The Abcs of Steelmaking
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Higher-Quality Electric-Arc Furnace Steel
ACADEMIC PULSE Higher-Quality Electric-Arc Furnace Steel teelmakers have traditionally viewed Research Continues to Improve the electric arc furnaces (EAFs) as unsuitable Quality of Steel for producing steel with the highest- Even with continued improvements to the Squality surface finish because the process design of steelmaking processes, the steelmaking uses recycled steel instead of fresh iron. With over research community has focused their attention 100 years of processing improvements, however, on the fundamental materials used in steelmaking EAFs have become an efficient and reliable in order to improve the quality of steel. In my lab steelmaking alternative to integrated steelmaking. In at Carnegie Mellon University, we have several fact, steel produced in a modern-day EAF is often research projects that deal with controlling the DR. P. BILLCHRIS MAYER PISTORIUS indistinguishable from what is produced with the impurity concentration and chemical quality of POSCOManaging Professor Editorof Materials integrated blast-furnace/oxygen-steelmaking route. steel produced in EAFs. Science412-306-4350 and Engineering [email protected] Mellon University Improvements in design, coupled with research For example, we recently used mathematical developments in metallurgy, mean high-quality steel modeling to explore ways to control produced quickly and energy-efficiently. phosphorus. Careful regulation of temperature, slag and stirring are needed to produce low- Not Your (Great-) Grandparent’s EAF phosphorus steel. We analyzed data from Especially since the mid-1990s, there have been operating furnaces and found that, in many significant improvements in the design of EAFs, cases, the phosphorus removal reaction could which allow for better-functioning burners and a proceed further. -
5. Sirhowy Ironworks
Great Archaeological Sites in Blaenau Gwent 5. SIRHOWY IRONWORKS There were a number of ironworks in the area now covered by Blaenau Gwent County Borough, which provided all the raw materials they needed – iron ore, limestone and fuel, charcoal at first but later coal to make coke. The Sirhowy ironworks (SO14301010) are the only one where there is still something to see. The works were opened in 1778 with one blast furnace. Although it was originally blown by water power, in 1799 the owners invested in a Boulton and Watt steam engine. This gave them enough power to blow a second furnace, which started production in 1802. In the early years of the 19th century, the pig iron produced at Sirhowy was sent to the Tredegar works a little further down the valley where it was refined, until 1818 when the Sirhowy works were sold and started to send its pig iron to Ebbw Vale. A third furnace was added in 1826 and a fourth in 1839. But by the 1870s iron smelting at Sirhowy was no longer profitable, and the works finally closed in 1882. Like all ironworks in South Wales, the furnaces were built against a steep bank which enabled the ironworkers to load the charge of iron ore, limestone and coke or charcoal fuel more easily at the top of the furnace. All that is now left now are the remains of a bank of blast furnaces with the arches that would originally have linked them to the casting houses in front, and the building that originally housed the waterwheel. -
National Register of Historic Places Multiple Property
NFS Form 10-900-b 0MB No. 1024-0018 (Jan. 1987) United States Department of the Interior National Park Service National Register of Historic Places Multipler Propertyr ' Documentation Form NATIONAL This form is for use in documenting multiple property groups relating to one or several historic contexts. See instructions in Guidelines for Completing National Register Forms (National Register Bulletin 16). Complete each item by marking "x" in the appropriate box or by entering the requested information. For additional space use continuation sheets (Form 10-900-a). Type all entries. A. Name of Multiple Property Listing ____Iron and Steel Resources of Pennsylvania, 1716-1945_______________ B. Associated Historic Contexts_____________________________ ~ ___Pennsylvania Iron and Steel Industry. 