CONIDAE DE POLYNESIE Texte DAVID T OUITOU Et MICHEL BALLETON - Traduction ALAIN ROBIN

Total Page:16

File Type:pdf, Size:1020Kb

CONIDAE DE POLYNESIE Texte DAVID T OUITOU Et MICHEL BALLETON - Traduction ALAIN ROBIN CONIDAE DE POLYNESIE Texte DAVID T OUITOU et MICHEL BALLETON - Traduction ALAIN ROBIN Introduction Difficultés et originalités de la collecte des Introduction The various archipelagoes Les différents archipels. cônes en Polynésie Polynesia is made up of five archipelagoes very La Polynésie est composée de cinq Probablement dû à plusieurs facteurs, la different one to the other, with a total surface archipels très différents les uns des autres Polynésie possède assez peu d’endémisme matching roughly Europe, in the middleof the largest ocean in the world: the Pacific. They dont la superficie totale correspond à peu si l’on fait abstraction des îles include: près à celle de l’Europe, le tout au beau marquisiennes. Si vous passez des - the Society archipelago made up mainly milieu de l’océan le plus vaste du monde : vacances sur Tahiti et Moorea puis faites of high islands, with worldwide recognition le Pacifique. On retrouve donc : un saut dans les Tuamotu, vous ne islands such as Tahiti, Moorea and Bora Bora. - the archipelago of Tuamotus made up - l’archipel de la Société, composé ramènerez que des espèces classiques de mainly of atolls : Rangiroa, Manihi, principalement d’îles dites hautes, dans la zone Indo-Pacifique. Seule une excursion Mururoa, Fakarava or Tikehau. lequel on retrouve les îles mondialement dans l’archipel des Marquises vous - the Australs archipelago composed of connues comme Tahiti, Moorea et Bora permettra de récolter, si la météo est high islands, Rurutu and Tubuaï being the most known. Bora. clémente, les véritables trésors poly- - the archipelago of Gambier composed - l’archipel des Tuamotu, composé nésiens. of high islands, like Mangareva, and of small principalement d’atolls, comme islands like Taravai, Akamaru or Aukena. Rangiroa, Manihi, Mururoa, Fakarava ou Du fait de l’absence de plateau continental, - the Marquesas archipelago composed of high islands without lagoon, of which Tikehau. la zone de collecte est restreinte. Les fonds Nuku-Hiva and Hiva-Oa are the most known. - l’archipel des Australes, composé autour des îles sont abyssaux. Par exemple, d’îles hautes, Rurutu et Tubuaï étant les entre Tahiti et Moorea, distantes de Difficulties and originalities of the plus connues. seulement 6 miles, on tombe rapidement collection of cones in Polynesia - l’archipel des Gambier, composé dans des fonds de 3000m… Ceci entraîne Probably due to several factors, Polynesia has d’îles hautes, comme Mangareva, et de un autre problème, la fragilité de relatively little endemism if one disregards the petites îles comme Taravai, Akamaru ou l’écosystème. Une collecte excessive, une Marquesas islands. If you spend holidays on Tahiti Aukena. destruction physique du milieu ou une forte and Moorea and then fly to the Tuamotus, you will bring back only traditional species of the - l’archipel des Marquises, composé pollution locale peuvent réellement Indo-Pacific zone. Only a trip to the Marquesas d’îles hautes sans lagon, dont Nuku- entraîner la raréfaction rapide d’une ou archipelago will allow you to collect, weather Hiva et Hiva-Oa sont les plus connues. plusieurs espèces. permitting, the true Polynesian treasures. Because of the absence of a continental shelf, the collection area is restricted. Bottoms around the islands are abyssal. For example, between Tahiti and Moorea, only 6 miles distant, bottoms POLYNESIE FRANCAISE fall quickly to 3000m... This involves another problem, the weakness of the ecosystem. An excessive collection, a physical destruction of Iles Marquises the biotope or a strong local pollution can really trigger a quick rarefaction of one or more species. The geographical isolation of Polynesia in the Pacific, as well as the path of the oceanic currents (key factors for the dissemination of the species for transport of the planktonic larvae of molluscs) deprive us of many species present and well spread in the Indo-Pacific zone. Many species do not exist here, for example C. crocatus, C. ammiralis, C. monachus, C. magus Tuamotou or C. marmoreus, species however quite present in the Pacific Ocean. Moreover species known as rare are often untraceable, as it is the case of C. adamsonii, C. auratinus, C. aureus and C. auricomus for Iles de la Société example. Other species known as common or not very common are also collected only exceptionally in Polynesia, like C. arenatus, C. nussatella or C. generalis Another major concern has been the rarefaction of the shells since a few years. It seems that this Tropique du Capricorne phenomenon more precisely impacts the area Iles Gambier since 2003-2004. One observes a significant reduction in molluscs, especially on the barrier Iles Australes reef in the archipelago of the Society Islands. Tuamotus and the Marquesas seem so far to escape this phenomenon. This brutal