For any reuse or distribution, you must make clear to others the license terms of this work. I Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above. Document sources: https://github.com/bootlin/training-materials/ - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/470 Hyperlinks in the document There are many hyperlinks in the document I Regular hyperlinks: https://kernel.org/ I Kernel documentation links: dev-tools/kasan I Links to kernel source files and directories: drivers/input/ include/linux/fb.h I Links to the declarations, definitions and instances of kernel symbols (functions, types, data, structures): platform_get_irq() GFP_KERNEL struct file_operations - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/470 Company at a glance I Engineering company created in 2004, named ”Free Electrons” until Feb. -
An Evolutionary Study of Linux Memory Management for Fun and Profit Jian Huang, Moinuddin K
An Evolutionary Study of Linux Memory Management for Fun and Profit Jian Huang, Moinuddin K. Qureshi, and Karsten Schwan, Georgia Institute of Technology https://www.usenix.org/conference/atc16/technical-sessions/presentation/huang This paper is included in the Proceedings of the 2016 USENIX Annual Technical Conference (USENIX ATC ’16). June 22–24, 2016 • Denver, CO, USA 978-1-931971-30-0 Open access to the Proceedings of the 2016 USENIX Annual Technical Conference (USENIX ATC ’16) is sponsored by USENIX. An Evolutionary Study of inu emory anagement for Fun and rofit Jian Huang, Moinuddin K. ureshi, Karsten Schwan Georgia Institute of Technology Astract the patches committed over the last five years from 2009 to 2015. The study covers 4587 patches across Linux We present a comprehensive and uantitative study on versions from 2.6.32.1 to 4.0-rc4. We manually label the development of the Linux memory manager. The each patch after carefully checking the patch, its descrip- study examines 4587 committed patches over the last tions, and follow-up discussions posted by developers. five years (2009-2015) since Linux version 2.6.32. In- To further understand patch distribution over memory se- sights derived from this study concern the development mantics, we build a tool called MChecker to identify the process of the virtual memory system, including its patch changes to the key functions in mm. MChecker matches distribution and patterns, and techniues for memory op- the patches with the source code to track the hot func- timizations and semantics. Specifically, we find that tions that have been updated intensively. -
Review Der Linux Kernel Sourcen Von 4.9 Auf 4.10
Review der Linux Kernel Sourcen von 4.9 auf 4.10 Reviewed by: Tested by: stecan stecan Period of Review: Period of Test: From: Thursday, 11 January 2018 07:26:18 o'clock +01: From: Thursday, 11 January 2018 07:26:18 o'clock +01: To: Thursday, 11 January 2018 07:44:27 o'clock +01: To: Thursday, 11 January 2018 07:44:27 o'clock +01: Report automatically generated with: LxrDifferenceTable, V0.9.2.548 Provided by: Certified by: Approved by: Account: stecan Name / Department: Date: Friday, 4 May 2018 13:43:07 o'clock CEST Signature: Review_4.10_0_to_1000.pdf Page 1 of 793 May 04, 2018 Review der Linux Kernel Sourcen von 4.9 auf 4.10 Line Link NR. Descriptions 1 .mailmap#0140 Repo: 9ebf73b275f0 Stephen Tue Jan 10 16:57:57 2017 -0800 Description: mailmap: add codeaurora.org names for nameless email commits ----------- Some codeaurora.org emails have crept in but the names don't exist for them. Add the names for the emails so git can match everyone up. Link: http://lkml.kernel.org/r/[email protected] 2 .mailmap#0154 3 .mailmap#0160 4 CREDITS#2481 Repo: 0c59d28121b9 Arnaldo Mon Feb 13 14:15:44 2017 -0300 Description: MAINTAINERS: Remove old e-mail address ----------- The ghostprotocols.net domain is not working, remove it from CREDITS and MAINTAINERS, and change the status to "Odd fixes", and since I haven't been maintaining those, remove my address from there. CREDITS: Remove outdated address information ----------- This address hasn't been accurate for several years now. -
