Geographic Pattern of Cranial Differentiation in the Asian Midday

Total Page:16

File Type:pdf, Size:1020Kb

Geographic Pattern of Cranial Differentiation in the Asian Midday Accepted on 16 September 2011 Ó 2011 Blackwell Verlag GmbH J Zool Syst Evol Res doi: 10.1111/j.1439-0469.2011.00642.x 1Evolutionary Morphology of Vertebrates, Gent, Belgium; 2Rodentology Research Department, Ferdowsi University of Mashhad, Mashhad, Iran Geographic pattern of cranial differentiation in the Asian Midday Jird Meriones meridianus (Rodentia: Muridae: Gerbillinae) and its taxonomic implications Fatemeh Tabatabaei Yazdi1,2,Dominique Adriaens1 and Jamshid Darvish2 Abstract The existence of cryptic species in the midday jird (Meriones meridianus) has been suggested in literature, although based on little empirical data to support this hypothesis. In this study, a two-dimensional landmark-based geometric morphometric approach was used to investigate whether patterns in intraspecific variation in skull shape and size exist, using 110 skull specimens from more than 20 different localities along the distribution range of M. meridianus. This is the first study of morphological differences on such a big sample size and geographical range, and it tries to find whether skull shape variation in this species is best described as being clinal or rather reflecting cryptic diversity. The latter seems to be the case, as a dimorphic skull phenotype was found, reflecting a geographic disparity between the Middle East and the Far East specimens both in shape and in size. Distinct cranial differences were found in the overall cranial size and, also at the level of the inflation of the bulla, the elongation of the nasal, the length of the teeth row and the incisive foramen, as well as the distance in between the latter two. It thus seems that M. meridianus from Middle East is morphologically distinct from that of the Far East. Furthermore, our results also demonstrate that clinal variation could explain variation within Middle East populations, whereas a more heterogenous pattern is found for those of the Far East. The hypothesis that the observed phenotypic variation may reflect cryptic species is discussed, with the recommendation for a thorough taxonomical revision of the genus in the region. Key words: Central Asia – geometric morphometrics – Iran – Muridae – skull morphology Introduction continuous range of clinal variation requires comprehensive The midday jird (Meriones meridianus Pallas, 1773) is a analyses of characters that allow a quantification of even rodent species distributed from the Northern Caucasus and subtle levels of phenotypic variation. Considering the taxo- eastern Iran [central desert of Kerman (Darvish 2009)] to nomic ambiguities related to this species, emerging patterns Northern Afghanistan, Mongolia and Northern China (Lay in this phenotypic variation may also reflect cryptic species 1967; Hassinger 1973; Sheng et al. 1999; Denys et al. 2001; diversity. Musser and Carleton 2005). Substantial intraspecific varia- To test this hypothesis on clinal variation versus variation tion in morphological (external) characters, such as coat suggesting cryptic species diversity, M. meridianus from the colour, body size and bone structure in populations coming Middle East are compared with those of the Far East (Fig. 1), from different geographical locations has been shown (Cha- by performing a landmark-based geometric morphometric worth-Musters and Ellerman 1947; Wang and Yang 1983; analysis on the skull. Cranial differences, such as a cranial size Zhang 1997; Ito et al. 2010), leading to the description of difference between the specimens from Turkestan (Uzbekistan many subspecies. Seven subspecies have been recognized and Kazakhestan) and those from China (Far East popula- from the Xinjiang of China (Ito et al. 2010), as well as a tions), have already been reported in the past by Chaworth- separate species (Meriones dahlia; Musser and Carleton Musters and Ellerman (1947). Specimens originate from the 2005), whereas other species have been considered synony- localities spanning the species distribution range, including mous [e.g. Meriones chengi by Pavlinov et al. (1990, 1995) specimens collected from the type localities, as for example, and Ito et al. (2010)]. In most keys and revisions on the the topotype of M. chengi (Musser