Tumor Necrosis Factor- Suppresses Adipocyte-Specific Genes and Activates Expression of Preadipocyte Genes in 3T3-L1 Adipocytes N
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ran Activation Assay Kit
Product Manual Ran Activation Assay Kit Catalog Number STA-409 20 assays FOR RESEARCH USE ONLY Not for use in diagnostic procedures Introduction Small GTP-binding proteins (or GTPases) are a family of proteins that serve as molecular regulators in signaling transduction pathways. Ran, a 25 kDa protein of the Ras superfamily, regulates a variety of biological response pathways that include DNA synthesis, cell cycle progression, and translocation of RNA/proteins through the nuclear pore complex. Like other small GTPases, Ran regulates molecular events by cycling between an inactive GDP-bound form and an active GTP-bound form. In its active (GTP-bound) state, Ran binds specifically to RanBP1 to control downstream signaling cascades. Cell Biolabs’ Ran Activation Assay Kit utilizes RanBP1 Agarose beads to selectively isolate and pull- down the active form of Ran from purified samples or endogenous lysates. Subsequently, the precipitated GTP-Ran is detected by western blot analysis using an anti-Ran antibody. Cell Biolabs’ Ran Activation Assay Kit provides a simple and fast tool to monitor the activation of Ran. The kit includes easily identifiable RanBP1 Agarose beads (see Figure 1), pink in color, and a GTPase Immunoblot Positive Control for quick Ran identification. Each kit provides sufficient quantities to perform 20 assays. Figure 1: RanBP1 Agarose beads, in color, are easy to visualize, minimizing potential loss during washes and aspirations. 2 Assay Principle Related Products 1. STA-400: Pan-Ras Activation Assay Kit 2. STA-400-H: H-Ras Activation Assay Kit 3. STA-400-K: K-Ras Activation Assay Kit 4. STA-400-N: N-Ras Activation Assay Kit 5. -
The Mineralocorticoid Receptor Leads to Increased Expression of EGFR
www.nature.com/scientificreports OPEN The mineralocorticoid receptor leads to increased expression of EGFR and T‑type calcium channels that support HL‑1 cell hypertrophy Katharina Stroedecke1,2, Sandra Meinel1,2, Fritz Markwardt1, Udo Kloeckner1, Nicole Straetz1, Katja Quarch1, Barbara Schreier1, Michael Kopf1, Michael Gekle1 & Claudia Grossmann1* The EGF receptor (EGFR) has been extensively studied in tumor biology and recently a role in cardiovascular pathophysiology was suggested. The mineralocorticoid receptor (MR) is an important efector of the renin–angiotensin–aldosterone‑system and elicits pathophysiological efects in the cardiovascular system; however, the underlying molecular mechanisms are unclear. Our aim was to investigate the importance of EGFR for MR‑mediated cardiovascular pathophysiology because MR is known to induce EGFR expression. We identifed a SNP within the EGFR promoter that modulates MR‑induced EGFR expression. In RNA‑sequencing and qPCR experiments in heart tissue of EGFR KO and WT mice, changes in EGFR abundance led to diferential expression of cardiac ion channels, especially of the T‑type calcium channel CACNA1H. Accordingly, CACNA1H expression was increased in WT mice after in vivo MR activation by aldosterone but not in respective EGFR KO mice. Aldosterone‑ and EGF‑responsiveness of CACNA1H expression was confrmed in HL‑1 cells by Western blot and by measuring peak current density of T‑type calcium channels. Aldosterone‑induced CACNA1H protein expression could be abrogated by the EGFR inhibitor AG1478. Furthermore, inhibition of T‑type calcium channels with mibefradil or ML218 reduced diameter, volume and BNP levels in HL‑1 cells. In conclusion the MR regulates EGFR and CACNA1H expression, which has an efect on HL‑1 cell diameter, and the extent of this regulation seems to depend on the SNP‑216 (G/T) genotype. -
