NLRP3 and ASC Differentially Affect the Lung Transcriptome During Pneumococcal Pneumonia

Total Page:16

File Type:pdf, Size:1020Kb

NLRP3 and ASC Differentially Affect the Lung Transcriptome During Pneumococcal Pneumonia UvA-DARE (Digital Academic Repository) Cell-specific pattern recognition receptor signaling in antibacterial defense van Lieshout, M.H.P. Publication date 2015 Document Version Final published version Link to publication Citation for published version (APA): van Lieshout, M. H. P. (2015). Cell-specific pattern recognition receptor signaling in antibacterial defense. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:30 Sep 2021 Chapter 7 NLRP3 and ASC differentially affect the lung transcriptome during pneumococcal pneumonia American Journal of Respiratory Cell and Molecular Biology 2014 Apr;50(4):699-712 DOI: 10.1165/rcmb.2013-0015OC Miriam H.P. van Lieshout 1,2 Brendon P. Scicluna 1,2 Sandrine Florquin 3 Tom van der Poll 1,2,4 Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands: 1Center of Infection and Immunity Amsterdam 2Center of Experimental and Molecular Medicine 3Department of Pathology 4Division of Infectious Diseases Chapter 7 Abstract Streptococcus (S.) pneumoniae is the most frequently isolated causative pathogen of community-acquired pneumonia, a leading cause of mortality worldwide. Inflammasomes are multiprotein complexes that play crucial roles in the regulation of inflammation. NLRP3 (Nod-like receptor family, pyrin domain containing 3) is a sensor that functions in a single inflammasome, whereas ASC (the adaptor apoptosis- associated speck-like protein containing a caspase activation and recruitment domain) is a common adaptor of several inflammasomes. We investigated the role of NLRP3 and ASC during S. pneumoniae pneumonia by comparing bacterial growth and spreading, and host innate immune responses in wild-type mice and mice deficient for either NLRP3 (Nlrp3-/-) or ASC (Asc-/-). Asc-/ - mice had increased bacterial dissemination and lethality compared to Nlrp3-/- mice, although the cytokine response was impaired in both mouse strains. By detailed analysis of the early inflammatory response in the lung by whole genome transcriptional profiling, we identified several mediators that were differentially expressed between Nlrp3-/- and Asc-/ - mice. Of these, interleukin-17, granulocyte-macrophage colony-stimulating factor and integrin alpha M were significantly attenuated in Asc-/- relative to Nlrp3- /- mice as well as a number of genes involved in the adaptive immune response. These differences may explain the increased susceptibility of Asc-/ - mice during S. pneumoniae infection and suggest that either ASC-dependent NLRP3-independent inflammasomes or inflammasome independent ASC functions may be involved. 124 NLRP3 and ASC differentially affect the lung transcriptome during pneumococcal pneumonia Introduction Streptococcus (S.) pneumoniae is the most frequently isolated causative pathogen in patients with community-acquired pneumonia (1, 2) and a common cause of sepsis, especially in the context of pneumonia (3). Worldwide, the mortality rate associated with pneumococcal pneumonia ranges from 6 to >40% depending on the setting of outpatients or patients in general hospital wards or intensive cares (2). This, together with the increasing incidence of antibiotic resistance in S. pneumoniae (4), emphasizes the importance of expanding our knowledge of host defense mechanisms that influence the outcome of pneumococcal pneumonia. In recent years, the importance of Nod-like receptors (NLRs) for the antimicrobial response has become apparent (5, 6). NLRs are cytosolic receptors that can be part of large multi-protein complexes called inflammasomes. Interleukin-1 beta (IL-1β), one of the most potent proinflammatory cytokines (5, 6), is at a post-transcriptional level tightly regulated by these inflammasomes, together with the proinflammatory cytokine IL-18 (5, 6). Inflammasomes recognize a diverse set of inflammation- inducing stimuli including pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) and consist of a cytosolic sensor that (together with an adaptor protein) recruits pro-caspase-1, resulting