and Carleton 2005). Using genus Meriones, diagnostic features generally are ambiguous the cranium is especially relevant for studying phenotypic (Allen 1940; Chaworth-Musters and Ellerman 1947). Most of variation, as it is both genetically and functionally relevant the studies on M. meridianus mainly provided external and hence subjected to a substantial amount of selective diagnostic features, rather than cranial characters, and are pressure (Caumul and Polly 2005; Cordeiro-Estrela et al. often based on local samples without covering the speciesÕ 2008). distribution range (e.g. Allen 1940). Especially in the arid As such, the aims of this study are to (1) reveal the patterns habitat of the Iranian regions (especially the Iranian plateau), of intraspecific skull shape and size variation in M. meridi- this species has remained poorly studied (Misonne 1975). As anus along its distribution range; (2) test the hypothesis the midday jirds from the Iranian plateau are geographically whether continuous clinal variation rather than cryptic most distinct from the Far East specimens, morphological phenotypic differentiation explains the observed patterns; differences resulting from clinal variation can be expected. To and (3) find potential diagnostic cranial characters allowing what degree M. meridianus intraspecific variation reflects a further taxonomical clarification of this species. For the second aim, the congruence of shape variation in specimens from Iran with that of the Middle East is evaluated, where in Corresponding author: Fatemeh Tabatabaei Yazdi (fatemeh.tabatabaei @ugent.be, [email protected]) the case of clinal variation, a more similar phenotype is Contributing authors: Dominique Adriaens (dominique.adriaens expected with Middle East specimens that are geographically @ugent.be), Jamshid Darvish ([email protected]) closest. J Zool Syst Evol Res (2012) 50(2), 157–164 158 Tabatabaei Yazdi, Adriaens and Darvish Fig. 1. Map showing sampling localities of the Meriones meridianus (closed circles) and groups of sampling locality (ovals) used in this study. The dashed line separates the Middle East from the Far East groups Material and Methods Shape models based on the three sides of the skulls were digitized using the software TpsDig 2.12 (Rohlf 2004). Only one side (left side) Specimens analysed of the skulls was used so that specimens that were broken on one side In total, 110 skull specimens of M. meridianus (Pallas, 1773) from 21 could still be included (Elewa 2004). In case, the right side was used localities, originating from Iran to Mongolia and China, were used. (left side was broken), the landmark set was mirrored (following the Juvenile specimens, identified based on the eruption and amount of assumption that left–right asymmetry was smaller than the level of wear on the molars (M2; Petter 1959; Tong 1989; Pavlinov 2008), were intra- and interspecific variation that was the subject of this study). On excluded from the analyses. The only available type specimens the ventral, dorsal and lateral sides of cranium, respectively 20, 19 and [Meriones auceps (BMNH 8.8.4.30 male) and paratype of Gerbillus 21 two-dimensional (2D) landmarks, were chosen on the basis that psammophilus (1867N°138 MNHN)] were broken and thus not be they include all relevant features of the cranium (Fig. 2). The included in the analyses. landmarks were defined for each view of the cranium based upon the The specimens were obtained from the collections of the Smithso- terminology used by Popesko et al. (2002) and Tong (1989; Table S2). nian Natural Museum of Natural History, Washington, DC, USA (USNM), the Field Museum of Natural History, Chicago, CA, USA (FMNH), the British Museum of Natural History, London, UK Data analysis (BMNH), and the Muse´ e national dÕHistoire naturelle, Paris, France Shape analysis (MNHN). The list of studied specimens with catalogue numbers is A generalized procrustes analysis was performed using past (PAlaeon- available in the appendix. tologica STatistics) ver. 1.74 (Hammer et al. 2001), to standardize the Specimens were plotted according to the geographical coordinates of non-shape related variation in landmark coordinates. As such, land- the sample location, using ArcGIS, ArcMap 9.2 (Fig. 1). Latitude mark configurations were aligned by Procrustes superimposition, with and longitude were assigned