Mellanox Linux Switch †
SOFTWARE PRODUCT BRIEF Mellanox Linux Switch † – Taking Open Ethernet to the next level, Mellanox Linux Switch provides users with the ability to deploy any standard Linux operating HIGHLIGHTS system on their switch devices – Mellanox Linux Switch enables users to natively install and use any standard Linux distribution as • 100% free open source software the switch operating system on the Open Ethernet Mellanox Spectrum® switch platforms. Mellanox Linux Switch is based on Switchdev, a Linux kernel driver model for Ethernet switches. Mellanox is • L2/L3 switch system as standard Linux the first switch vendor to embrace this model by implementing the switchdev driver for its Mellanox server Spectrum switches. This revolutionary concept breaks the dependency of using vendor-specific • Uniform Linux interfaces software development kits (SDK). Instead of proprietary APIs, fully standard Linux kernel interfaces are used to control the switch chip. This allows users to natively install and use any standard Linux • Fully supported by the Linux distribution as the switch operating system, while the switchdev driver ensures all network traffic is community seamlessly offloaded to the switch hardware. • Hardware independent abstraction layer Openness and Freedom • User choice of Linux operating The 100% free open-source Mellanox switchdev driver is developed and maintained as part of the systems and network applications Linux kernel and is promoted by the Linux community. There is no longer a need for closed code from switch vendors, no more binary blobs, and no need to sign a service level agreement (SLA). • Industry’s highest performance switch systems portfolio, including the high- Linux Switch provides users the flexibility to customize and optimize the switch to their exact needs density half-width Mellanox SN2100 without paying for expensive proprietary software that includes features they neither need nor will never use. -
OMV Crash 25Feb2020 Syslog
Feb 25 00:00:00 prometheus rsyslogd: [origin software="rsyslogd" swVersion="8.1901.0" x-pid="858" x-info="https://www.rsyslog.com"] rsyslogd was HUPed Feb 25 00:00:00 prometheus systemd[1]: logrotate.service: Succeeded. Feb 25 00:00:00 prometheus systemd[1]: Started Rotate log files. Feb 25 00:00:01 prometheus CRON[10420]: (root) CMD (/usr/sbin/omv- mkrrdgraph >/dev/null 2>&1) Feb 25 00:09:00 prometheus systemd[1]: Starting Clean php session files... Feb 25 00:09:00 prometheus sessionclean[10668]: PHP Warning: PHP Startup: Unable to load dynamic library '/usr/lib/php/20151012/pam.so' - /usr/lib/php/20151012/pam.so: cannot open shared object file: No such file or directory in Unknown on line 0 Feb 25 00:09:00 prometheus sessionclean[10668]: PHP Warning: PHP Startup: Unable to load dynamic library '/usr/lib/php/20151012/pam.so' - /usr/lib/php/20151012/pam.so: cannot open shared object file: No such file or directory in Unknown on line 0 Feb 25 00:09:00 prometheus sessionclean[10668]: PHP Warning: PHP Startup: Unable to load dynamic library '/usr/lib/php/20151012/pam.so' - /usr/lib/php/20151012/pam.so: cannot open shared object file: No such file or directory in Unknown on line 0 Feb 25 00:09:00 prometheus systemd[1]: phpsessionclean.service: Succeeded. Feb 25 00:09:00 prometheus systemd[1]: Started Clean php session files. Feb 25 00:09:01 prometheus CRON[10770]: (root) CMD ( [ -x /usr/lib/ php/sessionclean ] && if [ ! -d /run/systemd/system ]; then /usr/lib/ php/sessionclean; fi) Feb 25 00:15:01 prometheus CRON[10858]: (root) CMD (/usr/sbin/omv- mkrrdgraph >/dev/null 2>&1) Feb 25 00:17:01 prometheus CRON[10990]: (root) CMD ( cd / && run- parts --report /etc/cron.hourly) Feb 25 00:17:01 prometheus postfix/postsuper[10993]: fatal: scan_dir_push: open directory hold: No such file or directory Feb 25 00:30:01 prometheus CRON[11200]: (root) CMD (/usr/sbin/omv- mkrrdgraph >/dev/null 2>&1) Feb 25 00:39:00 prometheus systemd[1]: Starting Clean php session files.. -
