Synthesis and Optimization of the Sintering Kinetics of Actinide Nitrides

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis and Optimization of the Sintering Kinetics of Actinide Nitrides ANNUAL PROGRESS REPORT Project Title: Synthesis and Optimization of the Sintering Kinetics of Actinide Nitrides Covering Period: July 2005 – December 2008 Date of Report: 03/31/2009 Recipient: Boise State University Award Number: DE-FC07 – 05ID14650 Subcontractors: University of Florida Other Partners: None Contact(s): Darryl P. Butt, 208-426-1054, [email protected] Boise State University 1910 University Drive Boise, ID 83725-2075 Project Team: John Carmack, INL (not funded); Ken McClellan, LANL (not funded); Ron Baney, UF (funded); James Tulenko, UF (funded); Tim Gerhardt, UF (funded); Le Song, UF (funded); Ravi Kumar Vasudevin, UF (funded); Brian M. Marx, BSU (funded); A. S. Hamdy (not funded); Patrick Callahan, BSU (funded); Brian Jaques, BSU (funded); Dan Osterberg BSU (funded). Authors: Darryl P. Butt and Brian Jaques i TABLE OF CONTENTS TABLE OF CONTENTS................................................................................................................. i LIST OF TABLES......................................................................................................................... iii LIST OF FIGURES ....................................................................................................................... iv NOMENCLATURE AND ACRONYMS ................................................................................... xiv CHAPTER I: OBJECTIVE AND EXECUTIVE SUMMARY.....................................................16 1. Objective..............................................................................................................................16 2. Executive Summary.............................................................................................................16 CHAPTER II: PROJECT OVERVIEW ........................................................................................18 1. Introduction..........................................................................................................................18 2. Surrogate Fuels ....................................................................................................................20 CHAPTER III: FACILITIES........................................................................................................23 1. Gloveboxes ..........................................................................................................................23 2. Process Gas Capabilities......................................................................................................24 3. High Temperature Tube Furnaces .......................................................................................24 4. Powder Milling System........................................................................................................27 5. Particle Size Analyzer..........................................................................................................27 6. Green Pellet Forming Capabilities.......................................................................................28 7. Balance with the Immersion Density Measurement Kit......................................................29 8. Simultaneous DSC/TGA Equipment ...................................................................................30 CHAPTER IV: SYNTHESIS OF NITRIDE MATERIALS ........................................................32 1. Synthesis of Uranium Mononitride (UN) ............................................................................33 1.1. Carbothermic Reduction Prior to Nitridation Synthesis Route to UN........................37 1.2. Hydride prior to Nitridation Synthesis Route to UN ..................................................40 1.3. Novel Reactive Milling Synthesis Route to UN.........................................................43 1.4. Discussion of Uranium Nitride Synthesis Routes.......................................................50 2. Synthesis of Dysprosium Mononitride (DyN).....................................................................57 2.1. Carbothermic Reduction Prior to Nitridation Synthesis Route to DyN......................59 2.2. Hydride prior to Nitridation Synthesis Route to DyN ................................................61 2.3. Direct Nitridation Synthesis Route to DyN ................................................................65 2.4. Novel Reactive Milling Synthesis Route to DyN.......................................................67 2.5. Solution Synthesis Route Analogous to Sol Gel Processing for Synthesizing DyN........................................................................................................................72 2.6. Discussion of the Dysprosium Nitride Synthesis Routes ...........................................76 3. Synthesis of Cerium Mononitride (CeN).............................................................................78 3.1. Carbothermic Reduction Prior to Nitridation Synthesis Route to CeN ......................78 3.2. Hydride prior to Nitridation Synthesis Route to CeN.................................................81 3.3. Novel Reactive Milling Synthesis Route to CeN .......................................................86 3.4. Solution Synthesis Routes Analogous to Sol Gel Processing for Synthesizing CeN ........................................................................................................................89 ii CHAPTER V: SINTERING OF NITRIDE MATERIALS ..........................................................96 