based on the field notes of the collectors, removing differences in rotation and translation and by scaling to unit the collections catalogue of the museums or the climate-database of the centroid size (Gower 1975; Bookstein et al. 1985; Rohlf and Slice 1990; Food and Agriculture Organization of the United Nations (FAO, Rohlf and Marcus 1993). Both uniform and non-uniform partial warps 2007; Table S1). were calculated in past. Principal component analyses (PCA), using To perform robust canonical variate analyses, localities repre- past, and Canonical variate analysis (CVA), using statistica (StatSoft, sented by only a few specimens were pooled according to their version 7.0, www.statsoft.com, StatSoft, Inc., Tulsa, USA) were geographic proximity into eight analytical groups. Considering their performed on partial warp scores of each data set separately for the use in statistical analyses, samples far from other localities and dorsal, ventral and lateral data, to investigate the intraspecific variation having
Recommended publications
  • 13914444D46c0aa91d02e31218
    2 Breeding of wild and some domestic animals at regional zoological institutions in 2013 3 РЫБЫ P I S C E S ВОББЕЛОНГООБРАЗНЫЕ ORECTOLOBIFORMES Сем. Азиатские кошачьи акулы (Бамбуковые акулы) – Hemiscyllidae Коричневополосая бамбуковая акула – Chiloscyllium punctatum Brownbanded bambooshark IUCN (NT) Sevastopol 20 ХВОСТОКОЛООБРАЗНЫЕ DASYATIFORMES Сем. Речные хвостоколы – Potamotrygonidae Глазчатый хвостокол (Моторо) – Potamotrygon motoro IUCN (DD) Ocellate river stingray Sevastopol - ? КАРПООБРАЗНЫЕ CYPRINIFORMES Сем. Цитариновые – Citharinidae Серебристый дистиход – Distichodusaffinis (noboli) Silver distichodus Novosibirsk 40 Сем. Пираньевые – Serrasalmidae Серебристый метиннис – Metynnis argenteus Silver dollar Yaroslavl 10 Обыкновенный метиннис – Metynnis schreitmuelleri (hypsauchen) Plainsilver dollar Nikolaev 4; Novosibirsk 100; Kharkov 20 Пятнистый метиннис – Metynnis maculatus Spotted metynnis Novosibirsk 50 Пиранья Наттерера – Serrasalmus nattereri Red piranha Novosibirsk 80; Kharkov 30 4 Сем. Харацидовые – Characidae Красноплавничный афиохаракс – Aphyocharax anisitsi (rubripinnis) Bloodfin tetra Киев 5; Perm 10 Парагвайский афиохаракс – Aphyocharax paraquayensis Whitespot tetra Perm 11 Рубиновый афиохаракс Рэтбина – Aphyocharax rathbuni Redflank bloodfin Perm 10 Эквадорская тетра – Astyanax sp. Tetra Perm 17 Слепая рыбка – Astyanax fasciatus mexicanus (Anoptichthys jordani) Mexican tetra Kharkov 10 Рублик-монетка – Ctenobrycon spilurus (+ С. spilurusvar. albino) Silver tetra Kharkov 20 Тернеция (Траурная тетра) – Gymnocorymbus
    [Show full text]
  • Status and Protection of Globally Threatened Species in the Caucasus
    STATUS AND PROTECTION OF GLOBALLY THREATENED SPECIES IN THE CAUCASUS CEPF Biodiversity Investments in the Caucasus Hotspot 2004-2009 Edited by Nugzar Zazanashvili and David Mallon Tbilisi 2009 The contents of this book do not necessarily reflect the views or policies of CEPF, WWF, or their sponsoring organizations. Neither the CEPF, WWF nor any other entities thereof, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process disclosed in this book. Citation: Zazanashvili, N. and Mallon, D. (Editors) 2009. Status and Protection of Globally Threatened Species in the Caucasus. Tbilisi: CEPF, WWF. Contour Ltd., 232 pp. ISBN 978-9941-0-2203-6 Design and printing Contour Ltd. 8, Kargareteli st., 0164 Tbilisi, Georgia December 2009 The Critical Ecosystem Partnership Fund (CEPF) is a joint initiative of l’Agence Française de Développement, Conservation International, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. This book shows the effort of the Caucasus NGOs, experts, scientific institutions and governmental agencies for conserving globally threatened species in the Caucasus: CEPF investments in the region made it possible for the first time to carry out simultaneous assessments of species’ populations at national and regional scales, setting up strategies and developing action plans for their survival, as well as implementation of some urgent conservation measures. Contents Foreword 7 Acknowledgments 8 Introduction CEPF Investment in the Caucasus Hotspot A. W. Tordoff, N. Zazanashvili, M. Bitsadze, K. Manvelyan, E. Askerov, V. Krever, S. Kalem, B. Avcioglu, S. Galstyan and R. Mnatsekanov 9 The Caucasus Hotspot N.