Open Source Practice of LG Electronics
Open Source Practice of LG Electronics Hyo Jun Im Software Platform Laboratory, LG Electronics Introduction to LG Electronics LG Electronics is a global leader and technology innovator in consumer electronics, mobile communications and home appliances. Overview This presentation covers both the open source compliance and open source engagement Compliance LG Community Engagement Open Source Compliance How LG Electronics built the open source compliance process from scratch. Steps for Building Up Open Source Compliance Process | Kick-starting open source compliance | Raising awareness | Setting up the process | Filling holes in the process | Efficient open source compliance Kick-starting Open Source Compliance | Challenges > Lack of knowledge on open source compliance > Lack of verification tools | What we did > Just rushed into writing the open source software notice in the user manual > Manual open source identification and verification | What we got > Basic knowledge of popular open source licenses > Need for automated verification tools > Knowledge on practical issues with open source compliance Raising Awareness | Introduction to relevant lawsuit case | Online / Offline training | Escalation of the open source compliance issues to management | Help from outside experts Industry Lawsuit Case • 2006 Set the precedent that the sale of a product can be prohibited 2007 • Distributors can be held responsible, and lawsuits filed against them • 2008 Similar to the case with Skype • 2010 Forced to give TVs to charity organizations as well as -
Red Hat Enterprise Linux Roadmap
RED HAT ENTERPRISE LINUX ROADMAP Transforming Application Delivery While Protecting Your Application Investments Ron Pacheco, Director, Product Management Karen Noel, Director of Engineering May 2, 2017 Disclaimer The content set forth herein does not constitute in any way a binding or legal agreement or impose any legal obligation or duty on Red Hat. This information is provided for discussion purposes only and is subject to change for any or no reason. MARKET REQUIREMENTS “Light up my hardware.” “Enable my operations.” Circa 2002 Circa 2017 ● Light up my hardware ● Everything I’m used to and... ● Award winning support ● More software available ● Vast ecosystem ● Less software installed ● Peerless security ● Non-disruptive updates ● Lifecycle options ● More automation BRIEF HISTORY OF RED HAT ENTERPRISE LINUX Not pictured: tens of thousands of incremental improvements Control Groups Mandatory access controls Secure Virtualization IBM Power Automated security Real-time kernel IBM Z Series RHEL is born. audits ‘02 ‘03 ‘05 ‘07 ‘10 ‘11 ‘12 ‘13 ‘15 Virtualization Containers Software-defined Cluster file Software-defined Networking systems storage FLEXIBILITY ACROSS DEPLOYMENT TARGETS via a Trusted, Consistent Host Environment RED HAT ENTERPRISE LINUX IS THE FOUNDATION RED HAT ENTERPRISE LINUX ROADMAP Red Hat CY2016 CY2017 Summit CY2018 CY2019 CY2020 2017 RHEL 7 RHEL ATOMIC HOST RHEL FOR REAL TIME .2 .3 .4 .5 .6.5 .7 RHEL FOR SAP APPLICATIONS RHEL FOR SAP HANA RHEL 6 RHEL FOR SAP APPLICATIONS .8 .9 .10 RHEL FOR SAP HANA RHEL 5 .11 SOFTWARE -
LPIC-2 Study Guide Second Edition
LPIC-2 Study Guide Second Edition ffirs.indd 09/14/2016 Page i LPIC-2: Linux Professional Institute Certification Study Guide Exam 201 and Exam 202 Second Edition Christine Bresnahan Richard Blum ffirs.indd 09/14/2016 Page iii Senior Acquisitions Editor: Kenyon Brown Development Editor: Gary Schwartz Technical Editor: Kevin Ryan Production Editor: Christine O’Connor Copy Editor: Linda Rectenwald Editorial Manager: Mary Beth Wakefield Production Manager: Kathleen Wisor Executive Publisher: Jim Minatel Book Designers: Judy Fung and Bill Gibson Proofreader: Rebecca Rider Indexer: John Sleeva Project Coordinator, Cover: Brent Savage Cover Designer: Wiley Cover Image: Getty Images Inc./Jeremy Woodhouse Copyright © 2016 by John Wiley & Sons, Inc., Indianapolis, Indiana Published simultaneously in Canada ISBN: 978-1-119-15079-4 ISBN: 978-1-119-15081-7 (ebk.) ISBN: 978-1-119-15080-0 (ebk.) Manufactured in the United States of America No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hobo- ken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions. -
