Neural Networks and the Search for a Quadratic Residue Detector Michael Potter∗ Leon Reznik∗ Stanisław Radziszowski∗
[email protected] [email protected] [email protected] ∗ Department of Computer Science Rochester Institute of Technology Rochester, NY 14623 Abstract—This paper investigates the feasibility of employing This paper investigates the possibility of employing ANNs artificial neural network techniques for solving fundamental in the search for a solution to the quadratic residues (QR) cryptography problems, taking quadratic residue detection problem, which is defined as follows: as an example. The problem of quadratic residue detection Suppose that you have two integers a and b. Then a is is one which is well known in both number theory and a quadratic residue of b if and only if the following two cryptography. While it garners less attention than problems conditions hold: [1] such as factoring or discrete logarithms, it is similar in both 1) The greatest common divisor of a and b is 1, and difficulty and importance. No polynomial–time algorithm is 2) There exists an integer c such that c2 ≡ a (mod b). currently known to the public by which the quadratic residue status of one number modulo another may be determined. This The first condition is satisfied automatically so long as ∗ work leverages machine learning algorithms in an attempt to a 2 Zb . There is, however, no known polynomial–time (in create a detector capable of solving instances of the problem the number of bits of a and b) algorithm for determining more efficiently. A variety of neural networks, currently at the whether the second condition is satisfied.