Pollinator Training 2020 Ver

Total Page:16

File Type:pdf, Size:1020Kb

Pollinator Training 2020 Ver 4/2/20 Angiosperms emerged in the Intro to bees and the Cretaceous period, 120 TX/OK Pollinator Project million years ago TEXAS A&M AGRILIFE EXTENSION AND OKLAHOMA COOPERATIVE EXTENSION 1 2 History of understanding of plant anatomy Why flowers? and sexuality The Creator’s gift to man Nehemiah Grew The Anatomy of Plants (1682) Sprengel (1793)* observed role of flowers in attracting insects in study of woods cranesbill ◦ the “nectar of these flowers is secreted for the sake of insects, and is protected from rain in order that the insects may get it pure and unspoiled.” Darwin showed the value of cross- fertilization in plants *1793 Christian Conrad Sprengel, The Secret of Nature in the Form and Fertilization of Flowers Uncovered 3 4 1 4/2/20 Common agents of pollination Sexual reproduction in wind other insects flowers bees* bats flies birds butterflies fig wasps (Agaonidae) moths mammals beetles wasps 5 6 nectar Importance of pollination pollen Most of the 275,000 known species of lipid secretions Plants go to flowering plants are pollinated by insects great lengths food bodies 66% (80% worldwide) of crops in U.S. are insect to attract pollinated scents insects Pollination allows for plant diversity since even rare resins plants can be pollinated if they can attract insects nectar guides 7 8 2 4/2/20 Nectar guides Guide pollinators to source of nectar Often invisible except in UV spectrum Other nectar guide examples John R. Meyer, North Carolina State University 9 10 Lepidoptera (moth, butterfly) pollination Fly pollination Most (advanced forms) feed with long proboscis usually attracted for nectar Flowers frequently tubular, sweet smelling Syrphid flies feed on pollen Moth pollinated plants generally open at night, white colored flowers tend to be less showy, with strong smell, sometimes malodorous not well-studied 11 12 3 4/2/20 Hymenoptera (bees, wasps, ants) pollination Ant pollination rare Bees are most important group 20,000 species of bees worldwide-all anthophilous Plants that depend on bees often bright, with nectar guides 13 14 Apoidea (bees) 4,000 species in North America All feed on nectar and pollen Most species are solitary Bee anatomy Bodies covered with very fine, brushy hairs to trap pollen 15 16 4 4/2/20 Bees vs wasps Bees usually thicker bodied Paper wasp: note folded wings Bees hairy with pollen or pollen balls on hind legs Wasps long, thinner legs with spines Wasps may have wings longitudinally folded 17 18 Eumenid wasp: Honey bee with folded wings pollen balls 19 20 5 4/2/20 Pollen coating on bees 21 22 Count the wings Bee vs. fly Fly has two wings, bees four Bee eyes oval-shaped on sides of head, fly eyes larger and often meeting at top of head Bees have long, elbowed antennae, fly antennae short, hair-like Mark Brown Mark Brown 23 24 6 4/2/20 Oval-shaped eyes Xylocopa vs Perdita Large eyes of fly 25 26 Blow fly with aristate antennae Ilona Loser Ilona Loser Ilona Loser More flies By JJ Harrison (https://www.jjharrison.com.au/) 27 28 7 4/2/20 Interesting bee-haviors A B DIADASIA – MINING BEES PROVISION UNDERGROUND TUNNELS WITH POLLEN Which is the bee? 29 30 Hole nesters Carpenter bees Carpenter bee with shiny abdomen 31 32 8 4/2/20 Carpenter bees can be pests in structures Donna Race More carpenter bees 33 34 Xylocopa micans Nectar thief Leaf cutter bees 35 36 9 4/2/20 Leaf cutter bee nests Mason bees 37 38 Social bees Bee hotels Bumble bees buzz pollinating tomato 39 40 10 