Mediator of DNA Damage Checkpoint 1 (MDC1) Is a Novel Estrogen Receptor Co-Regulator in Invasive 6 Lobular Carcinoma of the Breast 7 8 Evelyn K
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.423142; this version posted December 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Running Title: MDC1 co-regulates ER in ILC 2 3 Research article 4 5 Mediator of DNA damage checkpoint 1 (MDC1) is a novel estrogen receptor co-regulator in invasive 6 lobular carcinoma of the breast 7 8 Evelyn K. Bordeaux1+, Joseph L. Sottnik1+, Sanjana Mehrotra1, Sarah E. Ferrara2, Andrew E. Goodspeed2,3, James 9 C. Costello2,3, Matthew J. Sikora1 10 11 +EKB and JLS contributed equally to this project. 12 13 Affiliations 14 1Dept. of Pathology, University of Colorado Anschutz Medical Campus 15 2Biostatistics and Bioinformatics Shared Resource, University of Colorado Comprehensive Cancer Center 16 3Dept. of Pharmacology, University of Colorado Anschutz Medical Campus 17 18 Corresponding author 19 Matthew J. Sikora, PhD.; Mail Stop 8104, Research Complex 1 South, Room 5117, 12801 E. 17th Ave.; Aurora, 20 CO 80045. Tel: (303)724-4301; Fax: (303)724-3712; email: [email protected]. Twitter: 21 @mjsikora 22 23 Authors' contributions 24 MJS conceived of the project. MJS, EKB, and JLS designed and performed experiments. JLS developed models 25 for the project. EKB, JLS, SM, and AEG contributed to data analysis and interpretation. SEF, AEG, and JCC 26 developed and performed informatics analyses. MJS wrote the draft manuscript; all authors read and revised the 27 manuscript and have read and approved of this version of the manuscript. -
Rhob Controls Endothelial Barrier Recovery by Inhibiting Rac1 Trafficking to the Cell Border
JCB: Article RhoB controls endothelial barrier recovery by inhibiting Rac1 trafficking to the cell border Beatriz Marcos‑Ramiro,1 Diego García‑Weber,1 Susana Barroso,1 Jorge Feito,2 María C. Ortega,1 Eva Cernuda‑Morollón,3 Natalia Reglero‑Real,1 Laura Fernández‑Martín,1 Maria C. Durán,4 Miguel A. Alonso,1 Isabel Correas,1 Susan Cox,5 Anne J. Ridley,5 and Jaime Millán1 1Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, 28049 Madrid, Spain 2Servicio de Anatomía Patológica, Hospital Universitario de Salamanca, 37007 Salamanca, Spain 3Neurology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain 4Biomedicine, Biotechnology and Public Health Department, University of Cadiz, 11519 Cadiz, Spain 5Randall Division of Cell and Molecular Biophysics, King’s College London, SE1 1UL London, England, UK Endothelial barrier dysfunction underlies chronic inflammatory diseases. In searching for new proteins essential to the human endothelial inflammatory response, we have found that the endosomal GTPase RhoB is up-regulated in response to inflammatory cytokines and expressed in the endothelium of some chronically inflamed tissues. We show that al- though RhoB and the related RhoA and RhoC play additive and redundant roles in various aspects of endothelial barrier function, RhoB specifically inhibits barrier restoration after acute cell contraction by preventing plasma membrane ex- tension. During barrier restoration, RhoB trafficking is induced between vesicles containing RhoB nanoclusters and plasma membrane protrusions. The Rho GTPase Rac1 controls membrane spreading and stabilizes endothelial barriers. We show that RhoB colocalizes with Rac1 in endosomes and inhibits Rac1 activity and trafficking to the cell border during barrier recovery. -
Assessing Immunomodulatory Effects of Penicillium Mycotoxins Using Bovine Macrophages Cell Line