1. Sintering of Pure Zirconium Nitride (ZrN)..........................................................................96 1.1. Experimental Procedures for Sintering Pure ZrN.......................................................96 1.2. Results of Sintering Pure ZrN.....................................................................................97 2. Sintering of Zirconium and Dysprosium Nitride (Zr, Dy)N................................................99 2.1. Experimental Procedures for Sintering (Zr, Dy)N....................................................100 2.2. Results of Sintering (Zr, Dy)N..................................................................................100 3. Sintering of Pure Uranium Mononitride (UN)...................................................................107 3.1. Experimental Procedures for Sintering Pure UN......................................................116 3.2. Results of Sintering Pure UN....................................................................................128 4. Sintering of Uranium and Dysprosium Nitride (U,Dy)N ..................................................128 4.1. Experimental Procedures for Sintering (U, Dy)N.....................................................129 4.2. Results of Sintering (U, Dy)N ..................................................................................130 CHAPTER VI: OXIDATION STUDY OF DYSPROSIUM MONONITRIDE .........................132 1. Characterization of the DyN Powder used for the Oxidation Studies ...............................132 2. Experimental Procedures for the Oxidation of DyN..........................................................133 3. Results of the Oxidation of DyN .......................................................................................134 CHAPTER VII: ECONOMIC ANALYSIS ...............................................................................139 CHAPTER VIII: ACCOMPLISHMENTS.................................................................................146 1. Project Details....................................................................................................................146 2. Publications and Presentations...........................................................................................147 REFERENCES ............................................................................................................................150 APPENDIX A: Physical and Thermodynamic Properties of Various Nitrides, Oxides, and Metals....................161 APPENDIX B: Compilation of Initial, Intermediate, and Final Stage Sintering Models.....................................170 APPENDIX C: Error Propagation Calculations for Density Determinations.......................................................175 APPENDIX D: Thermodynamic Calculations of Uranium Nitride Reactions .....................................................177 APPENDIX E: Discussion and Review of Nitrogen Diffusion in Uranium.........................................................178 APPENDIX F: Standard Operating Procedure for: Synthesis of Depleted-UN Pellets by Carbothermic Reduction from Depleted-UO2 ........................................................................................185 iii LIST OF TABLES Table 1: Available UREX+ Processes and the Extracted Products [4]. ........................................19 Table 2: Candidate Non-Fertile and Low-Fertile Fuels for AFCI [5-7]. .......................................19 Table 3: A table showing characteristics of the six Generation IV reactor candidates. Adapted from [51, 52]........................................................................................................32 Table 4: Sample identification and the respective process parameters for sintering of 99.5% pure ZrN. ................................................................................................................97 Table 5: Geometric density measurements obtained from the sintered ZrN pellets by varying parameters such as temperature,
Recommended publications
  • Uranium Oxide Aerosol Transport in Porous Graphite
    PNNL-21014 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Uranium Oxide Aerosol Transport in Porous Graphite J Blanchard C Brown DC Gerlach C Lovin RD Scheele CH Delegard ML Stewart A Zelenyuk BD Reid EC Buck PA Gauglitz BJ Riley LM Bagaasen CA Burns January 2012 PNNL-XXXXX PNNL-21014 Uranium Oxide Aerosol Transport in Porous Graphite J Blanchard C Brown DC Gerlach C Lovin RD Scheele CH Delegard ML Stewart A Zelenyuk BD Reid EC Buck PA Gauglitz BJ Riley LM Bagaasen CA Burns January 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 PNNL-21014 Summary Conditions exist in carbon dioxide (CO2) gas-cooled, graphite moderated reactors that might allow for gaseous transport of uranium oxide (UO2) particles into the graphite moderator. The transport of UO2 in the reactor coolant system, and subsequent deposition of this material in the graphite, is of interest due to the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). GIRM was developed to validate the declared operation of graphite moderated reactors. Uranium impurities in nuclear grade graphite are one of several possible indicator elements that can be used for a GIRM assessment. During fuel failures, uranium metal in the fuel is exposed to the CO2 coolant and oxidizes as either UO2 or U3O8. Measurements in adjacent fuel channels indicate that CO2 coolant readily flows through the porous graphite moderator blocks. Therefore, the potential exists for the coolant gas to transport UO2 particles, as an aerosol, into the porous graphite, thereby invalidating uranium as an indicator element.