    [Show full text]
  • Mongolia's Snow Leopards
    Mongolia’s Snow Leopards Naturetrek Tour Report 27 August - 7 September 2019 Cossac Fox by Adam Dudley Snow Leopard by Gerald Broddelez Dione Snake by Gerald Broddelez Przewalski's Horse by Jane Dixon Report compiled by Gerald Broddelez Images courtesy of Jane Dixon, Adam Dudley & Gerald Broddelez Naturetrek Mingledown Barn Wolf's Lane Chawton Alton Hampshire GU34 3HJ UK T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk Tour Report Mongolia’s Snow Leopards Tour participants: Gerald Broddelez (leader), Terbish and Sovd (local guides) with 12 Naturetrek clients Day 1 Tuesday 27th August The group was in flight via Moscow to Ulaanbaatar (known as UB). Day 2 Wednesday 28th August The plane arrived with some delay, so our plans for the morning were rearranged accordingly. We drove to our hotel for the night and enjoyed some free time before an early lunch. During the afternoon we did some birding in the river area and found a good selection of birds that included several groups of smart Azure Tits, a large group of Azure-winged Magpies, several tristis forms of Chifchaff, a single Dusky Warbler, Daurian Jackdaw, many Taiga Flycatchers, Lesser Spotted Woodpecker and loads of raptors. Most were Kites but also Cinereous Vultures, a single Upland Buzzard, a female Goshawk, a close light- phase Booted Eagle and a Hobby! Several butterflies were flitting around in the warm air and included Small and Large White, Small Tortoiseshell and Painted Lady. Day 3 Thursday 29th August A Long-eared Owl was calling during the night and was seen by a few people in the spotlight.
    [Show full text]
  • Spatial Diversity in the Diet of the Eurasian Eagle Owl Bubo Bubo in Iran
    Podoces, 2014, 9(1): 7 –21 PODOCES 2014 Vol. 9, No. 1 Journal homepage: www.wesca.net Spatial Diversity in the Diet of the Eurasian Eagle Owl Bubo bubo in Iran Ján Obuch Comenius University in Bratislava, Detached Unit, SK-038 15 Blatnica, Slovakia. Article Info Abstract Original Research During five stays in Iran, the author collected remnants of the diet from seven species of owls. The most numerous were samples from the Eurasian Eagle Received 25 March 2014 Owl Bubo bubo , which were found in 38 sites, usually on rocky cliffs where Accepted 14 January 2015 the owls breed or where they roost during the day. A total of 7,862 items of prey were analysed. Mammals predominated (Mammalia, 56 species, Keywords 77.0%), and the species representation of birds was diverse (Aves, more than Eurasian Eagle Owl 100 species, 15.3%); lower vertebrates were hunted less often (Amphibia, Bubo bubo Reptilia, Pisces, 5.0%), while invertebrates (Evertebrata, 2.7%) were an Diet occasional food supplement. The most commonly represented rodents Iran (Rodentia) in the Elborz and Talysh Mountains were: Snow Vole Chionomys nivalis , Steppe Field Mouse Apodemus witherbyi and Common Vole Microtus obscurus; in the northern part of the Zagros Mountains: Brandt’s Hamster Mesocricetus brandti , Williams’ Jerboa Allactaga williamsi and Setzer’s Mouse-tailed Dormouse Myomimus setzeri ; in the central wetter part of the Zagros: Persian Jird Meriones persicus , Tristam’s Jird Meriones tristrami , Transcaucasian Mole Vole Ellobius lutescens and Grey Hamster Cricetulus migratorius ; in the drier part of the Zagros: Libyan Jird Meriones libycus , Sundevall’s Jird Meriones crassus and Indian Gerbil Tatera indica ; in the southern part of the Zagros in Fars Province: Iranian Vole Microtus irani , the rats Rattus rattus and R.