in the generation of active caspase-1, the enzyme responsible for activation of pro-IL- 1β to mature IL-1β. The sensor protein can be either a member of the NLR or the pyrin and HIN domain-containging(PYHIN) family and, if the NLR sensor does not have a caspase activation and recruitment domain (CARD), ASC (the adaptor apoptosis-associated speck-like protein containing a CARD) is necessary to recruit and bind caspase-1 (6). NLRP3 (NLR family, pyrin domain containing 3) is one of the best studied members of the NLR family that can be activated by a large variety of signals, including pneumolysin, a major virulence factor of S. pneumoniae (7). Recently, the role of the NLRP3 and ASC inflammasome complexes in S. pneumoniae induced cell activation in vitro and infection in vivo was investigated (7-9). We here expanded these previous studies using a model of pneumococcal pneumonia and observed a remarkable susceptibility of especially Asc deficient (Asc-/-) mice when compared with Nlrp3-/- mice. Considering that the afore mentioned investigations on the role of the inflammasome during pneumococcal pneumonia predominantly focused on mechanistic studies in purified macrophages (7-9), we here aimed to characterize the initiation of the host response to pulmonary infection in mice deficient for inflammasome components in vivo in more detail by performing a genome-wide scan of transcriptional responses in lung tissue at an early time point after lower respiratory tract infection with S. pneumoniae. We identified a strong influence of the inflammasome components ASC and NLRP3 on the transcriptional response during pneumococcal pneumonia and in addition a differential gene expression pattern between Asc-/- and Nlrp3-/- mice. 125 Chapter 7 Methods Mice Nlrp3-/- and Asc-/- mice (10) were backcrossed 9 times to a C57Bl/6 background. Age- and sex-matched wild type (WT) C57Bl/6 mice were from Harlan (Horst, the Netherlands). Mice were infected at 9-12 weeks. All experiments were approved by the Institutional Animal Care and Use Committee of the Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands. Induction of pneumonia and tissue harvest Pneumonia was induced by intranasal inoculation with 1-2x107 CFU of S. pneumoniae D39 (serotype 2) (11). For two experiments isogenic pneumolysin- deficient D39 was used (11). Mice were followed for 14 days or euthanized at 6 or 48 hours, and bacterial outgrowth and cytokine levels were determined (11). Cytokine assays Tumor necrosis factor-α (TNF-α), Interleukin (IL)-6, IL-10 and chemokine (C-C motif) ligand 2 (CCL2) were measured by a cytometric bead assay (BD Biosciences, San Jose, CA). IL-1β, Chemokine (C-X-C motif) ligand 1 and 2 (CXCL1 and 2), granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF) and IL-17A (cross-reactivity with IL-17A/F) were measured by ELISA (R&D Systems, Minneapolis, MN). Myeloperoxidase (MPO) ELISA was from HyCult Biotechnology, Uden, the Netherlands. Histology Lungs were fixed in formalin and embedded in paraffin. 5 μm sections were stained with hemotoxylin and eosin. The following parameters were scored on a scale of 0 (absent) to 4 (very severe) by a pathologist blinded for experimental groups: interstitial damage, vasculitis, peri-bronchitis, oedema, thrombus formation and pleuritis. Granulocyte staining was performed (12). RNA preparation and genome-wide transcriptional profiling RNA was isolated from lung homogenates using the Nucleospin RNA II kit (Machery- Nagel, Duren, Germany). 750ng of biotinylated cRNA was hybridized onto the Illumina MouseRef-8v2 Expression BeadChip (Eindhoven, the Netherlands). The samples were scanned using the Illumina iScan array scanner(Eindhoven, the Netherlands. Preparation of cRNA, chip hybridization, washing, staining and scanning were carried out at ServiceXS (Leiden, the Netherlands). The raw scan data were read using the beadarray package (version 1.12.1) (13), available through Bioconductor (14) in the R statistical environment (version 2.13.2; R Foundation for Statistical Computing, Vienna, Austria). All non-normalized and normalized data are available at the gene expression omnibus of NCBI (GEO) with accession number GSE42464. Details on bioinformatics are available in the online supplement. 126 NLRP3 and ASC differentially affect the lung transcriptome during pneumococcal pneumonia Quantitative real time PCR Total RNA was reverse transcribed using oligo (dT) primer and Moloney murine leukemia virus reverse transcriptase (Invitrogen, Breda, the Netherlands). Quantitative PCR of 4933427D14Rik, Nlrp3, Asc, Gdpd3, Csf2, Csf3,
