Review Der Linux Kernel Sourcen Von 4.9 Auf 4.10

Total Page:16

File Type:pdf, Size:1020Kb

Review Der Linux Kernel Sourcen Von 4.9 Auf 4.10 Review der Linux Kernel Sourcen von 4.9 auf 4.10 Reviewed by: Tested by: stecan stecan Period of Review: Period of Test: From: Thursday, 11 January 2018 07:26:18 o'clock +01: From: Thursday, 11 January 2018 07:26:18 o'clock +01: To: Thursday, 11 January 2018 07:44:27 o'clock +01: To: Thursday, 11 January 2018 07:44:27 o'clock +01: Report automatically generated with: LxrDifferenceTable, V0.9.2.548 Provided by: Certified by: Approved by: Account: stecan Name / Department: Date: Friday, 4 May 2018 13:43:07 o'clock CEST Signature: Review_4.10_0_to_1000.pdf Page 1 of 793 May 04, 2018 Review der Linux Kernel Sourcen von 4.9 auf 4.10 Line Link NR. Descriptions 1 .mailmap#0140 Repo: 9ebf73b275f0 Stephen Tue Jan 10 16:57:57 2017 -0800 Description: mailmap: add codeaurora.org names for nameless email commits ----------- Some codeaurora.org emails have crept in but the names don't exist for them. Add the names for the emails so git can match everyone up. Link: http://lkml.kernel.org/r/[email protected] 2 .mailmap#0154 3 .mailmap#0160 4 CREDITS#2481 Repo: 0c59d28121b9 Arnaldo Mon Feb 13 14:15:44 2017 -0300 Description: MAINTAINERS: Remove old e-mail address ----------- The ghostprotocols.net domain is not working, remove it from CREDITS and MAINTAINERS, and change the status to "Odd fixes", and since I haven't been maintaining those, remove my address from there. CREDITS: Remove outdated address information ----------- This address hasn't been accurate for several years now. Simply remove it. Merge branch 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip ----------- Pull x86 microcode update from Ingo Molnar: "The biggest change (by Borislav Petkov) is a thorough rewrite of the Intel microcode loader and its interactions with the core code. The biggest conceptual change is the decoupling of the microcode loading on boot and application processors (which load the microcode in different scenarios), so that both parse the input patches with as few assumptions as possible - this also fixes various kernel address space randomization bugs. (The AP side then goes on and caches the result to improve boot performance.) Since the AMD side already did this, this change also opened up the path towards more unification/simplification of the core microcode loading infrastructure: 10 files changed, 647 insertions(+), 940 deletions(-) Review_4.10_0_to_1000.pdf Page 2 of 793 May 04, 2018 Review der Linux Kernel Sourcen von 4.9 auf 4.10 Line Link NR. Descriptions which speaks for itself" * 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/microcode: Bump driver version, update copyrights x86/microcode: Rework microcode loading x86/microcode/intel: Remove intel_lib.c x86/microcode/amd: Move private inlines to .c and mark local functions static x86/microcode: Collect CPU info on resume x86/microcode: Issue the debug printk on resume only on success x86/microcode/amd: Hand down the CPU family x86/microcode: Export the microcode cache linked list x86/microcode: Remove one #ifdef clause x86/microcode/intel: Simplify generic_load_microcode() x86/microcode: Move driver authors to CREDITS x86/microcode: Run the AP-loading routine only on the application processors 5 CREDITS#2484 6 CREDITS#2486 7 CREDITS#2778 8 CREDITS#3951 9 MAINTAINERS#0038 Repo: 0c59d28121b9 Arnaldo Mon Feb 13 14:15:44 2017 -0300 Description: MAINTAINERS: Remove old e-mail address ----------- The ghostprotocols.net domain is not working, remove it from CREDITS and MAINTAINERS, and change the status to "Odd fixes", and since I haven't been maintaining those, remove my address from there. Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc ----------- Pull ARM SoC fixes from Arnd Bergmann: - A relatively large patch restores booting on i.MX platforms that failed to boot after a cleanup was merged for v4.10. - A quirk for USB needs to be enabled on the STi platform - On the Meson platform, we saw memory corruption with part of the memory used by the secure monitor, so we have to stay out of that area. - The same platform also has a problem with ethernet under load, which is fixed by disabling EEE negotiation. Review_4.10_0_to_1000.pdf Page 3 of 793 May 04, 2018 Review der Linux Kernel Sourcen von 4.9 auf 4.10 Line Link NR. Descriptions - imx6dl has an incorrect pin configuration, which