pharmaceutics Review Bio-Inspired and Smart Nanoparticles for Triple Negative Breast Cancer Microenvironment Mahsa Keihan Shokooh 1,†, Fakhrossadat Emami 2,†, Jee-Heon Jeong 3,* and Simmyung Yook 2,* 1 Department of Pharmaceutics, College of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran;
[email protected] 2 College of Pharmacy, Keimyung University, Daegu 42601, Korea;
[email protected] 3 College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea * Correspondence:
[email protected] (J.-H.J.);
[email protected] (S.Y.); Tel.: +82-53-810-2822 (J.-H.J.); +82-53-580-6656 (S.Y.) † These authors contributed equally to this work. Abstract: Triple negative breast cancer (TNBC) with poor prognosis and aggressive nature accounts for 10–20% of all invasive breast cancer (BC) cases and is detected in as much as 15% of individuals diagnosed with BC. Currently, due to the absence of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 (HER2) receptor, there is no hormone-based therapy for TNBC. In addition, there are still no FDA-approved targeted therapies for patients with TNBC. TNBC treatment is challenging owing to poor prognosis, tumor heterogeneity, chemotherapeutic side effects, the chance of metastasis, and multiple drug-resistance. Therefore, various bio-inspired tumor-homing nano systems responding to intra- and extra- cellular stimuli are an urgent need to treat TNBC patients who do not respond to current chemotherapy. In this review, intensive efforts have been made for exploring cell-membrane coated nanoparticles and immune cell-targeted nanoparticles (immunotherapy) to modulate the tumor microenvironment and deliver accurate Citation: Keihan Shokooh, M.; amounts of therapeutic agents to TNBC without stimulating the immune system.