4/2/20 Honey bee Medium sized bee Slow flying Legs hang below as they fly Light orange to black base- color with dark brown bands Not a native bee: Apis mellifera 41 42 Africanized honey bee Bee nests and swarming 43 44 11 4/2/20 Why you don’t want honey bees to nest in your home Bumble bees, Bombus species 45 46 Decline of Pollinators Like honey bees Causes for Decline: bumble bees • Destruction of habitats carry pollen • Parasites and pathogens • Changing climate mixed with • Overuse of pesticides How to help pollinators: nectar in a • Learn more about bees and pollinators corbicula on hind • Use pollinator friendly plants in landscapes • Give bees nesting places tibia • Avoid pesticides • Spread the word, promote efforts TheTimes.co.uk Photo by Tony Wills, Wikipedia 47 48 12 4/2/20 You do not need to be Survey a bee expert to instructions participate in this study! 49 50 You will be classifying insects into these categories. HunB (honey bee) BumB (bumble bees) OthB (other bees) Wasp (any wasp) Fly (all flies) Lep (Lepidoptera: Butterflies and moths) HoneyHoney bee bee with pollinia Beet (beetles) Honey bees (HunB) 51 52 13 4/2/20 Mark Brown Mark Brown David Caeppert Mark Brown Jim Baker Mark Brown Mike Merchant Bumble bees (BumB) – larger bees with hair on top of abdomen Carpenter bees (OthB) large bees with hairless top of abdomen 53 54 Small native bees (OthB) Maurice Whalen Mark Brown Mark Brown Other native bees (OthB) – pollen covered undersides, hind legs Molly Jacobson 55 56 14 4/2/20 Differences between flies and bees Bees Flies Eyes more oval, positioneD Eyes may surrounD heaD, more on siDes of heaD sometimes meeting near top of heaD Hairy on thorax anD Usually less hairy (sometimes) on abDomen Often pollen covereD, Pollen usually light, no especially on hind legs, under accumulations on hinD legs. abDomen HinD legs with wiDe segments HinD legs slenDer for pollen transport Longer elboweD antennae Usually short stubby antennae Syrphid flies (Fly) – may resemble OthB 57 58 Differences between wasps and bees Bees Wasps Usually hairy anD thick- Few boDy hairs. More bodied with bluntly slenDer. AbDomen somes constricteD “waist” borne on slender stalk Legs (especially hinD) with Legs longer, thinner, often broad, hairy segments; with spines. Not usually sometimes with balls or hairy and not carrying accumulations of pollen. masses of pollen on hinD Few spines legs. Wings folD flat over Wings often rest in V- abDomen at rest position. May be folded other flies (Fly) length-wise at rest. 59 60 15 4/2/20 Wasps & non-bees: paper wasp, Polistes spp. (Wasp) Wasps & non-bees: Mason wasps (Wasp) 61 62 Butterflies and moths (Lep) Wasps & non-bees: mud daubers (Wasp) 63 64 16 4/2/20 3 = Above 76% 2= Between 51% anD 75% 1 = Between 25% anD 50 % 0 = Less than 25% • Doesn’t have to have bees Pick your patch (2 x 2 ft) • Should be readily available on market Bloom % Examples on Gregg's Mistflower, Conoclinium greggii • Can switch patches during the summer Bloom % rateD on 0 to 3 scale. 0 = Less than 25% of plant in bloom, 1 = Between 25% anD 50%, 2 = Between 51% anD 75%, 3 = Above 76%. 65 66 To go to data app take out your phone and open camera app 3 = Above 76% 2= Between 51% anD 75% 1 = Between 25% anD 50 % 0 = Less than 25% Or go to https://sixleggeDaggie.com/pollinator Bloom % Examples on Texas Sage, Leucophyllum frutenscens Bloom % rated on 0 to 3 scale. 0 = Less than 25% of plant in bloom, 1 = Between 25% and 50%, 2 = Between 51% and 75%, 3 = Above 76%. 67 68 17 4/2/20 Click on the pop-up link 69 18.