rarefaction seems to touch mainly the cowries but also the cones (cowries being the food of many reef species of Conidae). XENOPHORA N° 111 27 L’isolement géographique de la Polynésie espèces, mais nous aurions dû trouver des As a real example, when I arrived in 2002, I dans le Pacifique, ainsi que le cheminement milliers de coquilles mortes. spent a lot of time on the various reefs of Moorea looking for cones, and I saw many common des courants océaniques (facteurs Hors cela n’a pas été le cas. Les coquillages cowries such as Cypraea lynx, C helvola, C essentiels à la dissémination des espèces de sable (Terebridae et Costellaridae par caputserpentis, C moneta, C carneola C isabella, par le transport des larves planctoniques exemple) semblent cependant moins C erosa, C fimbriata, to quote the most common. des mollusques) nous privent également de touchés par le phénomène. Mais alors, où Every morning spent roaming the reefs , I always found one or two beautiful Cypraea maculifera nombreuses espèces pourtant présentes et sont donc passés nos coquillages de récif ? recently dead. Today it sometimes happens to bien réparties dans la zone Indo-Pacifique. Ce phénomène est très préoccupant et me to come over some C obvelata, or one or two Ainsi de nombreuses espèces n’existent mérite que l’on s’y intéresse de très près. C moneta and seldom C caputserpentis on the pas ici, c’est le cas par exemple de Conus same spot of collection as before. The other species became exceptional... crocatus, Conus ammiralis, Conus Quels sont les cônes intéressants que l’on As far as cones are concerned, the obervation is monachus, Conus magus ou encore de peut tout de même espérer rencontrer ? the same, you have to acknowledge a clear Conus marmoreus, espèces pourtant bien Voilà ma liste : rarefaction of their number on the barrier reef. présentes dans l’océan Pacifique. Conus legatus, C. pertusus, C. magnificus, One could believe that a major cause (what could it be?) could have decimated the various species, De plus les espèces dites rares sont C. striatus, C. episcopatus, C. canonicus, but where are the thousands of dead shells? I souvent introuvables ou presque, c’est le C. sugillatus, C. moreleti, C. terebra, C. could not find them ...The sand shells (Terebridae cas de Conus adamsonii, Conus auratinus, acutangulus et C. retifer. La liste est donc and Costellaridae for example) seem less conus aureus et Conus auricomus par assez courte. impacted by this phenomenon. But then, where have our reef shells gone? This phenomenon is exemple. D’autres espèces dites communes very alarming and deserves a very close study. ou peu communes ne sont aussi récoltées De plus la rareté d’une espèce ici est un qu’exceptionnellement en Polynésie, concept qui varie énormément en fonction Which are the interesting cones that can to be comme Conus arenatus, Conus nussatella de l’île ou de l’archipel dans lequel on se found? Here is my list: Conus legatus, C. pertusus, C. magnificus, C. ou Conus generalis. trouve. Ainsi Conus catus et Conus retifer striatus, C. episcopatus, C. canonicus, C. sont très difficiles à récolter dans l’archipel sugillatus, C. moreleti, C. terebra, C. acutangulus Un autre souci majeur est la raréfaction des de la Société alors qu’ils sont plus communs and C. retifer The list is rather short. coquillages depuis quelques années. Il aux Tuamotu où Conus catus devient Moreover the scarcity of a species here is a semble que ce phénomène nous touche commum et Conus retifer peu commun. concept which varies enormously according to plus précisément depuis 2003-2004. On the island or the archipelago you consider. Thus observe une diminution significative des Ce qui nous amène à l’exception marquisienne. C. catus and C. retifer are very difficult to collect mollusques rencontrés, surtout au récif En effet, l’archipel des Marquises concentre in the Society archipelago whereas they are more common in the Tuamotus where C. catus barrière dans l’archipel de la Société. Les l’ensemble des espèces endémiques de becomes common and C. retifer not very Tuamotu et les Marquises semblent pour Polynésie, et les espèces non endémiques que common. l’instant échapper au phénomène. l’on y rencontre, sont souvent différentes (la Cette raréfaction brutale semble toucher plupart du temps, leur test est plus foncé). Which brings us to the Marquesas’ exception. Actually, the Marquesas archipelago concentrates principalement la famille des porcelaines Si vous avez la chance d’aller aux Marquises, all the endemic species of Polynesia, and the mais également celle des cônes (les vous pourrez trouver quelques espèces nonendemic species found there are often different porcelaines font partie de l’alimentation de locales comme Conus encaustus, C. (most of the time, their shell is darker). nombreuses espèces de Conidae récifales). marchionatus, C. gauguini, C. vautieri, C. If you are lucky enough to go to the Marquesas, you will find some local species such asC. unicolor, C. catus f. fuscoolivaceus, C.