prevents SPI from working. - Two maintainers have lost their access to their email addresses, so we should update the MAINTAINERS file before the release - Renaming one of the orion5x linkstation models to help simplify the debian install. - A couple of fixes for build warnings that were introduced during v4.10-rc. * tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: ARM: defconfigs: make NF_CT_PROTO_SCTP and NF_CT_PROTO_UDPLITE built-in MAINTAINERS: socfpga: update email for Dinh Nguyen ARM: orion5x: fix Makefile for linkstation-lschl.dtb ARM: dts: orion5x-lschl: More consistent naming on linkstation series ARM: dts: orion5x-lschl: Fix model name MAINTAINERS: change email address from atmel to microchip MAINTAINERS: at91: change email address ARM64: dts: meson-gx: Add firmware reserved memory zones ARM64: dts: meson-gxbb-odroidc2: fix GbE tx link breakage ARM: dts: STiH407-family: set snps,dis_u3_susphy_quirk ARM: dts: imx: Pass 'chosen' and 'memory' nodes ARM: dts: imx6dl: fix GPIO4 range ARM: imx: hide unused variable in #ifdef MAINTAINERS: socfpga: update email for Dinh Nguyen ----------- My opensource.altera.com email will be going away soon. Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost ----------- Pull virtio/vhost fixes from Michael S. Tsirkin: "Last minute fixes: - ARM DMA fix revert - vhost endian-ness fix - MAINTAINERS: email address change for Amit" * tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost: MAINTAINERS: update email address for Amit Shah vhost: fix initialization for vq->is_le Revert "vring: Force use of DMA API for ARM-based systems with legacy devices" Review_4.10_0_to_1000.pdf Page 4 of 793 May 04, 2018 Review der Linux Kernel Sourcen von 4.9 auf 4.10 Line Link NR. Descriptions MAINTAINERS: update email address for Amit Shah ----------- I'm leaving my job at Red Hat, this email address will stop working next week. Update it to one that I will have access to later. Merge tag 'at91-ab-4.10-soc' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux into fixes ----------- AT91 SoC fixes for 4.10: - change email addresses for Nicolas and Ludovic following the Microchip-Atmel merger * tag 'at91-ab-4.10-soc' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux: MAINTAINERS: change email address from atmel to microchip MAINTAINERS: at91: change email address MAINTAINERS: change email address from atmel to microchip ----------- Use microchip email address instead of old atmel one. MAINTAINERS: at91: change email address ----------- Following the Microchip / Atmel merger and the unification of internal IT, it's more convenient for me to swith to the microchip.com address. Change all my entries to reflect this. Merge tag 'wireless-drivers-for-davem-2017-01-29' of git://git.kernel.org/pub/scm/linux/kernel/git/kvalo/wireless-drivers ----------- Kalle Valo says: ==================== wireless-drivers fixes for 4.10 Most important here are fixes to two iwlwifi crashes, but there's also a firmware naming fix for iwlwifi and a revert of an older bcma patch. ==================== MAINTAINERS: ath9k-devel is closed ----------- ath9k-devel list is now closed, only linux-wireless should be used. Review_4.10_0_to_1000.pdf Page 5 of 793 May 04, 2018 Review der Linux Kernel Sourcen von 4.9 auf 4.10 Line Link NR. Descriptions Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net ----------- Pull networking fixes from David Miller: 1) GTP fixes from Andreas Schultz (missing genl module alias, clear IP DF on transmit). 2) Netfilter needs to reflect the fwmark when sending resets, from Pau Espin Pedrol. 3) nftable dump OOPS fix from Liping Zhang. 4) Fix erroneous setting of VIRTIO_NET_HDR_F_DATA_VALID on transmit, from Rolf Neugebauer. 5) Fix build error of ipt_CLUSTERIP when procfs is disabled, from Arnd Bergmann. 6) Fix regression in handling of NETIF_F_SG in harmonize_features(), from Eric Dumazet. 7) Fix RTNL deadlock wrt. lwtunnel module loading, from David Ahern. 8) tcp_fastopen_create_child() needs to setup tp->max_window, from Alexey Kodanev. 9) Missing kmemdup() failure check in ipv6 segment routing code, from Eric Dumazet. 10) Don't execute unix_bind() under the bindlock, otherwise we deadlock with splice. From WANG Cong. 11) ip6_tnl_parse_tlv_enc_lim() potentially reallocates the skb buffer, therefore callers must reload cached header pointers into that skb. Fix from Eric Dumazet. 12) Fix various bugs in legacy IRQ fallback handling in alx driver, from Tobias Regnery. 13) Do not allow lwtunnel drivers to be unloaded while they are referenced by active instances, from Robert Shearman. 14) Fix truncated PHY LED trigger names, from Geert Uytterhoeven. 15) Fix a few regressions from virtio_net XDP support, from John Fastabend and Jakub Kicinski. * git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (102 commits) ISDN: eicon: silence misleading array-bounds warning net: phy: micrel: add support for KSZ8795 Review_4.10_0_to_1000.pdf Page 6 of 793 May 04, 2018 Review der Linux Kernel Sourcen von 4.9 auf 4.10 Line Link NR. Descriptions gtp: fix cross