Recommended publications
  • A Phylogenetic Analysis of the Megadiverse Chalcidoidea (Hymenoptera)
    UC Riverside UC Riverside Previously Published Works Title A phylogenetic analysis of the megadiverse Chalcidoidea (Hymenoptera) Permalink https://escholarship.org/uc/item/3h73n0f9 Journal Cladistics, 29(5) ISSN 07483007 Authors Heraty, John M Burks, Roger A Cruaud, Astrid et al. Publication Date 2013-10-01 DOI 10.1111/cla.12006 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Cladistics Cladistics 29 (2013) 466–542 10.1111/cla.12006 A phylogenetic analysis of the megadiverse Chalcidoidea (Hymenoptera) John M. Heratya,*, Roger A. Burksa,b, Astrid Cruauda,c, Gary A. P. Gibsond, Johan Liljeblada,e, James Munroa,f, Jean-Yves Rasplusc, Gerard Delvareg, Peter Jansˇtah, Alex Gumovskyi, John Huberj, James B. Woolleyk, Lars Krogmannl, Steve Heydonm, Andrew Polaszekn, Stefan Schmidto, D. Chris Darlingp,q, Michael W. Gatesr, Jason Motterna, Elizabeth Murraya, Ana Dal Molink, Serguei Triapitsyna, Hannes Baurs, John D. Pintoa,t, Simon van Noortu,v, Jeremiah Georgea and Matthew Yoderw aDepartment of Entomology, University of California, Riverside, CA, 92521, USA; bDepartment of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH, 43210, USA; cINRA, UMR 1062 CBGP CS30016, F-34988, Montferrier-sur-Lez, France; dAgriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada; eSwedish Species Information Centre, Swedish University of Agricultural Sciences, PO Box 7007, SE-750 07, Uppsala, Sweden; fInstitute for Genome Sciences, School of Medicine, University
    [Show full text]
  • Chalcid Forum Chalcid Forum
    ChalcidChalcid ForumForum A Forum to Promote Communication Among Chalcid Workers Volume 23. February 2001 Edited by: Michael E. Schauff, E. E. Grissell, Tami Carlow, & Michael Gates Systematic Entomology Lab., USDA, c/o National Museum of Natural History Washington, D.C. 20560-0168 http://www.sel.barc.usda.gov (see Research and Documents) minutes as she paced up and down B. sarothroides stems Editor's Notes (both living and partially dead) antennating as she pro- gressed. Every 20-30 seconds, she would briefly pause to Welcome to the 23rd edition of Chalcid Forum. raise then lower her body, the chalcidoid analog of a push- This issue's masthead is Perissocentrus striatululus up. Upon approaching the branch tips, 1-2 resident males would approach and hover in the vicinity of the female. created by Natalia Florenskaya. This issue is also Unfortunately, no pre-copulatory or copulatory behaviors available on the Systematic Ent. Lab. web site at: were observed. Naturally, the female wound up leaving http://www.sel.barc.usda.gov. We also now have with me. available all the past issues of Chalcid Forum avail- The second behavior observed took place at Harshaw able as PDF documents. Check it out!! Creek, ~7 miles southeast of Patagonia in 1999. Jeremiah George (a lepidopterist, but don't hold that against him) and I pulled off in our favorite camping site near the Research News intersection of FR 139 and FR 58 and began sweeping. I knew that this area was productive for the large and Michael W. Gates brilliant green-blue O. tolteca, a parasitoid of Pheidole vasleti Wheeler (Formicidae) brood.