1716-1945_________________ C. Geographical Data Commonwealth of Pennsylvania continuation sheet D. Certification As the designated authority under the National Historic Preservation Act of 1966, as amended, J hereby certify that this documentation form meets the National Register documentation standards and sets forth requirements for the listing of related properties consistent with the National Register criteria. This submission meets the procedural and professional requiremerytS\set forth iri36JCFR PafrfsBOfcyid the Secretary of the Interior's Standards for Planning and Evaluation. Signature of certifying official Date / Brent D. Glass Pennsylvania Historical & Museum Commission State or Federal agency and bureau I, hereby, certify that this multiple -
Distortion in Case Carburized Components- the Steelmakers View
Heat Treating: Proceedings of the 18th Conference Copyright © 1999 ASM International® Ronald A. Wallis, Harry W. Walton, editors, p 5-11 All rights reserved. DOI: 10.1361/cp1998ht005 www.asminternational.org Distortion in Case Carburized Components The Steel makers View M. Cristinacce British Steel Engineering Steels Rotherham, United Kingdom 1. Abstract NVH (noise, vibration and harshness) is becoming of increasing importance in the automotive industry. The control Distortion of components during heat treatment has a of distortion to give correct mating of rotating components significant effect upon final component costs. The factors such as gears and shafts has a major influence upon NVH which influence distortion behaviour occur during the performance. machining and heat treatment processes and are therefore Most of the examples given in this paper are automotive outside the control of the steelmaker. One important factor transmission components which are carburised. which is under the control of the steelmaker is hardenability A wide variety of factors influence distortion behaviour Consistent hardenability performance can have a significant and can be broadly summarised as follows: effect in reducing the variability in distortion. In a number of Component shape. instances it has been shown that the macrostructure and Steel type. as-cast shape of the steel can also influence distortion. Other Microstructure and residual stresses prior to heat downstream processing effects such as forging may also be treatment. influential in these circumstances. Reheating and carburising conditions. This paper gives examples of some of the experiences of Stacking and support in furnace. British Steel Engineering Steels with customers and end users, Quenching - Medium, temperature, flow, jigging, etc. -
Decarbonising Steelmaking: Technology Options and Regional Pathways
Decarbonising steelmaking: technology options and regional pathways Huw McKay Chief Economist Ben Ellis Head of Marketing Strategy and Technical Marketing Wenjun Bao Manager Steel and Nonferrous Analysis Lee Levkowitz Manager Energy and Technology Research 11 November 2020 Disclaimer Forward-looking statements This presentation contains forward-looking statements, including statements regarding: trends in commodity prices and currency exchange rates; demand for commodities; production forecasts; plans, strategies and objectives of management; closure or divestment of certain assets, operations or facilities (including associated costs); anticipated production or construction commencement dates; capital costs and scheduling; operating costs and shortages of materials and skilled employees; anticipated productive lives of projects, mines and facilities; provisions and contingent liabilities; and tax and regulatory developments. Forward-looking statements may be identified by the use of terminology, including, but not limited to, ‘intend’, ‘aim’, ‘project’, ‘anticipate’, ‘estimate’, ‘plan’, ‘believe’, ‘expect’, ‘may’, ‘should’, ‘will’, ‘would’, ‘continue’, ‘annualised’ or similar words. These statements discuss future expectations concerning the results of assets or financial conditions, or provide other forward-looking information. These forward-looking statements are based on the information available as at the date of this release and are not guarantees or predictions of future performance, and involve known and unknown risks, uncertainties and other factors, many of which are beyond our control, and which may cause actual results to differ materially from those expressed in the statements contained in this release. BHP cautions against reliance on any forward-looking statements or guidance, particularly in light of the current economic climate and the significant volatility, uncertainty and disruption arising in connection with COVID-19. -