Recommended publications
  • RCU Usage in the Linux Kernel: One Decade Later
    RCU Usage In the Linux Kernel: One Decade Later Paul E. McKenney Silas Boyd-Wickizer Jonathan Walpole Linux Technology Center MIT CSAIL Computer Science Department IBM Beaverton Portland State University Abstract unique among the commonly used kernels. Understand- ing RCU is now a prerequisite for understanding the Linux Read-copy update (RCU) is a scalable high-performance implementation and its performance. synchronization mechanism implemented in the Linux The success of RCU is, in part, due to its high perfor- kernel. RCU’s novel properties include support for con- mance in the presence of concurrent readers and updaters. current reading and writing, and highly optimized inter- The RCU API facilitates this with two relatively simple CPU synchronization. Since RCU’s introduction into the primitives: readers access data structures within RCU Linux kernel over a decade ago its usage has continued to read-side critical sections, while updaters use RCU syn- expand. Today, most kernel subsystems use RCU. This chronization to wait for all pre-existing RCU read-side paper discusses the requirements that drove the devel- critical sections to complete. When combined, these prim- opment of RCU, the design and API of the Linux RCU itives allow threads to concurrently read data structures, implementation, and how kernel developers apply RCU. even while other threads are updating them. This paper describes the performance requirements that 1 Introduction led to the development of RCU, gives an overview of the RCU API and implementation, and examines how ker- The first Linux kernel to include multiprocessor support nel developers have used RCU to optimize kernel perfor- is not quite 20 years old.
    [Show full text]
  • Kernel Boot-Time Tracing
    Kernel Boot-time Tracing Linux Plumbers Conference 2019 - Tracing Track Masami Hiramatsu <[email protected]> Linaro, Ltd. Speaker Masami Hiramatsu - Working for Linaro and Linaro members - Tech Lead for a Landing team - Maintainer of Kprobes and related tracing features/tools Why Kernel Boot-time Tracing? Debug and analyze boot time errors and performance issues - Measure performance statistics of kernel boot - Analyze driver init failure - Debug boot up process - Continuously tracing from boot time etc. What We Have There are already many ftrace options on kernel command line ● Setup options (trace_options=) ● Output to printk (tp_printk) ● Enable events (trace_events=) ● Enable tracers (ftrace=) ● Filtering (ftrace_filter=,ftrace_notrace=,ftrace_graph_filter=,ftrace_graph_notrace=) ● Add kprobe events (kprobe_events=) ● And other options (alloc_snapshot, traceoff_on_warning, ...) See Documentation/admin-guide/kernel-parameters.txt Example of Kernel Cmdline Parameters In grub.conf linux /boot/vmlinuz-5.1 root=UUID=5a026bbb-6a58-4c23-9814-5b1c99b82338 ro quiet splash tp_printk trace_options=”sym-addr” trace_clock=global ftrace_dump_on_oops trace_buf_size=1M trace_event=”initcall:*,irq:*,exceptions:*” kprobe_event=”p:kprobes/myevent foofunction $arg1 $arg2;p:kprobes/myevent2 barfunction %ax” What Issues? Size limitation ● kernel cmdline size is small (< 256bytes) ● A half of the cmdline is used for normal boot Only partial features supported ● ftrace has too complex features for single command line ● per-event filters/actions, instances, histograms. Solutions? 1. Use initramfs - Too late for kernel boot time tracing 2. Expand kernel cmdline - It is not easy to write down complex tracing options on bootloader (Single line options is too simple) 3. Reuse structured boot time data (Devicetree) - Well documented, structured data -> V1 & V2 series based on this. Boot-time Trace: V1 and V2 series V1 and V2 series posted at June.