Assessing Immunomodulatory Effects of Penicillium Mycotoxins using Bovine Macrophages Cell Line by Se-Young Oh A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Animal and Poultry Science (Toxicology) Guelph, Ontario, Canada © Se-Young Oh, December, 2014 ABSTRACT Assessing Immunomodulatory Effects of Penicillium Mycotoxins using Bovine Macrophages Cell Line Se-Young Oh Advisor: Dr. Niel A. Karrow University of Guelph , 2014 Co-Advisor: Dr. Herman J. Boermans The present study assessed the immunomodulatory effects on macrophages of the following Penicillium mycotoxins (PMs), including citrinin (CIT), ochratoxin A (OTA), patulin (PAT), mycophilic acid (MPA) and penicillic acid (PA), by using a bovine macrophage cell line (BoMacs). Initially, concentration-response curves for each of these PMs were established based on cell proliferation and viability. The potency of these PMs based on their IC50s (concentration that inhibits 50% cell proliferation) from highest to lowest was: 0.56 µM (PAT) > 12.88 µM (OTA) > 29.85 µM (PA) > 91.20 µM (CIT) > not determined (MPA). LC50s (concentrations that kill 50% of cells) for PAT and PA were determined to be 4.46 μM and 175.79 μM, respectively. In addition to this, binary mixtures of some PMs at their respective IC25 and lower were shown to have significant interactions on cell proliferation. CIT+OTA had significant synergism, while PAT+MPA, CIT+MPA, CIT+PA and MPA+PA exhibited significant antagonism. PAT+PA showed significant antagonism at their respective IC25s, but were antagonistic at lower concentrations. The PMs at their sub-lethal levels of IC25s also differentially altered the gene expression of the following cytokines, including IL-1α, IL-6, IL-10, IL-12, IL-23 and TGF-. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Proteasome System of Protein Degradation and Processing
ISSN 0006-2979, Biochemistry (Moscow), 2009, Vol. 74, No. 13, pp. 1411-1442. © Pleiades Publishing, Ltd., 2009. Original Russian Text © A. V. Sorokin, E. R. Kim, L. P. Ovchinnikov, 2009, published in Uspekhi Biologicheskoi Khimii, 2009, Vol. 49, pp. 3-76. REVIEW Proteasome System of Protein Degradation and Processing A. V. Sorokin*, E. R. Kim, and L. P. Ovchinnikov Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; E-mail: [email protected]; [email protected] Received February 5, 2009 Abstract—In eukaryotic cells, degradation of most intracellular proteins is realized by proteasomes. The substrates for pro- teolysis are selected by the fact that the gate to the proteolytic chamber of the proteasome is usually closed, and only pro- teins carrying a special “label” can get into it. A polyubiquitin chain plays the role of the “label”: degradation affects pro- teins conjugated with a ubiquitin (Ub) chain that consists at minimum of four molecules. Upon entering the proteasome channel, the polypeptide chain of the protein unfolds and stretches along it, being hydrolyzed to short peptides. Ubiquitin per se does not get into the proteasome, but, after destruction of the “labeled” molecule, it is released and labels another molecule. This process has been named “Ub-dependent protein degradation”. In this review we systematize current data on the Ub–proteasome system, describe in detail proteasome structure, the ubiquitination system, and the classical ATP/Ub- dependent mechanism of protein degradation, as well as try to focus readers’ attention on the existence of alternative mech- anisms of proteasomal degradation and processing of proteins. -
Symptomatic and Asymptomatic Benign Prostatic Hyperplasia: Molecular Differentiation by Using Microarrays