    [Show full text]
  • 3 - 20 Progress in Fabrication of UC Ceramic Nuclear Fuels
    · 56 · IMP & HIRFL Annual Report 2018 formation of such carbonyl complexes. Reference [1] Y. Wang, S. W. Cao, J. C. Zhang, et al., Physical Chemistry Chemical Physics, 21(2019)7147. [2] Y. Wang, Y. Wittwer, J. Zhang, et al., PSI Annual Report, (2019). 3 - 20 Progress in Fabrication of UC Ceramic Nuclear Fuels Tian Wei and Qin Zhi Uranium dioxide nuclear fuel has been widely used in pressurized water reactors (PWR), because of its high melting point, isotropic expansion, excellent radiation behaviors and mechanical properties[1]. However, it is easy to embrittlement and the thermal conductivity is quite low. Compared with traditional uranium oxides nuclear fuel, the uranium carbide has extremely high hardness and no phase transition occurs in wide temperature range[2]. The thermal conductivity, density and uranium fraction of UC is 21.7 W/(m·K) (1 237 K), 13.63 g/cm3 and 95.2% respectively, which are much higher than that of UO2. Uranium carbide ceramic fuel has been considered as a potential candidate nuclear fuel for the next-generation fast-neutron reactors, especially for the Accelerator-Driven Systems (ADS). Based on the accelerator driven recycling used nuclear fuel, uranium carbide can recrystallize with plutonium (Pu) and minor actinides (MAs). Therefore uranium carbide is chosen as the fuel format in ADS. Uniform sized ceramic UC microspheres with a diameter of (675 10) µm were successfully fabricated by an improved microwave-assisted rapid internal gelation process combined with carbothermic reduction (Fig. 1). First of all, the nanoparticle carbon was dispersed into the HMUR stock solution, and the C-UO3·2 H2O gelled microspheres were prepared using an improved microwave-assisted internal gelation process without cooling the initial stock solutions.
    [Show full text]
  • Appendix a of Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Lev
    Appendix A Inventory and Characteristics of Spent Nuclear Fuel, High-Level Radioactive Waste, and Other Materials Inventory and Characteristics of Spent Nuclear Fuel, High-Level Radioactive Waste, and Other Materials TABLE OF CONTENTS Section Page A. Inventory and Characteristics of Spent Nuclear Fuel, High-Level Radioactive Waste, and Other Materials ................................................................................................................................. A-1 A.1 Introduction .............................................................................................................................. A-1 A.1.1 Inventory Data Summary .................................................................................................... A-2 A.1.1.1 Sources ......................................................................................................................... A-2 A.1.1.2 Present Storage and Generation Status ........................................................................ A-4 A.1.1.3 Final Waste Form ......................................................................................................... A-6 A.1.1.4 Waste Characteristics ................................................................................................... A-6 A.1.1.4.1 Mass and Volume ................................................................................................. A-6 A.1.1.4.2 Radionuclide Inventories ...................................................................................... A-8 A.1.1.4.3
    [Show full text]
  • Preparation of Uranium Carbonitride by Reaction of UC with Ammonia