Recommended publications
  • Polyclonal Antibody to APIP (Full Length) - Purified
    OriGene Technologies, Inc. OriGene Technologies GmbH 9620 Medical Center Drive, Ste 200 Schillerstr. 5 Rockville, MD 20850 32052 Herford UNITED STATES GERMANY Phone: +1-888-267-4436 Phone: +49-5221-34606-0 Fax: +1-301-340-8606 Fax: +49-5221-34606-11 [email protected] [email protected] AP08426PU-N Polyclonal Antibody to APIP (full length) - Purified Alternate names: APAF1-interacting protein, CGI-29 Quantity: 50 µg Concentration: 0.5 mg/ml Background: The mammalian homologues of the key cell death gene CED-4 in C. elegans has been identified recently from human and mouse and designated Apaf1 (for apoptosis protease activating factor 1). Apaf1 binds to cytochrome c (Apaf2) and caspase 9 (Apaf3), which leads to caspase 9 activation. Activated caspase 9 in turn cleaves and activates caspase 3 that is one of the key proteases, being responsible for the proteolytic cleavage of many key proteins in apoptosis. A new Apaf1 Interacting Protein (APIP) also known as CG129 and MMRP19, has been identified as a negative regulator of ischemic injury. APIP competes with Caspase 9 binding site of Apaf1. APIP is predicted to code for a 204 amino acid. An isoform of APIP, APIP2 encodes a 242 amino acid protein, which is an alternative splicing variant differing in its N terminus from APIP. APIP transcript is ubiquitously expressed in most adult tissue with high expression in skeletal muscle, heart, and kidney. Uniprot ID: Q96GX9 NCBI: NP_057041.2 GeneID: 51074 Host / Isotype: Rabbit / IgG Immunogen: Recombinant protein corresponding to a full-length His-tagged recombinant Human APIP protein Format: State: Liquid purified Ig fraction Purification: Protein G Chromatography Buffer System: PBS containing 0.2% Gelatin as stabilizer and 0.05% Sodium Azide as preservative Applications: Immunohistochemistry on Paraffin Sections: 10 µg/ml.
    [Show full text]
  • Tyrosine Kinase Oncogenes in Normal Hematopoiesis and Hematological Disease
    Oncogene (2002) 21, 3314 ± 3333 ã 2002 Nature Publishing Group All rights reserved 0950 ± 9232/02 $25.00 www.nature.com/onc Tyrosine kinase oncogenes in normal hematopoiesis and hematological disease Blanca Scheijen1,2 and James D Grin*,1,2 1Department of Adult Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts, MA 02115, USA; 2Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA Tyrosine kinase oncogenes are formed as a result of Adaptors do not contain intrinsic catalytic activity but mutations that induce constitutive kinase activity. Many consist of independent functioning interaction modules of these tyrosine kinase oncogenes that are derived from like SH2-domain (mediates binding to phosphotyrosine genes, such as c-Abl, c-Fes, Flt3, c-Fms, c-Kit and residues), SH3-domain (interacts with polyproline-rich PDGFRb, that are normally involved in the regulation of PXXP stretch) or pleckstrin homology (PH) domain hematopoiesis or hematopoietic cell function. Despite (binds to inositol lipids). dierences in structure, normal function, and subcellular The ®rst tyrosine kinase oncogene associated with location, many of the tyrosine kinase oncogenes signal human hematologic disease, Bcr ± Abl, was identi®ed through the same pathways, and typically enhance almost twenty years ago, and there is now evidence for proliferation and prolong viability. They represent involvement of multiple tyrosine kinase oncogenes in excellent potential drug targets, and it is likely that acute and chronic leukemias, lymphomas, and myelo- additional mutations will be identi®ed in other kinases, mas. In each case, the tyrosine kinase activity of the their immediate downstream targets, or in proteins oncogene is constitutively activated by mutations that regulating their function.