Recommended publications
  • The Cone Collector N°23
    THE CONE COLLECTOR #23 October 2013 THE Note from CONE the Editor COLLECTOR Dear friends, Editor The Cone scene is moving fast, with new papers being pub- António Monteiro lished on a regular basis, many of them containing descrip- tions of new species or studies of complex groups of species that Layout have baffled us for many years. A couple of books are also in André Poremski the making and they should prove of great interest to anyone Contributors interested in Cones. David P. Berschauer Pierre Escoubas Our bulletin aims at keeping everybody informed of the latest William J. Fenzan developments in the area, keeping a record of newly published R. Michael Filmer taxa and presenting our readers a wide range of articles with Michel Jolivet much and often exciting information. As always, I thank our Bernardino Monteiro many friends who contribute with texts, photos, information, Leo G. Ros comments, etc., helping us to make each new number so inter- Benito José Muñoz Sánchez David Touitou esting and valuable. Allan Vargas Jordy Wendriks The 3rd International Cone Meeting is also on the move. Do Alessandro Zanzi remember to mark it in your diaries for September 2014 (defi- nite date still to be announced) and to plan your trip to Ma- drid. This new event will undoubtedly be a huge success, just like the two former meetings in Stuttgart and La Rochelle. You will enjoy it and of course your presence is indispensable! For now, enjoy the new issue of TCC and be sure to let us have your opinions, views, comments, criticism… and even praise, if you feel so inclined.
    [Show full text]
  • Cone Snail Case
    Cone Snail case Cone snail molecular phylogeny Cone snail video Snail Venom Yields Potent Painkiller, But Delivering The Drug Is Tricky Updated August 4, 201510:52 AM ETPublished August 3, 20153:30 PM ET http://www.npr.org/sections/health-shots/2015/08/03/428990755/snail-venom- yields-potent-painkiller-but-delivering-the-drug-is-tricky Magician’s cone (Conus magus) The magician’s cone, Conus magus, is a fish-hunting, or piscivorous cone snail found in the Western Pacific. It is so common in some of small Pacific islands, especially in the Philippines, that it is routinely sold in the market as food. The magician’s cone attacks its fish prey by sticking out its light yellowish proboscis, from which venom is pushed through a harpoon-like tooth. It hunts by the hook-and-line method and so will engulf its prey after it has been paralyzed. To learn more about hook-and-line hunters, click here. Scientists have analyzed the venom of the magician’s cone and one of its venom components was discovered to have a unique pharmacological activity by blocking a specific calcium channel (N-type). After this venom component was isolated and characterized in a laboratory, researchers realized that it had potential medical application. By blocking N-type calcium channels, the venom blocks channels that when open convey pain from nerve cells. If this is blocked, the brain cannot perceive these pain signals. It was developed as a pain management drug, and is now chemically synthesized and sold under the trade name Prialt. This drug is given to patients who have very severe pain that is not alliviated by morphine.