Symptomatic and asymptomatic benign prostatic hyperplasia: Molecular differentiation by using microarrays Kulkarni Prakash*, Gregorio Pirozzi*, Michael Elashoff*, William Munger*, Iwao Waga†, Rajiv Dhir‡, Yoshiyuki Kakehi§, and Robert H. Getzenberg‡¶ *Gene Logic Inc., 708 Quince Orchard Road, Gaithersburg, MD 20878; ‡Departments of Urology, Pathology, and Pharmacology, and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213; †Japan Tobacco Inc., Pharmaceutical Frontier Research Laboratories, 13-2, Fukura 1-chrome, Kanazawa-Ku, Yokahama, Kanagawa 236-0004, Japan; and §Department of Urology, Kagawa Medical University, Oaza Ikenobe, Miki-cho, Kida-gun, Kagawa 761-0793, Japan Communicated by Sherman M. Weissman, Yale University School of Medicine, New Haven, CT, April 1, 2002 (received for review December 5, 2001) Benign prostatic hyperplasia (BPH) is a disease of unknown etiology Table 1. Details of the samples used to compare gene that significantly affects the quality of life in aging men. Histologic expression analysis BPH may present itself either as symptomatic or asymptomatic in Sample group Age (yrs) No. of samples nature. To elucidate the molecular differences underlying BPH, gene expression profiles from the prostate transition zone tissue have been Normal (N) 13–50 10 analyzed by using microarrays. A set of 511 differentially expressed BPH without symptoms (O) 51–65 5 BPH with symptoms (S) 42–77 8 genes distinguished symptomatic and asymptomatic BPH. This ge- BPH with cancer (C) 60–70 8 netic signature separates BPH from normal tissue but does not seem to change with age. These data could provide novel approaches for alleviating symptoms and hyperplasia in BPH. -
Evaluation of Lumican Effects on Morphology of Invading Breast
Evaluation of lumican effects on morphology of invading breast cancer cells, expression of integrins and downstream signaling Konstantina Karamanou, Marco Franchi, Maurizio Onisto, Alberto Passi, Demitrios Vynios, Stéphane Brézillon To cite this version: Konstantina Karamanou, Marco Franchi, Maurizio Onisto, Alberto Passi, Demitrios Vynios, et al.. Evaluation of lumican effects on morphology of invading breast cancer cells, expression of integrins and downstream signaling. FEBS Journal, Wiley, 2020, 287, pp.4862 - 4880. 10.1111/febs.15289. hal-02986565 HAL Id: hal-02986565 https://hal.univ-reims.fr/hal-02986565 Submitted on 17 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Evaluation of lumican effects on morphology of invading breast cancer cells, expression of integrins and downstream signaling Konstantina Karamanou1,2,3 , Marco Franchi4 , Maurizio Onisto5 , Alberto Passi6 , Demitrios H. Vynios1 and Stephane Brezillon 2,3 1 Biochemistry, Biochemical Analysis & -
Chuanxiong Rhizoma Compound on HIF-VEGF Pathway and Cerebral Ischemia-Reperfusion Injury’S Biological Network Based on Systematic Pharmacology
ORIGINAL RESEARCH published: 25 June 2021 doi: 10.3389/fphar.2021.601846 Exploring the Regulatory Mechanism of Hedysarum Multijugum Maxim.-Chuanxiong Rhizoma Compound on HIF-VEGF Pathway and Cerebral Ischemia-Reperfusion Injury’s Biological Network Based on Systematic Pharmacology Kailin Yang 1†, Liuting Zeng 1†, Anqi Ge 2†, Yi Chen 1†, Shanshan Wang 1†, Xiaofei Zhu 1,3† and Jinwen Ge 1,4* Edited by: 1 Takashi Sato, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of 2 Tokyo University of Pharmacy and Life Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China, Galactophore Department, The First 3 Sciences, Japan Hospital of Hunan University of Chinese Medicine, Changsha, China, School of Graduate, Central South University, Changsha, China, 4Shaoyang University, Shaoyang, China Reviewed by: Hui Zhao, Capital Medical University, China Background: Clinical research found that Hedysarum Multijugum Maxim.-Chuanxiong Maria Luisa Del Moral, fi University of Jaén, Spain Rhizoma Compound (HCC) has de nite curative effect on cerebral ischemic diseases, *Correspondence: such as ischemic stroke and cerebral ischemia-reperfusion injury (CIR). However, its Jinwen Ge mechanism for treating cerebral ischemia is still not fully explained. [email protected] †These authors share first authorship Methods: The traditional Chinese medicine related database were utilized to obtain the components of HCC. The Pharmmapper were used to predict HCC’s potential targets. Specialty section: The CIR genes were obtained from Genecards and OMIM and the protein-protein This article was submitted to interaction (PPI) data of HCC’s targets and IS genes were obtained from String Ethnopharmacology, a section of the journal database. -