    [Show full text]
  • Anti-GRAP Antibody (ARG63124)
    Product datasheet [email protected] ARG63124 Package: 100 μg anti-GRAP antibody Store at: -20°C Summary Product Description Goat Polyclonal antibody recognizes GRAP Tested Reactivity Hu Predict Reactivity Ms, Rat, Cow Tested Application WB Host Goat Clonality Polyclonal Isotype IgG Target Name GRAP Antigen Species Human Immunogen C-GFFPRSYVQPVHL Conjugation Un-conjugated Alternate Names GRB2-related adapter protein Application Instructions Application table Application Dilution WB 0.3 - 1 µg/ml Application Note WB: Recommend incubate at RT for 1h. * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 25 kDa Properties Form Liquid Purification Purified from goat serum by ammonium sulphate precipitation followed by antigen affinity chromatography using the immunizing peptide. Buffer Tris saline (pH 7.3), 0.02% Sodium azide and 0.5% BSA Preservative 0.02% Sodium azide Stabilizer 0.5% BSA Concentration 0.5 mg/ml Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. www.arigobio.com 1/2 Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Database links GeneID: 10750 Human Swiss-port # Q13588 Human Background This gene encodes a member of the GRB2/Sem5/Drk family and functions as a cytoplasmic signaling protein which contains an SH2 domain flanked by two SH3 domains.
    [Show full text]
  • Biological Databases What Is a Database ?
    BIOLOGICAL DATABASES WHAT IS A DATABASE ? A structured collection of data held in computer storage; esp. one that incorporates software to make it accessible in a variety of ways; any large collection of information. A collection of data structured searchable (index) -> table of contents updated periodically (release) -> new edition cross-referenced (hyperlinks ) -> links with other db Includes also associated tools (software) necessary for access, updating, information insertion, information deletion…. A database consists of basic units called records or entries. Each record consists of fields, which hold pre-defined data related to the record. For example, a protein database would have protein sequences as records and protein properties as fields (e.g., name of protein, length, amino-acid sequence, …) 2 DATABASES ON THE INTERNET Biological databases often have web interfaces, which allow users to send queries to the databases. Some databases can be accessed by different web servers, each offering a different interface. request query web page result User Web server Database server 3 WHY BIOLOGICAL DATABASES ? Exponential growth in biological data. Data (genomic sequences, 3D structures, 2D gel analysis, MS analysis, Microarrays….) are no longer published in a conventional manner, but directly submitted to databases. Essential tools for biological research. The only way to publish massive amounts of data without using all the paper in the world. 4 NUCLEOTIDES 5 COMPLETE GENOMES Until 2018: Eukaryotes 5262 Prokaryotes 131446 Viruses 14027 6 SOME STATISTICS More than 1000 different ‘biological’ databases Variable size: <100Kb to >20Gb DNA: > 20 Gb Protein: 1 Gb 3D structure: 5 Gb Other: smaller Update frequency: daily to annually to seldom to forget about it .