    [Show full text]
  • 22 April 2013 the Note from CONE the Editor COLLECTOR Dear Friends
    THE CONE COLLECTOR #22 April 2013 THE Note from CONE the Editor COLLECTOR Dear friends, Editor The project “The Cone Collector” is still under seven years old António Monteiro and yet when I look at all we have achieved so far I cannot help thinking that we have probably exceeded expectations. Layout André Poremski We started modestly – as becomes any serious project – back in Contributors October 2006, with our newsletter aimed at all those who are Carlos Afonso interested in studying or collecting Cones, from professional Jim Cootes biologists to amateur collectors. Today we can proudly display Remy Devorsine a total of twenty-four numbers of TCC, two hugely successful Sébastien Dutertre international meetings and a website that brings together an Günther Herndl unparalleled wealth of information on Cones. Joaquin M. Inchaustegui Bruce Livett As a matter of fact, after the uploading in our website (at www. Philippe Quiquandon Christopher Roux theconecollector.com ) of the important and vastly updated Manuel Jiménez Tenorio and augmented work by Mike Filmer’s involving taxonomy and Will van Damme nomenclature, we now have at the same address Paul Kersten’s Alessandro Zanzi extremely useful and well-known Checklist, enriched with new images and much more detailed information than before. This is the work of a team – the names of Manuel Jimenez Tenorio, Bill Fenzan, John Tucker, Gavin Malcolm, Mike Filmer, Paul Kersten and André Poremski readily come to my mind as front row collaborators of TCC, but all others who have contributed with articles, photos, opinions, suggestions and unfailing support deserve equal credit! The project belongs to all and can only survive with the continued support of all.
    [Show full text]
  • Conus Geographus, 70% Fatality Rate
    VENOMOUS CONE SNAILS (FISH - HUNTING SPECIES) Some kill people: Conus geographus, 70% fatality rate. 3 F2 4 different clades of fish-hunting cone snails harpoon tooth proboscis tip Lightning-strike cabal -Conotoxin - INCREASES Na channel conductance k-Conotoxin - Blocks K channels Others - ? k-PVIIA CRIONQKCFQHLDDCCSRKCNRFNKCV -PVIA EACYAOGTFCGIKOGLCCSEFCLPGVCFG Prey Capture Excitotoxic Neuromuscular 1 Shock 2 Block Very rapid, fish stunned Irreversible paralysis Lightning-strike cabal Lightning strike constellation -Conotoxin - INCREASES Na channel conductance k-Conotoxin - Blocks K channels -Conotoxin - Activates Na Channels Con-ikot-ikot - Inhibits Glu receptor desensitization Motor cabal Motor constellation w-Conotoxin - Blocks Ca channels a-Conotoxin - Competitive nicotinic receptor inhibitor y-Conotoxin - Nicotinic receptor channel blocker? m-Conotoxin - BLOCKS Na channel conductance Conus geographus • The Deadliest Snail in the Ocean Net Strategy Sensory Deadening Neuromuscular Block (Nirvana Cabal) (Motor Cabal) Nirvana Cabal Sedated, quiescent state Motor Cabal Neuromuscular transmission block Nirvana cabal Targeted to sensory circuitry: s-Conotoxin - 5HT3 receptor blocker * Conantokin - NMDA receptor blocker * “Sluggish” peptide “Sleeper” peptides “Weaponized” insulin Mature venom insulin is post-translationally modified Con-Ins G1 Highly expressed in venom gland Highly abundant in C. geographus venom Helena Hemami-Safavi Activity testing Adam Douglass SafaviSantosh-Hemami Karanth et al. 2015, Amnon PNAS Schlegel Venom insulin: proposed mechanism of action Adminstration of insulin causes glucose uptake from the blood into liver and muscle tissue Insulin overdose: rapid depletion of blood glucose leads to insufficient glucose supply for the brain: dizziness, nausea, coma and death Insulin shock, hypoglycemic shock Insulin as a murder weapon, the Sunny von Bülow case: American heiress and socialite. Her husband, Claus von Bülow, was convicted of attempting her murder by insulin overdose C.
    [Show full text]
  • The Hawaiian Species of Conus (Mollusca: Gastropoda)1
    The Hawaiian Species of Conus (Mollusca: Gastropoda) 1 ALAN J. KOHN2 IN THECOURSE OF a comparative ecological currents are factors which could plausibly study of gastropod mollus ks of the genus effect the isolation necessary for geographic Conus in Hawaii (Ko hn, 1959), some 2,400 speciation . specimens of 25 species were examined. Un­ Of the 33 species of Conus considered in certainty ofthe correct names to be applied to this paper to be valid constituents of the some of these species prompted the taxo­ Hawaiian fauna, about 20 occur in shallow nomic study reported here. Many workers water on marine benches and coral reefs and have contributed to the systematics of the in bays. Of these, only one species, C. ab­ genus Conus; nevertheless, both nomencla­ breviatusReeve, is considered to be endemic to torial and biological questions have persisted the Hawaiian archipelago . Less is known of concerning the correct names of a number of the species more characteristic of deeper water species that occur in the Hawaiian archi­ habitats. Some, known at present only from pelago, here considered to extend from Kure dredging? about the Hawaiian Islands, may (Ocean) Island (28.25° N. , 178.26° W.) to the in the future prove to occur elsewhere as island of Hawaii (20.00° N. , 155.30° W.). well, when adequate sampling methods are extended to other parts of the Indo-West FAUNAL AFFINITY Pacific region. As is characteristic of the marine fauna of ECOLOGY the Hawaiian Islands, the affinities of Conus are with the Indo-Pacific center of distribu­ Since the ecology of Conus has been dis­ tion .