    [Show full text]
  • Measuring Software Performance on Linux Technical Report
    Measuring Software Performance on Linux Technical Report November 21, 2018 Martin Becker Samarjit Chakraborty Chair of Real-Time Computer Systems Chair of Real-Time Computer Systems Technical University of Munich Technical University of Munich Munich, Germany Munich, Germany [email protected] [email protected] OS program program CPU .text .bss + + .data +/- + instructions cache branch + coherency scheduler misprediction core + pollution + migrations data + + interrupt L1i$ miss access + + + + + + context mode + + (TLB flush) TLB + switch data switch miss L1d$ +/- + (KPTI TLB flush) miss prefetch +/- + + + higher-level readahead + page cache miss walk + + multicore + + (TLB shootdown) TLB coherency page DRAM + page fault + cache miss + + + disk + major minor I/O Figure 1. Event interaction map for a program running on an Intel Core processor on Linux. Each event itself may cause processor cycles, and inhibit (−), enable (+), or modulate (⊗) others. Abstract that our measurement setup has a large impact on the results. Measuring and analyzing the performance of software has More surprisingly, however, they also suggest that the setup reached a high complexity, caused by more advanced pro- can be negligible for certain analysis methods. Furthermore, cessor designs and the intricate interaction between user we found that our setup maintains significantly better per- formance under background load conditions, which means arXiv:1811.01412v2 [cs.PF] 20 Nov 2018 programs, the operating system, and the processor’s microar- chitecture. In this report, we summarize our experience on it can be used to improve high-performance applications. how performance characteristics of software should be mea- CCS Concepts • Software and its engineering → Soft- sured when running on a Linux operating system and a ware performance; modern processor.
    [Show full text]
  • LMAX Disruptor
    Disruptor: High performance alternative to bounded queues for exchanging data between concurrent threads Martin Thompson Dave Farley Michael Barker Patricia Gee Andrew Stewart May-2011 http://code.google.com/p/disruptor/ 1 Abstract LMAX was established to create a very high performance financial exchange. As part of our work to accomplish this goal we have evaluated several approaches to the design of such a system, but as we began to measure these we ran into some fundamental limits with conventional approaches. Many applications depend on queues to exchange data between processing stages. Our performance testing showed that the latency costs, when using queues in this way, were in the same order of magnitude as the cost of IO operations to disk (RAID or SSD based disk system) – dramatically slow. If there are multiple queues in an end-to-end operation, this will add hundreds of microseconds to the overall latency. There is clearly room for optimisation. Further investigation and a focus on the computer science made us realise that the conflation of concerns inherent in conventional approaches, (e.g. queues and processing nodes) leads to contention in multi-threaded implementations, suggesting that there may be a better approach. Thinking about how modern CPUs work, something we like to call “mechanical sympathy”, using good design practices with a strong focus on teasing apart the concerns, we came up with a data structure and a pattern of use that we have called the Disruptor. Testing has shown that the mean latency using the Disruptor for a three-stage pipeline is 3 orders of magnitude lower than an equivalent queue-based approach.