    [Show full text]
  • Sexual Dimorphism, Allometry, and Interspecific Variation in the Cranial
    Published by Associazione Teriologica Italiana Volume 29 (2): 162–167, 2018 Hystrix, the Italian Journal of Mammalogy Available online at: http://www.italian-journal-of-mammalogy.it doi:10.4404/hystrix–00018-2017 Research Article Sexual dimorphism, allometry, and interspecific variation in the cranial morphology of seven Meriones species (Gerbillinae, Rodentia) Fatemeh Tabatabaei Yazdi1,∗, Bader H. Alhajeri2 1Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran 2Department of Biological Sciences, Kuwait University, Safat, 13060, Kuwait Keywords: Abstract geometric morphometrics jird Jirds (Meriones) are a mostly desert-adapted genus of gerbils, with a wide geographic range, mammals through which it encounters various climatic conditions, which may influence their morphology. phenotypic variation In this study, we quantified cranial morphometric variation both within and among seven jird spe- rodents cies (M. meridianus, M. hurrianae, M. crassus, M. tristrami, M. persicus, M. libycus and M. vino- size gradovi), based on a two-dimensional landmark-based geometric morphometric analysis of 972 skull specimens, covering their entire geographic distribution. The aforementioned analysis was used to compare sexual dimorphism in size and shape within each species, as well as the relationship Article history: between size and shape (i.e. allometry) for each species. Despite greatly overlapping in morphos- Received: 23 October 2017 pace (when examined visually), statistical analysis indicates significant differences in both size and Accepted: 21 May 2018 shape among the seven examined jird species. UPGMA and CVA both show two main species clusters. Deformation grids indicate that these two clusters differ mostly in the relative size of the Acknowledgements tympanic bulla, along with differences in the extent of nasal elongation, and the broadness of the We would like to thank all the museum curators and collection managers zygomatic arch.
    [Show full text]
  • Geographic Variation in Skull Shape of the Water Rat Scapteromys Tumidus
    Anais da Academia Brasileira de Ciências (2016) 88(1 Suppl.): 451-466 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201620140631 www.scielo.br/aabc Geographic variation in skull shape of the water rat Scapteromys tumidus (Cricetidae, Sigmodontinae): isolation-by-distance plus environmental and geographic barrier effects? FERNANDO M. QUINTELA1, RODRIGO FORNEL2 and THALES R.O. FREITAS1,3 ¹Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves, 9500, Prédio 43435, 91501-970 Porto Alegre, RS, Brasil 2Programa de Pós-Graduação em Ecologia, Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Campus de Erechim, Avenida Sete de Setembro, 1621, 99700-000 Erechim, RS, Brasil 3Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves, 9500, Prédio 43323, 91501-970 Porto Alegre, RS, Brasil Manuscript received on December 5, 2014; accepted for publication on January 30, 2015 ABSTRACT The geographic variation in skull size and shape of the swamp rat Scapteromys tumidus was examined in samples from eight geographic clusters in almost of its distribution in southern Brazil and Uruguay. For analysis we used two-dimensional geometric morphometric methods for dorsal, ventral and lateral views of the skull. The geometric descriptors showed no signifi cant differences in skull size between geographic clusters, while differences in shape were highly signifi cant. We found a signifi cant and moderate correlation between geographic and morphological distances, corroborating the isolation-by-distance model.
