Video Suggestion and Discovery for YouTube: Taking Random Walks Through the View Graph Shumeet Baluja Rohan Seth D. Sivakumar Yushi Jing Jay Yagnik Shankar Kumar Deepak Ravichandran Mohamed Aly ∗ Google, Inc. Mountain View, CA, USA {shumeet, rohan, siva, jing, jyagnik, shankarkumar, deepakr}@google.com,
[email protected] ABSTRACT as newsgroup, news story or web pages, are not easily ap- The rapid growth of the number of videos in YouTube pro- plied in this domain. The primary difficulty is that although vides enormous potential for users to find content of inter- some labels can be reliably inferred through computer-vision est to them. Unfortunately, given the difficulty of searching based-techniques, there does not currently exist any satis- videos, the size of the video repository also makes the dis- factory mechanism to label videos with the majority of their covery of new content a daunting task. In this paper, we content [12]. To exacerbate the difficulty, the tags that ex- present a novel method based upon the analysis of the en- ist on YouTube videos are generally quite small; they only tire user–video graph to provide personalized video sugges- capture a small sample of the content. tions for users. The resulting algorithm, termed Adsorption, The task of providing valuable suggestions of non-text provides a simple method to efficiently propagate preference content has been explored in a variety of contexts. The information through a variety of graphs. We extensively closest related studies have come from the Netflix challenge, test the results of the recommendations on a three month in which a system must recommend DVDs to subscribers snapshot of live data from YouTube.