    [Show full text]
  • A Thread Synchronization Model for the PREEMPT RT Linux Kernel
    A Thread Synchronization Model for the PREEMPT RT Linux Kernel Daniel B. de Oliveiraa,b,c, R^omulo S. de Oliveirab, Tommaso Cucinottac aRHEL Platform/Real-time Team, Red Hat, Inc., Pisa, Italy. bDepartment of Systems Automation, UFSC, Florian´opolis, Brazil. cRETIS Lab, Scuola Superiore Sant'Anna, Pisa, Italy. Abstract This article proposes an automata-based model for describing and validating sequences of kernel events in Linux PREEMPT RT and how they influence the timeline of threads' execu- tion, comprising preemption control, interrupt handling and control, scheduling and locking. This article also presents an extension of the Linux tracing framework that enables the trac- ing of kernel events to verify the consistency of the kernel execution compared to the event sequences that are legal according to the formal model. This enables cross-checking of a kernel behavior against the formalized one, and in case of inconsistency, it pinpoints possible areas of improvement of the kernel, useful for regression testing. Indeed, we describe in details three problems in the kernel revealed by using the proposed technique, along with a short summary on how we reported and proposed fixes to the Linux kernel community. As an example of the usage of the model, the analysis of the events involved in the activation of the highest priority thread is presented, describing the delays occurred in this operation in the same granularity used by kernel developers. This illustrates how it is possible to take advantage of the model for analyzing the preemption model of Linux. Keywords: Real-time computing, Operating systems, Linux kernel, Automata, Software verification, Synchronization.
    [Show full text]
  • Linux Kernel and Driver Development Training Slides
    Linux Kernel and Driver Development Training Linux Kernel and Driver Development Training © Copyright 2004-2021, Bootlin. Creative Commons BY-SA 3.0 license. Latest update: October 9, 2021. Document updates and sources: https://bootlin.com/doc/training/linux-kernel Corrections, suggestions, contributions and translations are welcome! embedded Linux and kernel engineering Send them to [email protected] - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/470 Rights to copy © Copyright 2004-2021, Bootlin License: Creative Commons Attribution - Share Alike 3.0 https://creativecommons.org/licenses/by-sa/3.0/legalcode You are free: I to copy, distribute, display, and perform the work I to make derivative works I to make commercial use of the work Under the following conditions: I Attribution. You must give the original author credit. I Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one. I For any reuse or distribution, you must make clear to others the license terms of this work. I Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above. Document sources: https://github.com/bootlin/training-materials/ - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/470 Hyperlinks in the document There are many hyperlinks in the document I Regular hyperlinks: https://kernel.org/ I Kernel documentation links: dev-tools/kasan I Links to kernel source files and directories: drivers/input/ include/linux/fb.h I Links to the declarations, definitions and instances of kernel symbols (functions, types, data, structures): platform_get_irq() GFP_KERNEL struct file_operations - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/470 Company at a glance I Engineering company created in 2004, named ”Free Electrons” until Feb.
    [Show full text]
  • Linux Kernal II 9.1 Architecture
    Page 1 of 7 Linux Kernal II 9.1 Architecture: The Linux kernel is a Unix-like operating system kernel used by a variety of operating systems based on it, which are usually in the form of Linux distributions. The Linux kernel is a prominent example of free and open source software. Programming language The Linux kernel is written in the version of the C programming language supported by GCC (which has introduced a number of extensions and changes to standard C), together with a number of short sections of code written in the assembly language (in GCC's "AT&T-style" syntax) of the target architecture. Because of the extensions to C it supports, GCC was for a long time the only compiler capable of correctly building the Linux kernel. Compiler compatibility GCC is the default compiler for the Linux kernel source. In 2004, Intel claimed to have modified the kernel so that its C compiler also was capable of compiling it. There was another such reported success in 2009 with a modified 2.6.22 version of the kernel. Since 2010, effort has been underway to build the Linux kernel with Clang, an alternative compiler for the C language; as of 12 April 2014, the official kernel could almost be compiled by Clang. The project dedicated to this effort is named LLVMLinxu after the LLVM compiler infrastructure upon which Clang is built. LLVMLinux does not aim to fork either the Linux kernel or the LLVM, therefore it is a meta-project composed of patches that are eventually submitted to the upstream projects.