Architecture of the Linux Kernel
Architecture of the Linux kernel Gerion Entrup Felix Herrmann Sophie Matter Elias Entrup Matthias Jakob Jan Eberhardt Mathias Casselt March 21, 2018 Contents 1 Introduction 7 1.1 Overview of Linux components ................................... 7 1.2 License ................................................. 9 2 Process Management 11 2.1 Processes ............................................... 11 2.2 Process creation - Forking a process ................................ 13 2.3 Threads ................................................ 16 3 Scheduling in Linux 17 3.1 Scheduling-Classes .......................................... 17 3.2 Process Categories .......................................... 17 3.3 O(1)-Scheduler ............................................ 18 3.4 Priorities and Timeslices ....................................... 18 3.5 Completely Fair Scheduler ...................................... 19 3.5.1 Implementation details .................................... 20 3.6 Kernel Preemption .......................................... 21 4 Interrupts 23 4.1 Interrupt processing ......................................... 23 4.2 Interrupt entry ............................................ 23 4.3 Event handler ............................................. 24 4.3.1 Example: Generic Top Halve ................................ 24 4.3.2 Example: Handler ...................................... 24 4.4 /proc/interrupts ........................................... 25 4.5 Conclusion .............................................. 25 5 Bottom Halves 27 5.1 -
Slab Allocators in the Linux Kernel: SLAB, SLOB, SLUB
Slab allocators in the Linux Kernel: SLAB, SLOB, SLUB Christoph Lameter, LinuxCon/Düsseldorf 2014 (Revision Oct 3, 2014) The Role of the Slab allocator in Linux • PAGE_SIZE (4k) basic allocation unit via page allocator. • Allows fractional allocation. Frequently needed for small objects that the kernel allocates f.e. for network descriptors. • Slab allocation is very performance sensitive. • Caching. • All other subsystems need the services of the slab allocators. • Terminology: SLAB is one of the slab allocator. • A SLAB could be a page frame or a slab cache as a whole. It's confusing. Yes. System Components around Slab Allocators kmalloc(size, flags) Device kfree(object) Page Drivers kzalloc(size, flags) Allocator kmem_cache_alloc(cahe, flags) kmem_cache_free(object) s Slab e kmalloc_node(size, flags, node) m File allocator a kmem_cache_alloc_node(cache, r F Systems flags, node) s e t c g e a j b P o l l a m S Memory Management User space code Slab allocators available • SLOB: K&R allocator (1991-1999) • SLAB: Solaris type allocator (1999-2008) • SLUB: Unqueued allocator (2008-today) • Design philosophies – SLOB: As compact as possible – SLAB: As cache friendly as possible. Benchmark friendly. – SLUB: Simple and instruction cost counts. Superior Debugging. Defragmentation. Execution time friendly. 1991 1991 Initial K&R allocator 1996 SLAB allocator development subsystem Slab line: Time 2000 2003 SLOB allocator 2004 NUMA SLAB 2007 SLUB allocator 2008 SLOB multilist 2010 2011 SLUB fastpath rework 2013 Common slab code 2014 2014 SLUBification of SLAB Maintainers • Manfred Spraul <SLAB Retired> • Matt Mackall <SLOB Retired> • Pekka Enberg • Christoph Lameter <SLUB, SLAB NUMA> • David Rientjes • Joonsoo Kim Contributors • Alokk N Kataria SLAB NUMA code • Shobhit Dayal SLAB NUMA architecture • Glauber Costa Cgroups support • Nick Piggin SLOB NUMA support and performance optimizations.