    [Show full text]
  • Genomic Regions Associated with Muscularity in Beef Cattle Differ In
    Doyle et al. Genet Sel Evol (2020) 52:2 https://doi.org/10.1186/s12711-020-0523-1 Genetics Selection Evolution RESEARCH ARTICLE Open Access Genomic regions associated with muscularity in beef cattle difer in fve contrasting cattle breeds Jennifer L. Doyle1,2, Donagh P. Berry1* , Roel F. Veerkamp3, Tara R. Carthy1, Ross D. Evans4, Siobhán W. Walsh2 and Deirdre C. Purfeld1 Abstract Background: Linear type traits, which refect the muscular characteristics of an animal, could provide insight into how, in some cases, morphologically very diferent animals can yield the same carcass weight. Such variability may contribute to diferences in the overall value of the carcass since primal cuts vary greatly in price; such variability may also hinder successful genome-based association studies. Therefore, the objective of our study was to identify genomic regions that are associated with fve muscularity linear type traits and to determine if these signifcant regions are common across fve diferent breeds. Analyses were carried out using linear mixed models on imputed whole-genome sequence data in each of the fve breeds, separately. Then, the results of the within-breed analyses were used to conduct an across-breed meta-analysis per trait. Results: We identifed many quantitative trait loci (QTL) that are located across the whole genome and associated with each trait in each breed. The only commonality among the breeds and traits was a large-efect pleiotropic QTL on BTA2 that contained the MSTN gene, which was associated with all traits in the Charolais and Limousin breeds. Other plausible candidate genes were identifed for muscularity traits including PDE1A, PPP1R1C and multiple col- lagen and HOXD genes.
    [Show full text]
  • APIP (NM 015957) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC203297 APIP (NM_015957) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: APIP (NM_015957) Human Tagged ORF Clone Tag: Myc-DDK Symbol: APIP Synonyms: APIP2; CGI-29; CGI29; hAPIP; MMRP19 Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin ORF Nucleotide >RC203297 ORF sequence Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGTCTGGCTGTGATGCTCGGGAGGGAGACTGTTGTTCCCGGAGATGCGGCGCGCAGGACAAGGAGCGTC CAAGATACCTGATCCCAGAACTTTGCAAACAGTTTTACCATTTAGGCTGGGTCACTGGGACTGGAGGAGG AATTAGCTTGAAGCATGGCGATGAAATCTACATTGCTCCTTCAGGAGTGCAAAAGGAACGAATTCAGCCT GAAGACATGTTTGTTTGTGATATAAATGAAAAGGACATAAGTGGACCTTCGCCATCGAAGAAGCTAAAAA AAAGCCAGTGTACTCCTCTTTTCATGAATGCTTACACAATGAGAGGAGCAGGTGCAGTGATTCATACCCA CTCTAAAGCTGCTGTGATGGCCACACTTCTCTTTCCAGGACGGGAGTTTAAAATTACACATCAAGAGATG ATAAAAGGAATAAAGAAATGTACTTCCGGAGGGTATTATAGATATGATGATATGTTAGTGGTACCCATTA TTGAGAATACACCTGAGGAGAAAGACCTCAAAGATAGAATGGCTCATGCAGTGAATGAATACCCAGACTC CTGTGCAGTACTGGTCAGACGTCATGGAGTATATGTGTGGGGGGAAACATGGGAGAAGGCCAAAACCATG TGTGAGTGTTATGACTATTTATTTGATATTGCCGTATCAATGAAGAAAGTAGGACTTGATCCTTCACAGC TCCCAGTTGGAGAAAATGGAATTGTC ACGCGTACGCGGCCGCTCGAGCAGAAACTCATCTCAGAAGAGGATCTGGCAGCAAATGATATCCTGGATT ACAAGGATGACGACGATAAGGTTTAA This product is to be used for
    [Show full text]
  • Chromosomal Instability and Copy Number Alterations in Barrett's Esophagus and Esophageal Adenocarcinoma Thomas G