    [Show full text]
  • Weiblen, G.D. 2002 How to Be a Fig Wasp. Ann. Rev. Entomol. 47:299
    25 Oct 2001 17:34 AR ar147-11.tex ar147-11.sgm ARv2(2001/05/10) P1: GJB Annu. Rev. Entomol. 2002. 47:299–330 Copyright c 2002 by Annual Reviews. All rights reserved ! HOW TO BE A FIG WASP George D. Weiblen University of Minnesota, Department of Plant Biology, St. Paul, Minnesota 55108; e-mail: [email protected] Key Words Agaonidae, coevolution, cospeciation, parasitism, pollination ■ Abstract In the two decades since Janzen described how to be a fig, more than 200 papers have appeared on fig wasps (Agaonidae) and their host plants (Ficus spp., Moraceae). Fig pollination is now widely regarded as a model system for the study of coevolved mutualism, and earlier reviews have focused on the evolution of resource conflicts between pollinating fig wasps, their hosts, and their parasites. Fig wasps have also been a focus of research on sex ratio evolution, the evolution of virulence, coevolu- tion, population genetics, host-parasitoid interactions, community ecology, historical biogeography, and conservation biology. This new synthesis of fig wasp research at- tempts to integrate recent contributions with the older literature and to promote research on diverse topics ranging from behavioral ecology to molecular evolution. CONTENTS INTRODUCING FIG WASPS ...........................................300 FIG WASP ECOLOGY .................................................302 Pollination Ecology ..................................................303 Host Specificity .....................................................304 Host Utilization .....................................................305
    [Show full text]
  • Drivers of Parasitoid Wasps' Community Composition in Cacao Agroforestry Practice in Bahia State, Brazil
    3 Drivers of Parasitoid Wasps' Community Composition in Cacao Agroforestry Practice in Bahia State, Brazil Carlos Frankl Sperber1, Celso Oliveira Azevedo2, Dalana Campos Muscardi3, Neucir Szinwelski3 and Sabrina Almeida1 1Laboratory of Orthoptera, Department of General Biology, Federal University of Viçosa, Viçosa, MG, 2Department of Biology, Federal University of Espírito Santo, Vitória, ES, 3Department of Entomolgy, Federal University of Viçosa, Viçosa, MG, Brazil 1. Introduction The world’s total forest area is just over 4 billion hectares, and five countries (the Russian Federation, Brazil, Canada, the United States of America and China) account for more than half of the total forest area (FAO, 2010). Apart from their high net primary production, the world’s forests harbour at least 50% of the world’s biodiversity, which underpins the ecosystem services they provide (MEA, 2005). Primarily the plants, through their physiological processes, such as evapotranspiration, essential to the ecosystem's energy budget, physically dissipate a substantial portion of the absorbed solar radiation (Bonan, 2002), and sequester carbon from the atmosphere. The carbon problem, considered a trend concern around the world due to global warming (Botkin et al, 2007), can be minimized through the carbon sequestration by forests. Forests have the potential of stabilizing, or at least contributing to the stabilization of, atmospheric carbon in the short term (20–50 years), thereby allowing time for the development of more long-lasting technological solutions that reduce carbon emission sources (Sedjo, 2001). Brazil's forests comprise 17 percent of the world's remaining forests, making it the third largest block of remaining frontier forest in the world and ranks first in plant biodiversity among frontier forest nations.
    [Show full text]
  • Indirect Mutualism: Ants Protect Fig Seeds and Pollen Dispersers from Parasites Ecological Entomology, 2015 K
    Ecological Entomology (2015), DOI: 10.1111/een.12215 Indirect mutualism: ants protect fig seeds and pollen dispersers from parasites K. CHARLOTTE JANDÉR1,2,3 1Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, U.S.A., 2Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden and 3Smithsonian Tropical Research Institute, Panama City, Panama Abstract. 1. Mutualisms are ubiquitous and ecologically important, but may be particularly vulnerable to exploitation by species outside of the mutualism owing to a combination of an attractive reward and potentially limited defence options. For some mutualisms, ants can offer dynamic and relatively selective protection against herbivores and parasites. 2. The mutualism between fgtreesandtheirpollinatingwasps,akeystonemutualism in tropical forests, is particularly well suited for ant protection because pollinators are protected inside hollow inforescences but parasites are exposed on the outside. 3. In the present study, it was shown that the presence of ants provides a ftness beneft for both the pollinators and the hosting fgtree.Thepresenceofants(i)reducedabortions of developing fgs, (ii) reduced herbivory of fgs, and (iii) reduced parasitic wasp loads, resulting in more pollinators and more seeds in ant-protected fgs. Even when taking costs such as ant predation on emerging pollinators into account, the total ftness increase of hosting ants was threefold for the tree and fvefold for the pollinators. 4. It was further shown that the seemingly most vulnerable parasitic wasps, of the genus Idarnes,haveaspecifcbehaviourthatallowsthemtoevadeantattackwhilecontinuing to oviposit. 5. Ants were present on 79% of surveyed Panamanian fgtrees.Togetherwithprevious studies from the Old World, the results found here imply that ants are both powerful and common protectors of the fgmutualismworldwide.