    [Show full text]
  • Chemical Synthesis and NMR Solution Structure of Conotoxin GXIA from Conus Geographus
    marine drugs Article Chemical Synthesis and NMR Solution Structure of Conotoxin GXIA from Conus geographus David A. Armstrong 1, Ai-Hua Jin 2, Nayara Braga Emidio 2 , Richard J. Lewis 2 , Paul F. Alewood 2 and K. Johan Rosengren 1,* 1 School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; [email protected] 2 Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; [email protected] (A.-H.J.); [email protected] (N.B.E.); [email protected] (R.J.L.); [email protected] (P.F.A.) * Correspondence: [email protected] Abstract: Conotoxins are disulfide-rich peptides found in the venom of cone snails. Due to their exquisite potency and high selectivity for a wide range of voltage and ligand gated ion channels they are attractive drug leads in neuropharmacology. Recently, cone snails were found to have the capability to rapidly switch between venom types with different proteome profiles in response to predatory or defensive stimuli. A novel conotoxin, GXIA (original name G117), belonging to the I3-subfamily was identified as the major component of the predatory venom of piscivorous Conus geographus. Using 2D solution NMR spectroscopy techniques, we resolved the 3D structure for GXIA, the first structure reported for the I3-subfamily and framework XI family. The 32 amino acid peptide is comprised of eight cysteine residues with the resultant disulfide connectivity forming an ICK+1 motif. With a triple stranded β-sheet, the GXIA backbone shows striking similarity to Citation: Armstrong, D.A.; Jin, A.-H.; several tarantula toxins targeting the voltage sensor of voltage gated potassium and sodium channels.
    [Show full text]
  • An Experimental Analysis of the Escape Response of the Gastropod
    Pacific Science(1977), Vol. 31, No.1, p. 1-11 Printed in Great Britain An Experimental Analysis of the Escape Response of the Gastropod Strombus maculatus I LAURENCE H. FIELD 2 ABSTRACT: The escape response of Strombus maculatus is described in detail, including the apparent adaptive morphology of the foot, operculum, and eyestalks. The response is elicited by a chemical stimulus from two molluscivorous species of Conus and two gastropod-eating species of Cymatium but not from other pre­ datory species of these genera. Strombus habituated within three trials to a solution of "factor" from Conus pennaceus, but habituated only rarely, and then only after many trials, to contact with the live Conus. It was concluded that the eyes of S. maculatus are not used to see the Conus; however, eye removal significantly disrupted the orientation of the escape response, suggesting that the animal monitors some environmental cue such as polarized light. Tentacle removal appeared to interfere with escape response orientation but only to a variable extent. HERBIVOROUS GASTROPODS exhibit distinctive posterior end of the foot is thrust against the escape behavior from sea stars (Bauer 1913, substrate, causing the shell and head to lunge Feder and Christensen 1966) and predatory forward. Little additional work has been done gastropods (reviews by Kohn 1961, Robertson on strombid locomotion, and as Kohn and 1961, Kahn and Waters 1966, Gonor 1965, Waters (1966: 341) indicated, "the component 1966). 'Strombus has the remarkable ability to steps of the process have not been analyzed and escape from predators by rapid lunges, using the the functional morphology remains to be operculum to push against the substrate (Kohn studied in detail." Recently Berg (1972) and Waters 1966).