    Human Cancer Biology Chromosomal Instability and Copy Number Alterations in Barrett's Esophagus and Esophageal Adenocarcinoma Thomas G. Paulson,1,2 Carlo C. Maley,4,5 Xiaohong Li,2 Hongzhe Li,6 Carissa A. Sanchez,1,2 Dennis L. Chao,3 Robert D. Odze,7 Thomas L. Vaughan,2,8 Patricia L. Blount,1,2,10 and Brian J. Reid1,2,9,10 Abstract Purpose: Chromosomal instability, as assessed by many techniques, including DNA content aneuploidy, loss of heterozygosity, and comparative genomic hybridization, has consistently been reported to be common in cancer and rare in normal tissues. Recently, a panel of chromosome instability biomarkers, including loss of heterozygos- ity and DNA content, has been reported to identify patients at high and low risk of pro- gression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA), but required multiple platforms for implementation. Although chromosomal instability in- volving amplifications and deletions of chromosome regions have been observed in nearly all cancers, copy number alterations (CNA) in premalignant tissues have not been well characterized or evaluated in cohort studies as biomarkers of cancer risk. Experimental Design: We examined CNAs in 98 patients having either BE or EA using Bacterial Artificial Chromosome (BAC) array comparative genomic hybridization to char- acterize CNAs at different stages of progression ranging from early BE to advanced EA. Results: CNAs were rare in early stages (less than high-grade dysplasia) but were pro- gressively more frequent and larger in later stages (high-grade dysplasia and EA), in- cluding high-level amplifications. The number of CNAs correlated highly with DNA content aneuploidy.
    [Show full text]
  • GRAP (NM 006613) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RG208908 GRAP (NM_006613) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: GRAP (NM_006613) Human Tagged ORF Clone Tag: TurboGFP Symbol: GRAP Synonyms: DFNB114 Vector: pCMV6-AC-GFP (PS100010) E. coli Selection: Ampicillin (100 ug/mL) Cell Selection: Neomycin ORF Nucleotide >RG208908 representing NM_006613 Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGGAGTCCGTGGCCCTGTACAGCTTTCAGGCTACAGAGAGCGACGAGCTGGCCTTCAACAAGGGAGACA CACTCAAGATCCTGAACATGGAGGATGACCAGAACTGGTACAAGGCCGAGCTCCGGGGTGTCGAGGGATT TATTCCCAAGAACTACATCCGCGTCAAGCCCCATCCGTGGTACTCGGGCAGGATTTCCCGGCAGCTGGCC GAAGAGATTCTGATGAAGCGGAACCATCTGGGAGCCTTCCTGATCCGGGAGAGTGAGAGCTCCCCAGGGG AGTTCTCTGTGTCTGTGAACTATGGAGACCAGGTGCAGCACTTCAAGGTGCTGCGTGAGGCCTCGGGGAA GTACTTCCTGTGGGAGGAGAAGTTCAACTCCCTCAACGAGCTGGTCGACTTCTACCGCACCACCACCATC GCCAAGAAGCGGCAGATCTTCCTGCGCGACGAGGAGCCCTTGCTCAAGTCACCTGGGGCCTGCTTTGCCC AGGCCCAGTTTGACTTCTCAGCCCAGGACCCCTCGCAGCTCAGCTTCCGCCGTGGCGACATCATTGAGGT CCTGGAGCGCCCAGACCCCCACTGGTGGCGGGGCCGGTCCTGCGGGCGCGTTGGCTTCTTCCCACGGAGT TACGTGCAGCCCGTGCACCTG ACGCGTACGCGGCCGCTCGAG - GFP Tag - GTTTAA Protein Sequence: >RG208908 representing NM_006613 Red=Cloning site Green=Tags(s) MESVALYSFQATESDELAFNKGDTLKILNMEDDQNWYKAELRGVEGFIPKNYIRVKPHPWYSGRISRQLA EEILMKRNHLGAFLIRESESSPGEFSVSVNYGDQVQHFKVLREASGKYFLWEEKFNSLNELVDFYRTTTI
    [Show full text]
  • GRAP Rabbit Pab
