Very High-Temperature Reactor (VHTR) Proliferation Resistance and Physical Protection (PR&PP)
Total Page:16
File Type:pdf, Size:1020Kb
ORNL/TM-2010/163 Very High-Temperature Reactor (VHTR) Proliferation Resistance and Physical Protection (PR&PP) August 2010 Prepared by David L. Moses DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail [email protected] Web site http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE) representatives, and International Nuclear Information System (INIS) representatives from the following source. Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone 865-576-8401 Fax 865-576-5728 E-mail [email protected] Web site http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. ORNL/TM-2010/163 Materials Science and Technology Division VERY HIGH-TEMPERATURE REACTOR (VHTR) PROLIFERATION RESISTANCE AND PHYSICAL PROTECTION (PR&PP) David L. Moses Date Published: August 2010 Prepared by OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6283 managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 CONTENTS Page LIST OF FIGURES ................................................................................................................................ v LIST OF TABLES ............................................................................................................................... vii ACRONYMS ........................................................................................................................................ ix 1. OVERVIEW OF TECHNOLOGY .................................................................................................. 1 1.1 DESCRIPTION OF THE PRISMATIC VHTR ..................................................................... 2 1.2 DESCRIPTION OF THE PEBBLE BED VHTR .................................................................. 4 1.3 CURRENT SYSTEM DESIGN PARAMETERS AND DEVELOPMENT STATUS ......... 6 1.4 THE COMMON SAFETY BASES FOR THE VHTR CONCEPTS .................................... 6 1.5 TECHNICAL-BASIS COMPARISON FOR PRISMATIC AND PEBBLE BED VHTR FUEL UTILIZATION ................................................................................................ 9 2. OVERVIEW OF FUEL CYCLE(S) .............................................................................................. 15 3. PR&PP RELEVANT SYSTEM ELEMENTS AND POTENTIAL ADVERSARY TARGETS ..................................................................................................................................... 19 4. PROLIFERATION RESISTANCE CONSIDERATIONS INCORPORATED INTO DESIGN ......................................................................................................................................... 23 4.1 CONCEALED DIVERSION OR PRODUCTION OF MATERIAL .................................. 29 4.2 BREAKOUT ........................................................................................................................ 29 4.3 PRODUCTION IN CLANDESTINE FACILITIES ............................................................ 29 5. PHYSICAL PROTECTION CONSIDERATIONS INCORPORATED INTO DESIGN ............. 31 5.1 THEFT OF MATERIAL FOR NUCLEAR EXPLOSIVES ................................................ 31 5.2 RADIOLOGICAL SABOTAGE ......................................................................................... 31 6. PR&PP ISSUES, CONCERNS AND BENEFITS ........................................................................ 33 7. REFERENCES .............................................................................................................................. 35 APPENDIX A VHTR MAJOR REACTOR DESIGN PARAMETERS ........................................ A-1 APPENDIX B A COMPARISON OF VHTR FUEL CYCLE PARAMETERS ............................ B-1 APPENDIX C TECHNICAL HISTORY REVIEW OF HTGR SPENT FUEL DISPOSAL, REPROCESSING, AND RECYCLE/REFABRICATION TECHNOLOGIES ..... C-1 iii LIST OF FIGURES Figure Page 1.1 Illustration of coated particle fuel in the prismatic fuel element ........................................ 3 1.2 GT-MHR reactor, cross-duct and pcu vessels .................................................................... 4 1.3 GT-MHR fully embedded reactor building ........................................................................ 4 1.4 Illustration of coated particle fuel in pebble fuel element .................................................. 5 1.5 400 MW-thermal PBMR partially embedded reactor building with reactor vessel and turbine lay-down .......................................................................................................... 6 1.6 250 MW-thermal HTR-PM reactor building elevated above ground level with steam generator ................................................................................................................... 6 1.7 Illustration of LEU coated particle fuel .............................................................................. 7 1.8 PBMR fuel loadings from non-fueled start-up to normal operation ................................. 11 1.9 PBMR core unloading and reloading during maintenance shutdowns ............................. 12 1.10 PBMR core discharge inventories (graphite, start-up fuel, and equilibrium fuel) as a function of recirculation timing ........................................................................................ 12 1.11 Schematic of proposed IAEA support measures for the application of safeguards at PBMR ............................................................................................................................... 14 3.1 Diagram of VHTR nuclear system elements .................................................................... 19 4.1 Plutonium build-up in a PBMR fuel element in an equilibrium core ............................... 25 C.1 Later Dragon Reactor experiment (DRE) tubular fuel element designs—annular rods and teledial fuel ....................................................................................................... C-4 v LIST OF TABLES Table Page 4.1 Calculated plutonium isotopic fractions for PBMR spent fuel as a function of initial enrichment and discharge burn-up .................................................................................... 24 A.1 VHTR major reactor design parameters ......................................................................... A-3 B.1 A comparison of VHTR fuel cycle parameters ............................................................... B-3 vii ACRONYMS CoK continuity of knowledge C/S containment and surveillance DOE U.S. Department of Energy EGCR experimental gas-cooled reactor GA General Atomics GIF Generation IV International Forum GT-MHR gas-turbine modular helium-cooled reactor HEU highly enriched uranium HTGR high-temperature gas-cooled reactor HTR modular high-temperature reactor HTR-PM high-temperature reactor–pebble bed module HTR-TN High-Temperature Reactor–Technology Network HTTR high-temperature test reactor IAEA International Atomic Energy Agency INPRO International Project on Innovative Nuclear Reactors and Fuel Cycles JAEA Japan Atomic Energy Agency JAERI Japan Atomic Energy Research Institute KAERI Korea Atomic Energy Research Institute KI Kurchatov Institute LEU low-enriched uranium LWR light water reactor MA minor actinide MHTGR modular high-temperature gas-cooled reactor MIT Massachusetts Institute of Technology MOX mixed oxide NHDD Nuclear Hydrogen Development and Demonstration Project NEA Nuclear Energy Agency NGNP next generation nuclear plant NMC&A nuclear material control and accountancy NNSA National Nuclear Security Administration NTS Nevada Test Site OECD Organization for Economic Cooperation and Development OKBM Experimental Design Bureau of Mechanical Engineering PBMR pebble bed modular reactor PRC People’s Republic of China PR&PP proliferation resistance and physical protection RCCS Reactor Cavity Cooling System THTR thorium high-temperature reactor TRU transuranic USNRC U.S. Nuclear Regulatory Commission USNRC-NRR USNRC Office of Reactor Regulation USNRC-RES USNRC Office of Regulatory Research VHTR very high-temperature reactor VNIINM A.A. Bochvar All-Russian Scientific Research Institute for Inorganic Materials ix ABSTRACT This report documents the detailed background information that has been compiled