    [Show full text]
  • 2019.12.11 J-STAGE Advance Published Date: 2020.2.14
    Advance Publication Experimental Animals Received: 2019.6.11 Accepted: 2019.12.11 J-STAGE Advance Published Date: 2020.2.14 -Original- Development of an effective microsatellite marker system to de- termine the genetic structure of Meriones meridianus popula- tions Xin Liu1), Xiuyi Yu1), Yimei Xu2), Xiaoyan Du1), Xueyun Huo1), Changlong Li1), Jianyi Lv1), Meng Guo1), Jing Lu1), Zhenwen Chen1) 1)Department of Medical Genetics and Developmental Biology, Capital Medical University, Beijing 100069, Chi- na 2)Center for Laboratory Animal Research of Xinjiang, Urumqi 830002, China Correspondence: Zhenwen Chen, Capital Medical University, Beijing 100069, China, [email protected] Running title: Microsatellite marker of Meriones meridianus 1 ABSTRACT Understanding the genetic quality of the gerbil, Meriones meridianus, plays an important role in the study of medical biology. However, no effective system has been established for evaluating a population’s genetic diversity to date. In the present study, we established a set of reasonable evaluative systems based on microsatellite markers of the Mongolian gerbil by using the method of cross-amplification of species. Following electrophoresis analysis, short tandem repeat (STR) scanning, and sequencing, 11 microsatellite loci were identified by matching the criteria characteristics and were used to evaluate the genetic diversity of two stocks of Meriones meridianus: Meriones meridianus jei Wang, 1964 (M. m. jei) and Meriones meridianus cryptorhinus Blanford, 1875 (M. m. cryptorhinus) from Xinjiang, China. The microsatellite loci screened were highly polymorphic and were suit- able for genetic quality control of Meriones meridianus. In addition, the quality of the non-bred M. m. jei and M. m. cryptorhinus strains in our study is sufficient for them to be promising stocks in the future for the farmed animal industry.
    [Show full text]
  • Rodentia, Gerbillinae), and a Morphological Divergence in M
    European Journal of Taxonomy 88: 1–28 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.88 www.europeanjournaloftaxonomy.eu 2014 · Tabatabaei Yazdi F. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Research article urn:lsid:zoobank.org:pub:3605D81E-A754-4526-ABCC-6D14B51F5886 Cranial phenotypic variation in Meriones crassus and M. libycus (Rodentia, Gerbillinae), and a morphological divergence in M. crassus from the Iranian Plateau and Mesopotamia (Western Zagros Mountains) Fatemeh TABATABAEI YAZDI1, Dominique ADRIAENS2 & Jamshid DARVISH3 1 Faculty of Natural resources and Environment, Ferdowsi University of Mashhad, Azadi Square, 91735 Mashhad, Iran Email: [email protected]; [email protected] (corresponding author) 2 Ghent University, Evolutionary Morphology of Vertebrates, K.L. Ledeganckstraat 35, 9000 Gent, Belgium 3 Rodentology Research Department and Institute of Applied Zoology, Ferdowsi University of Mashhad, Azadi Square, 91735 Mashhad, Iran 1 urn:lsid:zoobank.org:author:0E8C5199-1642-448A-80BB-C342C2DB65E9 2 urn:lsid:zoobank.org:author:38C489B9-2059-4633-8E3D-C531FE3EDD8B 3 urn:lsid:zoobank.org:author:9F7A70C9-C460-495A-9258-57CB5E7E9DFA Abstract. Jirds (genus Meriones) are a diverse group of rodents, with a wide distribution range in Iran. Sundevall’s jird (Meriones crassus Sundevall, 1842) is one such species that shows a disjunct distribution, found on the Iranian Plateau and Western Zagros Mountains. Morphological differences observed between these two populations, however, lack quantitative support. Morphological differences between geographical populations of Meriones crassus were analysed and compared with those of the sympatric M. libycus. Similarities in the cranial morphology of these species were found, e.g.