    Journal of NUCLEARSCIENCE and TECHNOLOGY,5[8], p. 414~418 (August 1968). Preparation of Uranium Carbonitride by Reaction of UC with Ammonia Yumi AKIMOTO* and Koji TANAKA* Received January 24, 1968 Revised April 11, 1968 With the view to establishing a method of directly converting uranium carbide into uranium carbonitride and hydrocarbons, an attempt has been made to induce reaction between UC and am- monia under various temperatures from 25d to 600dc and pressures from 1 to 1,500 kg/cm2. The reaction aimed at was realized to the extent of practical significance under pressures exceeding 500 kg/cm2 at 450dc and exceeding 250 kg/cm2 at 500dc. The hydrocarbons produced thereby were found to be mainly methane, indicating that the formula of the predominant reaction was UC+NH3 -> UN2-x+CH4+H2. Upon heating the powdery fine black product to 1,800dc in vacuo, unexpectedly marked sinter- ing was found to occur, resulting in dense uranium monocarbonitride without any compaction pre- treatment. carbon is also reported. I. INTRODUCTION Another commonly known nitriding reac- Uranium mononitride (UN), and uranium tion is that between uranium carbides and carbonitride (UC1-xNx) have attracted much nitrogen, to result in a pulverized mixture of attention as possible fuel materials with quali- higher uranium nitrides and carbon(6)(7): ties surpassing uranium carbide (UC) with 2UC+3/2N2=U2N3+2C. (2) respect to chemical stability and simplicity of stoichiometric control. From the standpoint This reaction also fails to serve the purpose of fuel cost however, UN and UC1-xNx still of producing UN or UC1-xNx because carbon, yield to UC because the process at present once produced, cannot easily be separated available for the preparation of pure UN and from the nitride.
    [Show full text]
  • Mathematical Model of the Oxidation of a Uranium Carbide Fuel Pellet Including an Adherent Product Layer
    This is a repository copy of Mathematical Model of the Oxidation of a Uranium Carbide Fuel Pellet Including an Adherent Product Layer. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/110903/ Version: Accepted Version Article: Shepherd, JS, Fairweather, M, Hanson, BC orcid.org/0000-0002-1720-1656 et al. (1 more author) (2017) Mathematical Model of the Oxidation of a Uranium Carbide Fuel Pellet Including an Adherent Product Layer. Applied Mathematical Modelling, 45. pp. 784-801. ISSN 0307-904X https://doi.org/10.1016/j.apm.2017.01.041 © 2017 Elsevier Inc. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request.
    [Show full text]
  • Tlju^Tt^ PROPERTIES of FUELS for HIGH-TEMPERATURE REACTOR
    Tlju^tt^ PROPERTIES OF FUELS FOR HIGH-TEMPERATURE REACTOR CONCEPTS BATTELLE MEMORIAL INSTITUTE DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. CORRIGENDA BMI- 1598, PROPERTIES OF FUELS FOR HIGH-TEMPERATURE REACTOR CONCEPTS July 1, 1963 Please attach to report or make the following changes on the appropriate pages. Page Fuel Comparison Table: Substitute the following values for the thermal con­ ductivities for UO2 in cal/(sec)(cm)(C): 0. 026 at 20 C, 0. 008 at 600 C, 0. 005 at 1200 C. 11 Section C6: Rupture time :fo r 1600 F siloul d be 60. 2 ins tead of 60 2. 17 Section C6: Revise as follows; Stress for Creep Rate Shown, psi Rupture Data Temperature, 0.001 Per 0.01 Per 0.
    [Show full text]
  • LOS ALAMOS SCIENTIFIC LABORATORY of the UNIVERSITY of CALIFORNIA LOS ALAMOS NEW MEXICO REPORT WRITTEN: March 1959 REPORT DISTRIBUTED: August 27, 1959
    LEGAL NOTICE ThlB report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission A. Makes any warranty or representation, expressed or Implied, with respect to the accu­ racy, completeness, or usefulness of the information contained In this report, or that the use of any InformaUon, apparatus, method, or process disclosed in this report may not Infringe privately own^ rights, or B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, a^iaratus, method, or ptocess disclosed la this report As used in the above, "person acting on behalf of the Commission" Includes any em­ ployee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any Information pursuant to his employment or contract with the Commission, or his employment with such contractor. LA-2306 CHE MISTRY- - GENERAL (TID-4500, 14th edition) LOS ALAMOS SCIENTIFIC LABORATORY OF THE UNIVERSITY OF CALIFORNIA LOS ALAMOS NEW MEXICO REPORT WRITTEN: March 1959 REPORT DISTRIBUTED: August 27, 1959 THE ANALYSIS OF REFRACTORY BORIDES, CARBIDES, NITRIDES, AND SILICIDES by Owen H. Kriege This report expresses the opinions of the author or authors and does not necessarily reflect the opinions or views of the Los Alamos Scientific Laboratory. Contract W-7405-ENG, 36 with the U. S. Atomic Energy Commission - 1 - DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government.