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]
  • A Comment on Iranian Fig Wasps (Chalcidoidea: Agaonidae, Pteromalidae)
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Linzer biol. Beitr. 43/2 1247-1252 19.12.2011 A comment on Iranian fig wasps (Chalcidoidea: Agaonidae, Pteromalidae) H. GHAHARI & S. VAN NOORT Abstract: A total of 5 species of fig wasps from 5 genera including, Blastophaga, Elisabethiella (Agaonidae), and Apocrypta, Sycophaga, Apocryptophagus (Pteromalidae) are recorded from Iran. Among the collected fig wasps, Apocryptophagus gigas (MAYR) is a new record for the Iranian fauna. Key words: Fig wasp, Agaonidae, Pteromalidae, Ficus, Iran. Introduction Fig wasps include the pollinating fig wasps (Chalcidoidea: Agaonidae) and a diverse assemblage of non-pollinating fig wasps (Chalcidoidea: Pteromalidae, Eurytomidae, Ormyridae) that are also associated with individual fig tree species (VAN NOORT & VAN HARTEN 2006). The relationship between pollinating fig wasps (Chalcidoidea, Agaoni- dae) and their host fig trees (Ficus L. 1753, Moraceae) is a classic example of an obligate mutualism, where neither partner can reproduce without the other, the wasp providing a pollination service and the fig tree in turn providing a breeding site for the pollinating wasp’s progeny (JANZEN 1979). The obligate mutualism between pollinating fig wasps and their host fig trees (Ficus, Moraceae) has historically been considered to be a one-to- one relationship (RAMIREZ 1970; WIEBES 1979; WIEBES & COMPTON 1990; VAN NOORT 2004), but increasing evidence is suggesting that the relationship is not as tight as has previously been supposed, with records of more than one species of pollinator associated with a single host and, conversely, of a single pollinator species associated with more than one host fig species (COMPTON & VAN NOORT 1992; WEST & HERRE 1994; WEST et al.
    [Show full text]
  • Williarn Ramírez B. Is a Parasite of the Honey Bees Apis Cerana Fa 1
    Rev. Biol. Trop., 35(2): 209-214, 1987. Biological Analogies Between Sorne fig-wasps (Hyrnenoptera: Agaonidae and Toryrnidae: Sycophaginae) and Varroa jacobsoni (Acari: Varroidae) Williarn RamírezB. Escuela de Fitotecnia, Facultad de Agronomía Universidad de Costa Rica (Received August 13, 1986) Abstract: Sorne fig wasps (Agaonidae and Torymidae: Sycophaginae) and the mite Va"oa jacobsoni exhibit analogous biological, morphological and behavioral characteristics that seem to have arisen through conver­ gent evolution. Both groups develop in enclosed dark environments (small territories) with both high internal humidity and carbon dioxide concentration. The males of both groups are haploid, exhibit neoteny, and have shorter developmental phases and Jife spans than females. They do not fight at mating nor feed as adults. They are also less numerous and less sclerotized than the females. Male and female Va"oa have enlarged peritremata and breathing tubes. Laminate breathing peritremal excrescenses or filaments are found in the Sycophaginae males (except /dames) . The presence of large peritremata and protrudingbreathing structures, among other analogies between sorne fi g wasps and the acarids, Varroa, seem to be adpatations to the humid environments in which they Jive during part of their Jife cycle. Organisms that develop in closed microenvironments (seragJia) with very similar and constant physical, biological and feeding conditions, seem to have very constant ontogenesis and also develop specific one-to-one relationships; that is, each host has a specific associate (parasite or symbiont). This type of association leads to radiative adaptations, synchronism of development for at least one of the associates and total dependen ce for at least one of the partners.