    [Show full text]
  • Pdf 1020.09 K
    Iranian Journal of Animal Biosystematics (IJAB) Vol.7, No.1, 49-74, 2011 ISSN: 1735-434X Morphological comparison of fourteen species of the genus Meriones Illiger, 1811 (Rodentia: Gerbillinae) from Asia and North Africa Darvish, J. Rodentology Research Department, Ferdowsi University of Mashhad, Mashhad, Iran. Genus Meriones is the dominant member of gerbils in the Palaearctic region, particularly in aride region of Asia. This is also one of the most typical genus of subfamily Gerbillinae with about 17 morphospecies namely: M. persicus, M. hurrianae, M. zarudnyi M. vinogradovi, M. meridianus, M. libycus, M. crassus, M. tristrami, M. rex, M. tamariscinus, M. unguiculatus, M. shawi, M. grandis, M. sacramenti, M.dahli, M.chengi, M.arimalius . Of which first eight species have been recorded from the Iranian Plateau. There are minor differences between some species and hence, interspecific discrimination of specimens from each species is not always possible, even by polytechnic methods using different taxonomic characters such as tympanic bullae, suprameatal triangle and external characters on material from museums and dental characters on archeozoological materials. Here, 26 morphological characters of 384 museum specimens belonging to 14 morphospecies of Meriones from North Africa, Iran and Central Asia were studied. This study review, 14 species of Meriones and based on the results, it seems that M.libycus, M. crassus and M. meridianus are complex species and need taxonomic revision. The cladistics analysis shows that M. vinogradovi could be forming ancestral species of genus Meriones, and west of Caspian Sea could be the center of origin for Meriones. Due to the presence of convergence regarding adaptation of different species of Meriones to similar environment, subgeneric morphological characters may cause homoplasies and paraphyletic subgenera the analysis of morphological character states matrix, using Mix program of Phylip shows different four clades that did not conform to the nominative subgenera and unveil probable homoplasy.
    [Show full text]
  • List of Taxa for Which MIL Has Images
    LIST OF 27 ORDERS, 163 FAMILIES, 887 GENERA, AND 2064 SPECIES IN MAMMAL IMAGES LIBRARY 31 JULY 2021 AFROSORICIDA (9 genera, 12 species) CHRYSOCHLORIDAE - golden moles 1. Amblysomus hottentotus - Hottentot Golden Mole 2. Chrysospalax villosus - Rough-haired Golden Mole 3. Eremitalpa granti - Grant’s Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus - Lowland Streaked Tenrec 3. Microgale cf. longicaudata - Lesser Long-tailed Shrew Tenrec 4. Microgale cowani - Cowan’s Shrew Tenrec 5. Microgale mergulus - Web-footed Tenrec 6. Nesogale cf. talazaci - Talazac’s Shrew Tenrec 7. Nesogale dobsoni - Dobson’s Shrew Tenrec 8. Setifer setosus - Greater Hedgehog Tenrec 9. Tenrec ecaudatus - Tailless Tenrec ARTIODACTYLA (127 genera, 308 species) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale 2. Eubalaena australis - Southern Right Whale 3. Eubalaena glacialis – North Atlantic Right Whale 4. Eubalaena japonica - North Pacific Right Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei – Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Balaenoptera ricei - Rice’s Whale 7. Eschrichtius robustus - Gray Whale 8. Megaptera novaeangliae - Humpback Whale BOVIDAE (54 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Common Impala 3. Aepyceros petersi - Black-faced Impala 4. Alcelaphus caama - Red Hartebeest 5. Alcelaphus cokii - Kongoni (Coke’s Hartebeest) 6. Alcelaphus lelwel - Lelwel Hartebeest 7. Alcelaphus swaynei - Swayne’s Hartebeest 8. Ammelaphus australis - Southern Lesser Kudu 9. Ammelaphus imberbis - Northern Lesser Kudu 10. Ammodorcas clarkei - Dibatag 11. Ammotragus lervia - Aoudad (Barbary Sheep) 12.