    [Show full text]
  • Hiding Process Memory Via Anti-Forensic Techniques
    DIGITAL FORENSIC RESEARCH CONFERENCE Hiding Process Memory via Anti-Forensic Techniques By: Frank Block (Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and ERNW Research GmbH) and Ralph Palutke (Friedrich-Alexander Universität Erlangen-Nürnberg) From the proceedings of The Digital Forensic Research Conference DFRWS USA 2020 July 20 - 24, 2020 DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an informal environment. As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to help drive the direction of research and development. https://dfrws.org Forensic Science International: Digital Investigation 33 (2020) 301012 Contents lists available at ScienceDirect Forensic Science International: Digital Investigation journal homepage: www.elsevier.com/locate/fsidi DFRWS 2020 USA d Proceedings of the Twentieth Annual DFRWS USA Hiding Process Memory Via Anti-Forensic Techniques Ralph Palutke a, **, 1, Frank Block a, b, *, 1, Patrick Reichenberger a, Dominik Stripeika a a Friedrich-Alexander Universitat€ Erlangen-Nürnberg (FAU), Germany b ERNW Research GmbH, Heidelberg, Germany article info abstract Article history: Nowadays, security practitioners typically use memory acquisition or live forensics to detect and analyze sophisticated malware samples. Subsequently, malware authors began to incorporate anti-forensic techniques that subvert the analysis process by hiding malicious memory areas. Those techniques Keywords: typically modify characteristics, such as access permissions, or place malicious data near legitimate one, Memory subversion in order to prevent the memory from being identified by analysis tools while still remaining accessible.
    [Show full text]
  • DMFS - a Data Migration File System for Netbsd
    DMFS - A Data Migration File System for NetBSD William Studenmund Veridian MRJ Technology Solutions NASAAmes Research Center" Abstract It was designed to support the mass storage systems de- ployed here at NAS under the NAStore 2 system. That system supported a total of twenty StorageTek NearLine ! have recently developed DMFS, a Data Migration File tape silos at two locations, each with up to four tape System, for NetBSD[I]. This file system provides ker- drives each. Each silo contained upwards of 5000 tapes, nel support for the data migration system being devel- and had robotic pass-throughs to adjoining silos. oped by my research group at NASA/Ames. The file system utilizes an underlying file store to provide the file The volman system is designed using a client-server backing, and coordinates user and system access to the model, and consists of three main components: the vol- files. It stores its internal metadata in a flat file, which man master, possibly multiple volman servers, and vol- resides on a separate file system. This paper will first man clients. The volman servers connect to each tape describe our data migration system to provide a context silo, mount and unmount tapes at the direction of the for DMFS, then it will describe DMFS. It also will de- volman master, and provide tape services to clients. The scribe the changes to NetBSD needed to make DMFS volman master maintains a database of known tapes and work. Then it will give an overview of the file archival locations, and directs the tape servers to move and mount and restoration procedures, and describe how some typi- tapes to service client requests.
    [Show full text]
  • Improving the Performance of Hybrid Main Memory Through System Aware Management of Heterogeneous Resources
    IMPROVING THE PERFORMANCE OF HYBRID MAIN MEMORY THROUGH SYSTEM AWARE MANAGEMENT OF HETEROGENEOUS RESOURCES by Juyoung Jung B.S. in Information Engineering, Korea University, 2000 Master in Computer Science, University of Pittsburgh, 2013 Submitted to the Graduate Faculty of the Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science University of Pittsburgh 2016 UNIVERSITY OF PITTSBURGH KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Juyoung Jung It was defended on December 7, 2016 and approved by Rami Melhem, Ph.D., Professor at Department of Computer Science Bruce Childers, Ph.D., Professor at Department of Computer Science Daniel Mosse, Ph.D., Professor at Department of Computer Science Jun Yang, Ph.D., Associate Professor at Electrical and Computer Engineering Dissertation Director: Rami Melhem, Ph.D., Professor at Department of Computer Science ii IMPROVING THE PERFORMANCE OF HYBRID MAIN MEMORY THROUGH SYSTEM AWARE MANAGEMENT OF HETEROGENEOUS RESOURCES Juyoung Jung, PhD University of Pittsburgh, 2016 Modern computer systems feature memory hierarchies which typically include DRAM as the main memory and HDD as the secondary storage. DRAM and HDD have been extensively used for the past several decades because of their high performance and low cost per bit at their level of hierarchy. Unfortunately, DRAM is facing serious scaling and power consumption problems, while HDD has suffered from stagnant performance improvement and poor energy efficiency. After all, computer system architects have an implicit consensus that there is no hope to improve future system’s performance and power consumption unless something fundamentally changes.