    Leader in Biomolecular Solutions for Life Science GRAP Rabbit pAb Catalog No.: A15391 Basic Information Background Catalog No. This gene encodes a member of the GRB2/Sem5/Drk family and functions as a A15391 cytoplasmic signaling protein which contains an SH2 domain flanked by two SH3 domains. The SH2 domain interacts with ligand-activated receptors for stem cell factor Observed MW and erythropoietin, and facilitates the formation of a stable complex with the BCR-ABL 36kDa oncoprotein. This protein also associates with the Ras guanine nucleotide exchange factor SOS1 (son of sevenless homolog 1) through its N-terminal SH3 domain. In Calculated MW general, it couples signals from receptor and cytoplasmic tyrosine kinases to the Ras 25kDa signaling pathway. Category Primary antibody Applications WB Cross-Reactivity Human Recommended Dilutions Immunogen Information WB 1:200 - 1:2000 Gene ID Swiss Prot 10750 Q13588 Immunogen Recombinant fusion protein containing a sequence corresponding to amino acids 128-217 of human GRAP (NP_006604.1). Synonyms GRAP Contact Product Information 400-999-6126 Source Isotype Purification Rabbit IgG Affinity purification [email protected] www.abclonal.com.cn Storage Store at -20℃. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3. Validation Data Western blot analysis of extracts of various cell lines, using GRAP antibody (A15391) at 1:1000 dilution. Secondary antibody: HRP Goat Anti-Rabbit IgG (H+L) (AS014) at 1:10000 dilution. Lysates/proteins: 25ug per lane. Blocking buffer: 3% nonfat dry milk in TBST. Detection: ECL Basic Kit (RM00020). Exposure time: 5s. Antibody | Protein | ELISA Kits | Enzyme | NGS | Service For research use only.
    [Show full text]
  • Regulation of Ras Exchange Factors and Cellular Localization of Ras Activation by Lipid Messengers Int Cells
    REVIEW ARTICLE published: 04 September 2013 doi: 10.3389/fimmu.2013.00239 Regulation of Ras exchange factors and cellular localization of Ras activation by lipid messengers inT cells Jesse E. Jun1, Ignacio Rubio2 and Jeroen P.Roose 1* 1 Department of Anatomy, University of California San Francisco, San Francisco, CA, USA 2 Institute for Molecular Cell Biology, Center for Sepsis Control and Care (CSCC), University Hospital, Friedrich-Schiller-University, Jena, Germany Edited by: The Ras-MAPK signaling pathway is highly conserved throughout evolution and is acti- Karsten Sauer, The Scripps Research vated downstream of a wide range of receptor stimuli. Ras guanine nucleotide exchange Institute, USA factors (RasGEFs) catalyze GTP loading of Ras and play a pivotal role in regulating receptor- Reviewed by: Kjetil Taskén, University of Oslo, ligand induced Ras activity. In T cells, three families of functionally important RasGEFs are Norway expressed: RasGRF,RasGRP,and Son of Sevenless (SOS)-family GEFs. Early on it was rec- Balbino Alarcon, Consejo Superior de ognized that Ras activation is critical for T cell development and that the RasGEFs play an Investigaciones Cientificas, Spain important role herein. More recent work has revealed that nuances in Ras activation appear *Correspondence: to significantly impactT cell development and selection.These nuances include distinct bio- Jeroen P.Roose, Department of Anatomy, University of California San chemical patterns of analog versus digital Ras activation, differences in cellular localization Francisco, 513 Parnassus Avenue, of Ras activation, and intricate interplays between the RasGEFs during distinctT cell devel- Room HSW-1326, San Francisco, CA opmental stages as revealed by various new mouse models.