    [Show full text]
  • Breathing Adaptations of Males in Tig Gall Flowers (Hymenoptera: Agaonidae)
    -, - Rev. Biol. Trop., 44(3)/45(1): 277-282, 1996-1997 Breathing adaptations of males in tig gall flowers (Hymenoptera: Agaonidae) Williarn Rarnírez Escuela de Fitotecnia, Universidad de Costa Rica, San José, Costa Rica (Rec. 6-X-1995. Rev. 14-VI-1995. Acep. 7-11-1996) Abstract: Apocryptophagus and Sycophaga wasps (Sycophaginae, sensu Boucek 1989) develop in the syconia oC Sycocarpus and Sycomorus figs. The syconia are foil oC a liquid when the males eclose Crom their galIs. The males have terminal abdominal filamentsthat are extensions oC the peritremes. These filament� are used to anchor the poste­ rior part oC the abdomen inside the fig galls, and to maintain the abdominal spirac\es inside them. Earlier authors sus­ pected a breathing fonction. In this position sorne males spend up to 20 minutes probably using the air present inside the galls while they are searching for the dispersed female-containing galls for mating inside. By migrating from gall to gall, the malesare able to breath and displacethemselves along and around all the inundated syconial cavity without drowning. In this paper, new observations and structures associated with breathing are presented and iIlustrated with photographs. Apocryptophagus and Sycophaga males also possess very enlarged longitudinal tracheal truRks which probably function as air or gas reserves. Apocrypta fig wasps (Sycophaginae) also develop in syconia with inundated cavities and the males seem also to use for breathing the air present in the galls. The females oC these genera ec\ose from their galls after mating and after the liquid oC the syconial cavity has been absorbed.
    [Show full text]
  • A Contribution to the International Initiative For
    A CONTRIBUTION TO THE INTERNATIONAL INITIATIVE FOR THE CONSERVATION AND SUSTAINABLE USE OF POLLINATORS RAPID ASSESSMENT OF POLLINATORS’ STATUS JANUARY 2008 FAO TABLE OF CONTENTS EXECUTIVE SUMMARY 3 PREFACE 4 PART 1: ASSESSMENT 1. Monitoring the Status and Trends of Pollinators 5 2. Economic Valuation of Pollination 13 3. The Taxonomic Impediment to Pollinator Conservation 18 4. State of Ecological Knowledge of Pollination Services 21 5. Indigenous Knowledge of Pollination 27 PART II: ADAPTIVE MANAGEMENT 6. Promotion of Pollinator-Friendly Practices 30 PART III: CAPACITY BUILDING 7. Capacity Building in Conservation and Management of Pollination Services 39 PART IV: MAINSTREAMING 8. Mainstreaming Conservation and Management of Pollination Services 41 REFERENCES CITED 48 LIST OF ACRONYMS 52 EXECUTIVE SUMMARY Every continent has reports of pollinator declines in at least one region/country. The losses of pollination services have been well documented in many specific instances; what remains lacking are global assessments of changes in the distribution and levels of pollination services. As the recognized drivers of pollinator losses (changing land-use patterns, pesticide use, diseases, invasive species and climate change) are themselves changing in intensity, the global community is justified in taking note and determining the actions that will conserve pollinators. The insidious nature of the loss of ecosystem services- by slow erosion rather than cataclysmic events- demands careful monitoring. Pollinators provide essential services to humans. In several instances, impressive documentation of the market and non-market values derived from pollination services has been made. Despite this, the economic valuation of pollination services is in a relatively undeveloped stage, and has a number of challenges to overcome, many stemming from the gaps in knowledge and producer understanding of the actual contribution of pollination to crop production.