Technical Progress in Steelmaking and Casting for Special Bar and Wire Steel at Muroran Works
NIPPON STEEL TECHNICAL REPORT No. 104 AUGUST 2013 Technology UDC 669 . 184 . 244 . 66 : 669 . 14 - 422 Technical Progress in Steelmaking and Casting for Special Bar and Wire Steel at Muroran Works Masato KOBAYASHI* Kohichi ISOBE Masayuki ARAI Abstract Muroran Works, Nippon Steel Corporation manufactures special bars and wire rods mainly for automotive parts. In steelmaking plant, many technologies have been developed to manufacture high grade special steel and to suit the users’ various needs, e.g. multi-refin- ing converter (MURC), secondary steelmaking and casting to improve steel cleanliness, and near net casting and compact high reduction process (NCR). Authors describe recent ad- vances and prospects in steelmaking and casting technologies for manufacturing special steel in Muroran Works. 1. Introduction 2. Outline of Muroran Works Founded in 1909, Nippon Steel Corporation’s Muroran Works In 1994, the ironmaking department of Muroran was separated (hereinafter simply called “Muroran”) is the only integrated iron and from Nippon Steel Muroran Works, and the former was used to es- steel works in Hokkaido and manufactures special steels for bars tablish 80% of a joint venture with MSR, known as Hokkai Iron & and wire rods. Nearly 90% of the products of Muroran are special Coke Corporation. Since then, Hokkai Iron & Coke has been the steels, which are used mainly for critical automotive components supplier of hot metal to Muroran᾽s basic oxygen furnace (converter) (the engine, driving system, and undercarriage) and various parts of and electric furnace. The steel source used at Muroran is converter industrial machinery and construction equipment (Fig. 1). Since 1994, Muroran has also been manufacturing bars and wire rods in cooperation with Mitsubishi Steel Muroran, Inc. -
Steelmaking by Electric Arc Furnaces Cleaner, More Efficient
EVRAZ Canadian Steel: Low Carbon Footprint November 2016 Electric Arc Furnaces (EAFs) with metal scrap: cleaner, more efficient • EVRAZ Regina utilizes two Electricity Steelmaking EAFs to make up to 1.1 Generation million tons of steel per Energy used CO2 emissions CO2 emissions year kg / ton of steel kWh / ton of steel grams / kWh -79% • Over 91% of steelmaking -64% -81% 2,081 in China is from Blast 4,624 764 Oxygen Furnaces (BOFs), which use iron ore, coking coal, and other inputs • For every one ton of steel scrap made into new steel, over 1,400kg of iron ore, 1,647 740kg of coal, and 120kg 441 147 of limestone are saved Overseas input shipping to China Blast EAF Blast EAF China Canada Furance Furnace Sources: BOF percentage: Worldsteel. Shipping emissions: National Technical University of Athens. Steelmaking: Midrex – Blast Furnace assuming 11% Scrap, EAF Use of 100% scrap. Scrap statistics: Worldsteel. Electricity Generation: IEA 2011 2 EVRAZ cleaner EAFs, Canada’s power generation outpace others Emissions from Steelmaking emissions and energy use energy generation Energy used CO2 emissions CO2 emissions kg / ton of steel kWh / ton of steel grams / kWh -79% -64% 2,081 4,624 -81% 764 1,526 3,419 2,327 476 470 929 1,647 441 147 China Germany Turkey EVRAZ Blast GermanyTurkey EAF China Turkey Germany Canada - BOF Canada Furnace - EAF - China Overseas shipping of inputs Sources: BOF percentage: Worldsteel. Shipping emissions: National Technical University of Athens, from China to BC, Europe to Houston. Steelmaking: Midrex – Blast Furnace assuming 11% Scrap, EAF Use of 100% scrap. -
The Future of Steelmaking– Howeuropean the MANAGEMENT SUMMARY