    [Show full text]
  • Defining Trends in Global Gene Expression in Arabian Horses with Cerebellar Abiotrophy
    Cerebellum DOI 10.1007/s12311-016-0823-8 ORIGINAL PAPER Defining Trends in Global Gene Expression in Arabian Horses with Cerebellar Abiotrophy E. Y. Scott1 & M. C. T. Penedo2,3 & J. D. Murray1,3 & C. J. Finno3 # Springer Science+Business Media New York 2016 Abstract Equine cerebellar abiotrophy (CA) is a hereditary expression (DE) analysis were used (Tophat2/Cuffdiff2, neurodegenerative disease that affects the Purkinje neurons of Kallisto/EdgeR, and Kallisto/Sleuth) with 151 significant the cerebellum and causes ataxia in Arabian foals. Signs of DE genes identified by all three pipelines in CA-affected CA are typically first recognized either at birth to any time up horses. TOE1 (Log2(foldchange) = 0.92, p =0.66)and to 6 months of age. CA is inherited as an autosomal recessive MUTYH (Log2(foldchange) = 1.13, p = 0.66) were not dif- trait and is associated with a single nucleotide polymorphism ferentially expressed. Among the major pathways that were (SNP) on equine chromosome 2 (13074277G>A), located in differentially expressed, genes associated with calcium ho- the fourth exon of TOE1 and in proximity to MUTYH on the meostasis and specifically expressed in Purkinje neurons, antisense strand. We hypothesize that unraveling the func- CALB1 (Log2(foldchange) = −1.7, p < 0.01) and CA8 tional consequences of the CA SNP using RNA-seq will elu- (Log2(foldchange) = −0.97, p < 0.01), were significantly cidate the molecular pathways underlying the CA phenotype. down-regulated, confirming loss of Purkinje neurons. There RNA-seq (100 bp PE strand-specific) was performed in cer- was also a significant up-regulation of markers for microglial ebellar tissue from four CA-affected and five age-matched phagocytosis, TYROBP (Log2(foldchange) = 1.99, p <0.01) unaffected horses.
    [Show full text]
  • Structural and Biochemical Basis for the Inhibition of Cell Death by APIP, a Methionine Salvage Enzyme
    Structural and biochemical basis for the inhibition of cell death by APIP, a methionine salvage enzyme Wonchull Kanga,1, Se Hoon Hongb,1, Hye Min Leea, Na Yeon Kima, Yun Chan Lima, Le Thi My Lea, Bitna Limb, Hyun Chul Kima, Tae Yeon Kima, Hiroki Ashidac, Akiho Yokotac, Sang Soo Hahd, Keun Ho Chuna, Yong-Keun Jungb,2, and Jin Kuk Yanga,2 aDepartment of Chemistry, College of Natural Sciences, Soongsil University, Seoul 156-743, Korea; bSchool of Biological Science/Bio-Max Institute, Seoul National University, Seoul 151-742, Korea; cGraduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan; and dDepartment of Chemistry and Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Korea Edited by James A. Wells, University of California, San Francisco, CA, and approved December 4, 2013 (received for review May 10, 2013) APIP, Apaf-1 interacting protein, has been known to inhibit two MTA (5-methylthioadenosine) to methionine through six en- main types of programmed cell death, apoptosis and pyropto- zymatic reaction steps, and MtnB is the third enzyme in the sis, and was recently found to be associated with cancers and pathway and catalyzes the dehydration of MTRu-1-P (5-meth- inflammatory diseases. Distinct from its inhibitory role in cell ylthioribulose-1-phosphate) to DK-MTP-1-P (2,3-diketo-5-meth- death, APIP was also shown to act as a 5-methylthioribulose-1- ylthiopentyl-1-phosphate) (Fig. 1B) (4, 5). In the absence of phosphate dehydratase, or MtnB, in the methionine salvage path- methionine, cells supplemented with MTA exhibit decreased way.
    [Show full text]