    [Show full text]
  • New Materials in Nuclear Technology
    including about 140 from outside the United Kingdom. with many of these associations, as well as with In more recent years similar organizations have been numerous individual medical physicists. An Inter­ formed in many other parts of the world, notably in national Organization for Medical Physics, linking the Australia, Canada, the Netherlands, Scandinavia, and various national associations, was inaugurated at the the USA. The Agency has close and cordial relations beginning of this year. NEW MATERIALS IN NUCLEAR TECHNOLOGY A major objective of current re search in nuclear technology is to develop reactor materials that can withstand the effects of high temperature and intense radiations. The efficiency of a nuclear power station - more specifically, the efficiency of utilizing the heat for the production of electricity - is partly dependent on the temperature at which the reactor can be op­ erated, but the working temperature cannot be in­ creased to the point at which the fuel elements will fail. This has led to a search for non-metallic forms of nuclear fuel, because in general these have a higher melting point than metallic fuels. Oxides of uranium, of course, have been used as reactor fuel from the earliest days of nuclear technology, but considerable work is still being done to improve the production and fabrication of oxide fuels so that they may be able to stand up to the progressively exacting conditions to which they may be subjected in a reactor. Simul­ The IAEA Director General, Dr. Sigvard Eklund taneously, work is being carried on to develop other (middle), addressing the opening session of the forms of non-metallic fuel, such as carbides, nitrides Prague conference.
    [Show full text]
  • An Evaluation of the Mechanical Properties and Microstructure In
    An Evaluation of the Mechanical Properties and Microstructure in Uranium Dioxide Doped with Oxide Additives by Robert McDonald A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science Approved November 2014 by the Graduate Supervisory Committee: Pedro Peralta, Chair Jagannathan Rajagopalan Kiran Solanki ARIZONA STATE UNIVERSITY December 2014 ABSTRACT The United States Department of Energy (DOE) has always held the safety and reliability of the nation’s nuclear reactor fleet as a top priority. Continual improvements and advancements in nuclear fuels have been instrumental in maximizing energy generation from nuclear power plants and minimizing waste. One aspect of the DOE Fuel Cycle Research and Development Advanced Fuels Campaign is to improve the mechanical properties of uranium dioxide (UO2) for nuclear fuel applications. In an effort to improve the performance of UO2, by increasing the fracture toughness and ductility, small quantities of oxide materials have been added to samples to act as dopants. The different dopants used in this study are: titanium dioxide, yttrium oxide, aluminum oxide, silicon dioxide, and chromium oxide. The effects of the individual dopants and some dopant combinations on the microstructure and mechanical properties are determined using indentation fracture experiments in tandem with scanning electron microscopy. Indentation fracture experiments are carried out at room temperature and at temperatures between 450 °C and 1160 °C. The results of this work find that doping with aluminosilicate produces the largest favorable change in the mechanical properties of UO2. This sample exhibits an increase in fracture toughness at room temperature without showing a change in yield strength at elevated temperatures.