    [Show full text]
  • Some Economically Important Bivalves and Gastropods Found in the Island of Hadji Panglima Tahil, in the Province of Sulu, Philippines
    International Research Journal of Biological Sciences ___________________________________ ISSN 2278-3202 Vol. 2(7), 30-36, July (2013) Int. Res. J. Biological Sci. Some Economically Important Bivalves and Gastropods found in the Island of Hadji Panglima Tahil, in the province of Sulu, Philippines Sharon Rose M. Tabugo 1, Jocelyn O. Pattuinan 1, Nathanie Joy J. Sespene 1 and Aldren J. Jamasali 2 1Department of Biological Sciences,College of Science and Mathematics, MSU-Iligan Institute of Technology, Iligan City 2Mindanao State University- Jolo, SULU Available online at: www.isca.in Received 17th April 2013, revised 26 th April 2013, accepted 4th May 2013 Abstract The Philippines is a haven of a rich diversity of marine organisms. Unraveling this diversity had posed a tremendous challenge. The existing security threat in some areas of the archipelago had led to a dearth of information with regard to the diversity of organisms especially the islands located in the province of Sulu. Marine mollusc studies are still among those that are overseen by many researchers. To date, there is still a lack of basic information such as diversity and species checklist that make it impossible to assess the rate of population lost among existing marine molluscs. There is no published information on the actual number of marine shelled molluscan species in the area. This work assessed, described and identified some economically important molluscs in the island of Hadji Panglima Tahil, in the province of Sulu, Philippines. There were a total of 18 molluscs (marine bivalves & gastropods) species found and identified in the island. The molluscs served as food, ornaments and as source of livelihood by residents in the area, which is separated by sea from Jolo, the capital municipality of the province.
    [Show full text]
  • Radular Morphology of Conus (Gastropoda: Caenogastropoda: Conidae) from India
    Molluscan Research 27(3): 111–122 ISSN 1323-5818 http://www.mapress.com/mr/ Magnolia Press Radular morphology of Conus (Gastropoda: Caenogastropoda: Conidae) from India J. BENJAMIN FRANKLIN, 1, 3 S. ANTONY FERNANDO, 1 B. A. CHALKE, 2 K. S. KRISHNAN. 2, 3* 1.Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai-608 502, Cuddalore, Tamilnadu, India. 2.Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai-400 005, India. 3.National Centre for Biological Sciences, TIFR, Old Bellary Road, Bangalore-560 065, India.* Corresponding author E-mail: (K. S. Krishnan): [email protected]. Abstract Radular morphologies of 22 species of the genus Conus from Indian coastal waters were analyzed by optical and scanning elec- tron microscopy. Although the majority of species in the present study are vermivorous, all three feeding modes known to occur in the genus are represented. Specific radular-tooth structures consistently define feeding modes. Species showing simi- lar feeding modes also show fine differences in radular structures. We propose that these structures will be of value in species identification in cases of ambiguity in other characteristics. Examination of eight discrete radular-tooth components has allowed us to classify the studied species of Conus into three groups. We see much greater inter-specific differences amongst vermivorous than amongst molluscivorous and piscivorous species. We have used these differences to provide a formula for species identification. The radular teeth of Conus araneosus, C. augur, C. bayani, C. biliosus, C. hyaena, C. lentiginosus, C. loroisii, and C. malacanus are illustrated for the first time. In a few cases our study has also enabled the correction of some erroneous descriptions in the literature.
    [Show full text]
  • Conopeptide Production Through Biosustainable Snail Farming A
    Conopeptide Production through Biosustainable Snail Farming A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MOLECULAR BIOSCIENCES AND BIOENGINEERING DECEMBER 2012 By Jeffrey W. Milisen Thesis Committee: Jon-Paul Bingham (Chairperson) Harry Ako Cynthia Hunter Keywords: Conus striatus venom variability Student: Jeffrey W. Milisen Student ID#: 1702-1176 Degree: MS Field: Molecular Biosciences and Bioengineering Graduation Date: December 2012 Title: Conopeptide Production through Biosustainable Snail Farming We certify that we have read this Thesis and that, in our opinion, it is satisfactory in scope and quality as a Thesis for the degree of Master of Science in Molecular Biosciences and Bioengineering. Thesis Committee: Names Signatures Jon-Paul Bingham (Chair) ___________________________ Harry Ako ___________________________ Cynthia Hunter ___________________________ ii Acknowledgements The author would like to take a moment to appreciate a notable few out of the army of supporters who came out during this arduously long scholastic process without whom this work would never have been. First and foremost, a “thank you” is owed to the USDA TSTAR program whose funds kept the snails alive and solvents flowing through the RP-HPLC. Likewise, the infrastructure, teachings and financial support from the University of Hawai‘i and more specifically the College of Tropical Agriculture and Human Resources provided a fertile environment conducive to cutting edge science. Through the 3 years over which this study took place, I found myself indebted to two distinct groups of students from Dr. Bingham’s lab. Those who worked primarily in the biochemical laboratory saved countless weekend RP-HPLC runs from disaster through due diligence while patiently schooling me on my deficiencies in biochemical processes and techniques.