PSMD10 Antibody Cat
PSMD10 Antibody Cat. No.: 57-836 PSMD10 Antibody Western blot analysis of PSMD10 using rabbit polyclonal PSMD10 Antibody using 293 cell lysates (2 ug/lane) either nontransfected (Lane 1) or transiently transfected (Lane 2) with the PSMD10 gene. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human HOMOLOGY: Predicted species reactivity based on immunogen sequence: Mouse, Rat This PSMD10 antibody is generated from rabbits immunized with a KLH conjugated IMMUNOGEN: synthetic peptide between 184-213 amino acids from the C-terminal region of human PSMD10. TESTED APPLICATIONS: WB APPLICATIONS: For WB starting dilution is: 1:1000 PREDICTED MOLECULAR 24 kDa WEIGHT: September 29, 2021 1 https://www.prosci-inc.com/psmd10-antibody-57-836.html Properties This antibody is purified through a protein A column, followed by peptide affinity PURIFICATION: purification. CLONALITY: Polyclonal ISOTYPE: Rabbit Ig CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: Supplied in PBS with 0.09% (W/V) sodium azide. CONCENTRATION: batch dependent Store at 4˚C for three months and -20˚C, stable for up to one year. As with all antibodies STORAGE CONDITIONS: care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures. Additional Info OFFICIAL SYMBOL: PSMD10 26S proteasome non-ATPase regulatory subunit 10, 26S proteasome regulatory subunit ALTERNATE NAMES: p28, Gankyrin, p28(GANK), PSMD10 ACCESSION NO.: O75832 GENE ID: 5716 USER NOTE: Optimal dilutions for each application to be determined by the researcher. Background and References The 26S proteasome is a multicatalytic proteinase complex with a highly ordered structure composed of 2 complexes, a 20S core and a 19S regulator. -
Surface Display of an Anti-DEC-205 Single Chain Fv Fragment in Lactobacillus Plantarum Increases Internalization and Plasmid
Christophe et al. Microb Cell Fact (2015) 14:95 DOI 10.1186/s12934-015-0290-9 RESEARCH Open Access Surface display of an anti‑DEC‑205 single chain Fv fragment in Lactobacillus plantarum increases internalization and plasmid transfer to dendritic cells in vitro and in vivo Michon Christophe1,2, Katarzyna Kuczkowska3, Philippe Langella1,2, Vincent G H Eijsink3, Geir Mathiesen3 and Jean‑Marc Chatel1,2* Abstract Background: Lactic acid bacteria (LAB) are promising vehicles for delivery of a variety of medicinal compounds, including antigens and cytokines. It has also been established that LAB are able to deliver cDNA to host cells. To increase the efficiency of LAB-driven DNA delivery we have constructed Lactobacillus plantarum strains targeting DEC- 205, which is a receptor located at the surface of dendritic cells (DCs). The purpose was to increase uptake of bacterial cells, which could lead to improved cDNA delivery to immune cells. Results: Anti-DEC-205 antibody (aDec) was displayed at the surface of L. plantarum using three different anchoring strategies: (1) covalent anchoring of aDec to the cell membrane (Lipobox domain, Lip); (2) covalent anchoring to the cell wall (LPXTG domain, CWA); (3) non-covalent anchoring to the cell wall (LysM domain, LysM). aDec was success‑ fully expressed in all three strains, but surface location of the antibody could only be demonstrated for the two strains with cell wall anchors (CWA and LysM). Co-incubation of the engineered strains and DCs showed increased uptake when anchoring aDec using the CWA or LysM anchors. In a competition assay, free anti-DEC abolished the increased uptake, showing that the internalization is due to specific interactions between the DEC-205 receptor and aDec.