05.2020 The future of steelmaking – How the European steel industry can achieve carbon neutrality MANAGEMENT SUMMARY The future of steelmaking / How the European steel industry can achieve carbon neutrality The European steelmaking industry emits 4% of the EU's total CO2 emissions. It is under growing public, economic and regulatory pressure to become carbon neutral by 2050, in line with EU targets. About 60% of European steel is produced via the so-called primary route, an efficient but highly carbon-intensive production method. The industry already uses carbon mitigation techniques, but these are insufficient to significantly reduce or eliminate carbon emissions. The development and implementation of new technologies is underway. With limited investment cycles left until the 2050 deadline, the European steelmaking industry must decide on which new technology to invest in within the next 5-10 years. We assess the most promising emerging technologies in this report. They fall into two main categories: carbon capture, use and/or storage (CCUS), and alternative reduction of iron ore. CCUS processes can be readily integrated into existing steel plants, but cannot alone achieve carbon neutrality. If biomass is used in place of fossil fuels in the steelmaking process, CCUS can result in a negative carbon balance. Alternative reduction technologies include hydrogen-based direct reduction processes and electrolytic reduction methods. Most are not well developed and require huge amounts of green energy, but they hold the promise of carbon-neutral steelmaking. One alternative reduction process, H2-based shaft furnace direct reduction, offers particular promise due to its emissions-reduction potential and state of readiness. -
AISI | Electric Arc Furnace Steelmaking
http://www.steel.org/AM/Template.cfm?Section=Articles3&TEMPLATE=/CM/HTMLDisplay.cfm&CONTENTID=12308 Home Steelworks Home Electric Arc Furnace Steelmaking By Jeremy A. T. Jones, Nupro Corporation SIGN UP to receive AISI's FREE e-news! Read the latest. Email: Name: Join Courtesy of Mannesmann Demag Corp. FURNACE OPERATIONS The electric arc furnace operates as a batch melting process producing batches of molten steel known "heats". The electric arc furnace operating cycle is called the tap-to-tap cycle and is made up of the following operations: Furnace charging Melting Refining De-slagging Tapping Furnace turn-around Modern operations aim for a tap-to-tap time of less than 60 minutes. Some twin shell furnace operations are achieving tap-to-tap times of 35 to 40 minutes. 10/3/2008 9:36 AM http://www.steel.org/AM/Template.cfm?Section=Articles3&TEMPLATE=/CM/HTMLDisplay.cfm&CONTENTID=12308 Furnace Charging The first step in the production of any heat is to select the grade of steel to be made. Usually a schedule is developed prior to each production shift. Thus the melter will know in advance the schedule for his shift. The scrap yard operator will prepare buckets of scrap according to the needs of the melter. Preparation of the charge bucket is an important operation, not only to ensure proper melt-in chemistry but also to ensure good melting conditions. The scrap must be layered in the bucket according to size and density to promote the rapid formation of a liquid pool of steel in the hearth while providing protection for the sidewalls and roof from electric arc radiation. -
Geological and Economic Assesment of the Perspective of the Mining in Ljubija Ore Region
Cvijić, R. et al: Geolopgical and ...... Archives for Technical Sciences 2018, 18(1), 1-8 Original Sscijentific paper UDC 622.33.013(497.16Ljubija) DOI: 10.7251/afts.2018.1018.001C COBISS.RS-ID 7322392 GEOLOGICAL AND ECONOMIC ASSESMENT OF THE PERSPECTIVE OF THE MINING IN LJUBIJA ORE REGION 1 2, 2 2 Cvijić Ranko , Milošević Aleksej Čelebić Miodrag , Kovačević Žarko 1Institut of mining Prijedor, Bosnia and Herzegovina, e.mail. [email protected] 2University of Banja Luka, Faculty of mining Prijedor, Bosnia and Herzegovina ABSTRACT The iron ore of the Ljubija ore region for decades has a very great impact on the overall social reproduction in the area of the city of Prijedor, RS, BiH, which is clearly connected with the constant renewal and intensification of the production process. We have systematic geological explorations last over 135 years and exploitation with certain interruptions over 100 years. Existing resources/reserves should be optimally activated in order to achieve the commercial viability of investment funds invested in them, but also those that have yet to be invested, and a certain expected national benefit, and at the same time an