    [Show full text]
  • A Molecular Phylogeny of the Chalcidoidea (Hymenoptera)
    A Molecular Phylogeny of the Chalcidoidea (Hymenoptera) James B. Munro1, John M. Heraty1*, Roger A. Burks1, David Hawks1, Jason Mottern1, Astrid Cruaud1, Jean-Yves Rasplus2, Petr Jansta3 1 Department of Entomology, University of California Riverside, Riverside, California, United States of America, 2 INRA, Centre de Biologie et de Gestion des Populations, Montferrier-sur-Lez, France, 3 Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic Abstract Chalcidoidea (Hymenoptera) are extremely diverse with more than 23,000 species described and over 500,000 species estimated to exist. This is the first comprehensive phylogenetic analysis of the superfamily based on a molecular analysis of 18S and 28S ribosomal gene regions for 19 families, 72 subfamilies, 343 genera and 649 species. The 56 outgroups are comprised of Ceraphronoidea and most proctotrupomorph families, including Mymarommatidae. Data alignment and the impact of ambiguous regions are explored using a secondary structure analysis and automated (MAFFT) alignments of the core and pairing regions and regions of ambiguous alignment. Both likelihood and parsimony approaches are used to analyze the data. Overall there is no impact of alignment method, and few but substantial differences between likelihood and parsimony approaches. Monophyly of Chalcidoidea and a sister group relationship between Mymaridae and the remaining Chalcidoidea is strongly supported in all analyses. Either Mymarommatoidea or Diaprioidea are the sister group of Chalcidoidea depending on the analysis. Likelihood analyses place Rotoitidae as the sister group of the remaining Chalcidoidea after Mymaridae, whereas parsimony nests them within Chalcidoidea. Some traditional family groups are supported as monophyletic (Agaonidae, Eucharitidae, Encyrtidae, Eulophidae, Leucospidae, Mymaridae, Ormyridae, Signiphoridae, Tanaostigmatidae and Trichogrammatidae).
    [Show full text]
  • From Plant Exploitation to Mutualism
    From Plant Exploitation to Mutualism. Chapter 3 François Lieutier, Kalina Bermudez-Torres, James Cook, Marion O. Harris, Luc Legal, Aurélien Sallé, Bertrand Schatz, David Giron To cite this version: François Lieutier, Kalina Bermudez-Torres, James Cook, Marion O. Harris, Luc Legal, et al.. From Plant Exploitation to Mutualism. Chapter 3. Nicolas Sauvion, Denis Thiéry, Paul-André Calatayud. Insect-Plant Interactions in a Crop Protection Perspective, 81, 2017, Advances in Botanical Research, 978-0-12-803318-0. hal-02318872 HAL Id: hal-02318872 https://hal.archives-ouvertes.fr/hal-02318872 Submitted on 1 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. VOLUME EIGHTY ONE ADVANCES IN BOTANICAL RESEARCH Insect-Plant Interactions in a Crop Protection Perspective Volume Editor NICOLAS SAUVION INRA,UMR BGPI 0385 (INRA-CIRAD-SupAgro), Montpellier, France DENIS THIERY INRA, UMR SAVE 1065, Bordeaux Sciences Agro, Centre INRA de recherches de Bordeaux- Aquitaine, Institut des Sciences de la Vigne et du Vin, Villenave d’Ornon, France PAUL-ANDRE CALATAYUD IRD UMR EGCE (Evolution, Génome, Comportement, Ecologie), CNRS-IRD-Univ. Paris-Sud, IDEEV, Université Paris-Saclay, Gif-sur-Yvette, France; IRD c/o ICIPE, Nairobi, Kenya Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States 525 B Street, Suite 1800, San Diego, CA 92101-4495, United States First edition 2017 Copyright Ó 2017 Elsevier Ltd.
    [Show full text]