    [Show full text]
  • Cone Shell, (Conus Marmoreus) Rembrandt Van Rijn 1650, Etching, Engraving and Drypoint
    CONE SHELLS Cone Shell, (Conus marmoreus) Rembrandt van Rijn 1650, Etching, engraving and drypoint. Rijksmuseum, Amsterdam, Holland. Introduction ● Cone shell animals are a group of carnivorous marine gastropods. ● Worldwide there are about 300 species. There are about 80 species within Australian coastal waters. ● These animals can cause potentially lethal envenomation. ● They are prized by shell collectors the world over because of their intricate patterning and beauty, (see appendix 1 below). Description Their scientific taxonomy is: Kingdom: Animalia Phylum: Mollusca. Class: Gastropoda. Subclass: Orthogastropoda. Superorder: Caenogastropoda. Order: Sorbeoconcha. Suborder: Hypsogastropoda. Infraorder: Neogastropoda. Superfamily: Conoidea. Family: Conidae Conus textile (photo by Bruce Livett, University of Melbourne) Habitat ● The cone shell gastropods are nocturnal feeders, rarely being seen during daylight hours. ● During the day they generally lie buried beneath the sand. ● Australian species inhabit warm tropical and subtropical coastal waters. ● They are shallow water dwellers mainly inhabiting tidal reefs. ● They are especially seen around the Great Barrier Reef. ● Colder southern waters have smaller worm eating species which are not dangerous. Classification The cone shell species as a group are readily recognized by their conic shape. They may be classified according to their prey and size. The larger species prey on fish, while the intermediate sized species prey on molluscs and the smaller species on worms. The large species may grow up to 25 cm in length. 1. Piscivorous: Fish eaters, including: ● Conus striatus ● Conus geographus ● Conus magnus ● Conus catus ● Conus tulipa 2. Molluscivorous: Mollusk eaters, including: ● Conus textile ● Conus marmoreus ● Conus pennaceus 3. Vermivorous: Worm eaters. ● There are many including: C.imperialis/ C.eburneus / C.quercinus / C.lividus / C.tessulatus / C.ventricosus / C.parvatus / C.rattus / C.flavidus / C.generalis / C.arenatus Venom All species are venomous to varying degrees.
    [Show full text]
  • Conus Geographus Through Transcriptome Sequencing of Its Venom Duct Hao Hu1, Pradip K Bandyopadhyay2, Baldomero M Olivera2 and Mark Yandell1*
    Hu et al. BMC Genomics 2012, 13:284 http://www.biomedcentral.com/1471-2164/13/284 RESEARCH ARTICLE Open Access Elucidation of the molecular envenomation strategy of the cone snail Conus geographus through transcriptome sequencing of its venom duct Hao Hu1, Pradip K Bandyopadhyay2, Baldomero M Olivera2 and Mark Yandell1* Abstract Background: The fish-hunting cone snail, Conus geographus, is the deadliest snail on earth. In the absence of medical intervention, 70% of human stinging cases are fatal. Although, its venom is known to consist of a cocktail of small peptides targeting different ion-channels and receptors, the bulk of its venom constituents, their sites of manufacture, relative abundances and how they function collectively in envenomation has remained unknown. Results: We have used transcriptome sequencing to systematically elucidate the contents the C. geographus venom duct, dividing it into four segments in order to investigate each segment’s mRNA contents. Three different types of calcium channel (each targeted by unrelated, entirely distinct venom peptides) and at least two different nicotinic receptors appear to be targeted by the venom. Moreover, the most highly expressed venom component is not paralytic, but causes sensory disorientation and is expressed in a different segment of the venom duct from venoms believed to cause sensory disruption. We have also identified several new toxins of interest for pharmaceutical and neuroscience research. Conclusions: Conus geographus is believed to prey on fish hiding in reef crevices at night. Our data suggest that disorientation of prey is central to its envenomation strategy. Furthermore, venom expression profiles also suggest a sophisticated layering of venom-expression patterns within the venom duct, with disorientating and paralytic venoms expressed in different regions.
    [Show full text]