    [Show full text]
  • Rtkaller: State-Aware Task Generation for RTOS Fuzzing
    17 Rtkaller: State-aware Task Generation for RTOS Fuzzing YUHENG SHEN, HAO SUN, YU JIANG, HEYUAN SHI ∗, and YIXIAO YANG ∗, KLISS, BNRist, School of Software, Tsinghua University, China WANLI CHANG, Hunan University, China A real-time operating system (RTOS) is an operating system designed to meet certain real-time requirements. It is widely used in embedded applications, and its correctness is safety-critical. However, the validation of RTOS is challenging due to its complex real-time features and large code base. In this paper, we propose Rtkaller, a state-aware kernel fuzzer for the vulnerability detection in RTOS. First, Rtkaller implements an automatic task initialization to transform the syscall sequences into initial tasks with more real-time information. Then, a coverage-guided task mutation is designed to generate those tasks that explore more in-depth real-time related code for parallel execution. Moreover, Rtkaller realizes a task modification to correct those tasks that may hang during fuzzing. We evaluated it on recent versions of rt-Linux, which is one of the most widely used RTOS. Compared to the state-of-the-art kernel fuzzers Syzkaller and Moonshine, Rtkaller achieves the same code coverage at the speed of 1.7X and 1.6X , gains an increase of 26.1% and 22.0% branch coverage within 24 hours respectively. More importantly, Rtkaller has confirmed 28 previously unknown vulnerabilities that are missed by other fuzzers. CCS Concepts: • Security and privacy ! Virtualization and security; Domain-specific security and privacy architectures; Vulnerability scanners; • Computer systems organization ! Real-time operat- ing systems. Additional Key Words and Phrases: Fuzz Testing, RTOS, Vulnerability Detection, Task Generation ACM Reference Format: Yuheng Shen, Hao Sun, Yu Jiang, Heyuan Shi, Yixiao Yang, and Wanli Chang.
    [Show full text]
  • Whitepaper May Be Mailed to [email protected]
    Managing unmanaged home devices Reducing IoT security risks with open source CPE software Introduction Contents This white paper explores the security and 1 Management summary 3 privacy issues involved with the evolving 2 A Sea of unmanaged devices 4 Internet of Things (IoT), which is expected to 3 Impact 5 comprise a large portion of unmanaged, insecure 4 Security risks 6 home devices. The solution presented here is 5 A shared shoke point 6 SPIN, short for Security and Privacy for In-home 6 Proposition 7 Networks. It is open-source software that brings 7 SPIN: an overview 8 IoT security to the residential gateway as new 8 SPIN advantages 9 added-value functionality for the end user, and 9 The Traffic Monitor 10 allows access providers to bring IoT devices and 10 Track record 11 traffic flows at their customers’ premises under 11 Conclusion 12 direct central management. SPIN mitigates 12 About SIDN 12 security risks related to the IoT network, while 13 We all win 13 keeping privacy-sensitive data in the user 14 SPIN features 14 domain. 15 More information 15 16 Footnotes 15 Colophon 16 SPIN | Managing unmanaged home devices 2/16 1 Management summary The evolving Internet of Things (IoT) will soon comprise many tens of CPE manufacturers can use the native interfaces of their operating billions of networked devices, of which a large portion will be unmanaged systems to easily integrate the software into their gateways. machine-to-machine (M2M) home devices. SPIN adheres strongly to international, open standards for IoT security and It is expected that a large number of these home devices either will never privacy, so as to ensure the highest level of interoperability and regulatory be updated at all, or will stop receiving software updates long before they compliance.
    [Show full text]