    [Show full text]
  • Compatibility Tests of Molten Uranium with Tungsten and Tungsten-1.5
    NASA TECHNICAL NOTE _-5076 *o h 90 n z c 4 r/, 4 z COMPATIBILITY TESTS OF MOLTEN URANIUM WITH TUNGSTEN AND TUNGSTEN- 1.5 PERCENT HAFNIUM by Philip D. Tukkzcnen Lewis Reseurch Center i 1; CZeveZund, Ohio *. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. MARCH 1969 TECH LIBRARY KAFB, NM OL31917 NASA TN D-5076 COMPATIBILITY TESTS OF MOLTEN URANIUM WITH TUNGSTEN AND TUNGSTEN - 1.5 PERCENT HAFNIUM By Philip D. Takkunen Lewis Research Center Cleveland, Ohio NATIONAL AERONAUT ICs AND SPACE ADMINISTRATION For sols by the Cleoringhouse for Federal Scientific ond Technical Information Springfield, Virginia 22151 - CFSTI price $3.00 . .. ABSTRACT Isothermal compatibility tests were conducted on sealed tungsten (W) and tungsten - 1. 5-weight-percent-hafnium (W-l.5Hf) capsules containing uranium (U) for 10 to 200 hours at 1200' and 1500° C. Extensive intergranular attack was observed in wrought W rod and in vapor-deposited W. Hafnium appeared to offer some promise in reducing intergranular attack on W. Single-crystal W appeared to be compatible with molten U although some evidence of mass transfer attack was found. In addition, U climbed up the sides of the single-crystal capsules and attacked grain boundaries in the closure weld. Cracks were formed in all the capsule walls during cooling after U had solidified. ii CONTENTS Page SUMMARY ....................................... 1 INTRODUCTION . 2 EXPERIMENTAL PROCEDURE . 3 Test Capsule Components . 3 Fabrication of Capsule Components . 5 Capsule Furnace Treatments and Evaluation . 9 RESULTS OF CAPSULE TESTS . 9 Tungsten Capsule Tests . 10 1200' C for 10 hours . 10 1200° C for 100 hours .
    [Show full text]
  • N Tj )~ J JJC1~ ....Z ~
    - 1 S'5YJOl{ 3~ . ~ ~f NASA TN D-1442 frr N -.:;fi .....-.:;fi qI N tJ )~ J JJC1~ ....z ~/ <(./) Z< TECHNICAL NOTE D-1442 COMPATIBILITY OF MOLTEN URANIUM DIOXIDE WITH FIVE REFRACTORY MATERlALS By William A. Sanders and Isadore L. Drell Lewis Research Center Cleveland, Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON January 1963 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TECHNICAL NOTE D-1442 COMPATIBILITY OF MOLTEN URANIUM DIOXIDE WITH FIVE REFRACTORY MATERIALS By William A. Sanders and Isadore L. Drell SUMMARY An investigation of the compatibility of molten 'uraniUm dioxide /­ with tungsten, tantalum, tantalum diboride, tantaiilln carbide, and hafnium carbide was conducted to indicate combinations that'may be ' useful in nuclear reactors that are to operate' at temperatures 'above the melting point of uranium dioxide, 50000 F. The evaluations' were conducted at a test temperature of 52200 F for a period of 15 minutes in a high-purity argon atmosphere. One compatibility test of molten uranium dioxide with tungsten was conducted at 55000 F. The tests were' performed with the refractory material in the form of a crucible that contained a uranium,dioxide charge. Crucible cross sections were studied after testing, and the degree of reaction between uranium diox­ ide and the various crucible materials was judged by the use of X-ray diffraction analysis, metallographic examination, microhardness meas­ urements, and electron-beam microanalysis. All five materials reacted with molten uranium dioxide at ,the test temperature of 52200 F. For tungsten, the extent of reaction was . slight even at 55000 F. For tantalum, the reaction'was greater than but similar in nature to that involving tungsten.
    [Show full text]
  • Very High-Temperature Reactor (VHTR) Proliferation Resistance and Physical Protection (PR&PP)
    ORNL/TM-2010/163 Very High-Temperature Reactor (VHTR) Proliferation Resistance and Physical Protection (PR&PP) August 2010 Prepared by David L. Moses DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail [email protected] Web site http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE) representatives, and International Nuclear Information System (INIS) representatives from the following source. Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone 865-576-8401 Fax 865-576-5728 E-mail [email protected] Web site http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.
    [Show full text]