    [Show full text]
  • Informational Issue of Eurasian Regional Association of Zoos and Aquariums
    GOVERNMENT OF MOSCOW DEPARTMENT FOR CULTURE EURASIAN REGIONAL ASSOCIATION OF ZOOS & AQUARIUMS MOSCOW ZOO INFORMATIONAL ISSUE OF EURASIAN REGIONAL ASSOCIATION OF ZOOS AND AQUARIUMS VOLUME № 28 MOSCOW 2009 GOVERNMENT OF MOSCOW DEPARTMENT FOR CULTURE EURASIAN REGIONAL ASSOCIATION OF ZOOS & AQUARIUMS MOSCOW ZOO INFORMATIONAL ISSUE OF EURASIAN REGIONAL ASSOCIATION OF ZOOS AND AQUARIUMS VOLUME № 28 _________________ MOSCOW - 2009 - Information Issue of Eurasian Regional Association of Zoos and Aquariums. Issue 28. – 2009. - 424 p. ISBN 978-5-904012-10-6 The current issue comprises information on EARAZA member zoos and other zoological institutions. The first part of the publication includes collection inventories and data on breeding in all zoological collections. The second part of the issue contains information on the meetings, workshops, trips and conferences which were held both in our country and abroad, as well as reports on the EARAZA activities. Chief executive editor Vladimir Spitsin General Director of Moscow Zoo Compiling Editors: Т. Andreeva M. Goretskaya N. Karpov V. Ostapenko V. Sheveleva T. Vershinina Translators: T. Arzhanova M. Proutkina A. Simonova УДК [597.6/599:639.1.04]:59.006 ISBN 978-5-904012-10-6 © 2009 Moscow Zoo Eurasian Regional Association of Zoos and Aquariums Dear Colleagues, (EARAZA) We offer you the 28th volume of the “Informational Issue of the Eurasian Regional Association of Zoos and Aquariums”. It has been prepared by the EARAZA Zoo 123242 Russia, Moscow, Bolshaya Gruzinskaya 1. Informational Center (ZIC), based on the results of the analysis of the data provided by Telephone/fax: (499) 255-63-64 the zoological institutions of the region. E-mail: [email protected], [email protected], [email protected].
    [Show full text]
  • Systematics and Evolution of the Libyan Jird Based on Molecular And
    Systematics and evolution of the libyan jird based on molecular and morphometric data Malahat Dianat, Jamshid Darvish, Mansour Aliabadian, Roohollah Siahsarvie, Boris Krystufek, Violaine Nicolas To cite this version: Malahat Dianat, Jamshid Darvish, Mansour Aliabadian, Roohollah Siahsarvie, Boris Krystufek, et al.. Systematics and evolution of the libyan jird based on molecular and morphometric data. Journal of Zo- ological Systematics and Evolutionary Research, Wiley, 2020, 58 (1), pp.439-458. 10.1111/jzs.12335. hal-02380626 HAL Id: hal-02380626 https://hal.archives-ouvertes.fr/hal-02380626 Submitted on 5 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Systematics and evolution of the libyan jird based on molecular and morphometric data Malahat Dianat1 | Jamshid Darvish1 | Mansour Aliabadian1 | Roohollah Siahsarvie1,2 | Boris Krystufek3 | Violaine Nicolas4 1Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran 2Rodentology Research Department, Institute of Applied Zoology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran 3Slovenian Museum of Natural History, Ljubljana, Slovenia 4Institut de Systematique, Evolution, Biodiversite, ISYEB‐UMR 7205‐CNRS, MNHN, UPMC, EPHE, Museum National d’Histoire Naturelle, Sorbonne Universites, Paris, France Abstract The libyan jird is one of the most widely distributed species among wild rodents, with its range extending from Morocco to China.
    [Show full text]