intensive geological exploration of the potential space for finding new reserves in terms of iron ore base. The paper attempts to assess the real justification of further geological exploration and exploitation in this area and the strategy for further development of iron ore mining. Key words: Ljubija ore region, iron ore, ore resources/reserves, geological exploration, exploitation, development INTRODUCTION The mining area of the Ljubija ore region, with an area of about 1500 km2, in the western part of the Republic of Srpska, in the area between Novi Grad, Prijedor, Bronzani Majdan, Sanski Most and Budimlić Japra, has been a significant source of iron ore and stone for decades for the entire socioeconomic development of Prijedor regions, Republika Srpska and Bosnia and Herzegovina. -
Enghandbook.Pdf
785.392.3017 FAX 785.392.2845 Box 232, Exit 49 G.L. Huyett Expy Minneapolis, KS 67467 ENGINEERING HANDBOOK TECHNICAL INFORMATION STEELMAKING Basic descriptions of making carbon, alloy, stainless, and tool steel p. 4. METALS & ALLOYS Carbon grades, types, and numbering systems; glossary p. 13. Identification factors and composition standards p. 27. CHEMICAL CONTENT This document and the information contained herein is not Quenching, hardening, and other thermal modifications p. 30. HEAT TREATMENT a design standard, design guide or otherwise, but is here TESTING THE HARDNESS OF METALS Types and comparisons; glossary p. 34. solely for the convenience of our customers. For more Comparisons of ductility, stresses; glossary p.41. design assistance MECHANICAL PROPERTIES OF METAL contact our plant or consult the Machinery G.L. Huyett’s distinct capabilities; glossary p. 53. Handbook, published MANUFACTURING PROCESSES by Industrial Press Inc., New York. COATING, PLATING & THE COLORING OF METALS Finishes p. 81. CONVERSION CHARTS Imperial and metric p. 84. 1 TABLE OF CONTENTS Introduction 3 Steelmaking 4 Metals and Alloys 13 Designations for Chemical Content 27 Designations for Heat Treatment 30 Testing the Hardness of Metals 34 Mechanical Properties of Metal 41 Manufacturing Processes 53 Manufacturing Glossary 57 Conversion Coating, Plating, and the Coloring of Metals 81 Conversion Charts 84 Links and Related Sites 89 Index 90 Box 232 • Exit 49 G.L. Huyett Expressway • Minneapolis, Kansas 67467 785-392-3017 • Fax 785-392-2845 • [email protected] • www.huyett.com INTRODUCTION & ACKNOWLEDGMENTS This document was created based on research and experience of Huyett staff. Invaluable technical information, including statistical data contained in the tables, is from the 26th Edition Machinery Handbook, copyrighted and published in 2000 by Industrial Press, Inc. -
Events 4 Jan's Notes 6 Corkscrew Contest 7 Tech Stuff 8 Fling Photos
Events 4 Jan’s Notes 6 Corkscrew contest 7 Tech Stuff 8 Fling Photos 12 Drilling Holes 14 Nail Tools 15 Gallery 16 ABANA 18 May/June 2001 The Blacksmiths’ Guild of the Potomac The Newsletter 1 2001 Board of Directors Committee Chairmen President Vice-President Building Ross Sullivan 540-775-2067 *Keith Kuck (2001) *Chris Worsley (2001) Claude Moore Park Pat McGuire 703-437-9034 5310 Nutting Drive 4203 Javins Drive Springfield VA 22151 Alexandria VA 22310 Corporation Fay LeCompte 540-743-1812 703-321-8109 703-960-9030 Demonstrations Jan Kochansky 301-937-6538 Treasurer Secretary Door Prize Tom Coker 301-937-6538 *George Anderton (2003) * Ross Sullivan (2002) Hospitality Ed Jackson 410-549-2829 5325 Ringold Place 11548 Pine Hill Road Springfield VA 22151 King George VA 22485 Hotline Tug Tuggle 304-876-0909 703-321-9737 540-775-2067 Library Steve Crist 703-754-9678 Tom Coker (2002) Fay LeCompte (2003) 12611 Bluhill Road 1016A East Main St. Membership George Anderton 703-321-9737 Wheaton MD 20906 Luray VA 22835 301-942-8573 Newsletter George McConnell 703-620-6454 *Bill Wojcik (2001) Phil Heath (2002) 4116 Kingchase Lane 4600 S Four Mile Run Dr Shop Rules And Etiquette The Plains VA 20198 Arlington VA 22204 540-253-5121 703-671-3134 The Guild shop is available for use by members whenever the Nature Center park is open. Shop is locked, so call Shopmaster or a Board member for access. Follow all Ken Zastrow (2003) Call the HOTLINE at safety rules. Record number of visitors on log sheet near 12800 Hammonton Rd 703-527-0409 for door.