Asian Needle Ant

Total Page:16

File Type:pdf, Size:1020Kb

Asian Needle Ant Invasive Insects: Risks and Pathways Project ASIAN NEEDLE ANT UPDATED: JUNE 2019 Invasive insects are a huge biosecurity challenge. We profile some of the most harmful insect invaders overseas to show why we must keep them out of Australia. Species Asian needle ant / Pachycondyla chinensis. Also Brachyponera chinensis. Main impacts Displaces native ants from forests, leading to declines in plants that require ant dispersal of their seeds, as well as declines of ants. Has a painful sting and causes severe allergic reactions in some people. Native range China, Taiwan, North Korea, South Korea, Japan.1 Invasive range United States, Russia, Georgia.1 Main pathways of global spread Unknown, but there are records of interceptions on plant materials.1 ENVIRONMENTAL IMPACTS OVERSEAS In the United States the Asian needle WHAT TO LOOK OUT FOR ant has penetrated undisturbed native Asian needle ants are dark brown to black with orange-brown mandibles, legs, forests, including in national parks and antennae and stingers. The workers are 3.5 to 5.0 mm long. They are flexible about state parks, where it displaces a range of where they nest – in forests, they typically live in logs or under rocks and leaves; in native ants2. Surveys in North Carolina urban areas they can nest in potted plants, piles of mulch and underneath door mats. found it was twice as abundant as all Photo: Chris Hartley native ant species combined and the richness of native ant species was lower (by about a third) than in uninvaded the most important seed dispersing 2 HUMAN AND areas . The needle ant may achieve ant, the ‘dominant keystone’ winnow high abundance in part because of its ant (Aphaenogaster rudis), probably ECONOMIC IMPACTS 2,12 efficiency at hunting termites . In a both by killing its workers and reducing OVERSEAS laboratory study, the Asian needle ant the availability of termite prey2,3,12. The Asian needle ants have been identified 12 completely destroyed termite nests . dispersal abilities of the affected plants as a public health threat in the United This may reduce termite abundance in are limited, their germination rates are States because of their stings, incurred invaded areas, with consequences for low, and they are known to be sensitive in gardens and wooded areas1,5. Victims rates of decomposition. to disturbance2. Without the winnow ant, have described the sting as an intense About a third of the understorey plant their seeds are vulnerable to being eaten pain that fades and returns frequently species in eastern North American by rodents or failing to grow because over several hours, often in areas 4 5 forests rely on ants for seed dispersal, a of shading by their parent plants . The beyond the original sting site . Some service not provided by the Asian needle understorey of forests is changing as a suffer anaphylactic shock, as reported 3 ant2. In some sites in North Carolina, consequence . in medical papers from China, Japan, 1 the needle ant completely displaces South Korea and the United States , with symptoms including generalised INVASION WATCH: Asian needle ant Asian needle ant. Photo: © Matt Bertone urticaria, respiratory distress, wheezing In the United States this ant has been Journal of Allergy and Clinical Immunology. and hypotension with or without loss of recorded from Florida, Alabama, 107: 1095–1099. consciousness6. Some health problems Arkansas, New York State, Wisconsin 7. Berg R (1975): Myrmecochorous plants in attributed to fire ants in the United States and Washington State, indicating Australia and their dispersal by ants. Australian may be due to Asian needle ants, which wide climatic tolerances, which would Journal of Botany. 23: 475. have received far less publicity1. translate into a wide distribution in 8. Rice B, Westoby M (1986): Evidence against eastern and southern Australia. the hypothesis that ant-dispersed seeds reach nutrient-enriched microsites. Ecology. 67: AUSTRALIAN 1270–1274. CONCERNS SOURCES 9. Lengyel S, Gove AD, Latimer AM, Majer Australia has more ant-dispersed plants 1. Guénard B, Wetterer JK, MacGown JA (2018): JD, Dunn RR (2010): Convergent evolution of than any other region of the world7,8. Global and temporal spread of a taxonomically seed dispersal by ants, and phylogeny and challenging invasive ant, Brachyponera biogeography in flowering plants: a global Invasion by Asian needle ants could chinensis (Hymenoptera: Formicidae). Florida survey. Perspectives in Plant Ecology, Evolution cause substantial disruptions to habitats Entomologist. 101: 649–656. and Systematics. 12: 43–55. and plant declines and extinctions if 2. Guénard B, Dunn RR (2010): A new (old), 10. Berg R (1975): Myrmecochorous plants in seed-dispersing ants are displaced, invasive ant in the hardwood forests of eastern Australia and their dispersal by ants. Australian as has occurred in those parts of the North America and its potentially widespread Journal of Botany. 23: 475. United States that have been studied. impacts. (A. Traveset, editor) PLoS ONE. 5: 11. NSW Threatened Species Scientific The Australian plants dependent on e11614. NSW threatened species and 9 Committee (2019): ant dispersal occur in 78 genera and 3. Warren RJ, McMillan A, King JR, Chick L, ecological communities listed in the schedules include many ecologically important, Bradford MA (2015): Forest invader replaces of the Biodiversity Conservation Act, 2016. NSW iconic and rare species, including wattles, predation but not dispersal services by a Government Office of Environment & Heritage. pea bushes, boronias, guinea flowers keystone species. Biological Invasions. 17: Retrieved from https://www.environment.nsw. and fringed lilies, all of which could 3153–3162. gov.au/resources/threatenedspecies/nsw- be expected to become less common 4. Rodriguez-Cabal MA, Stuble KL, Guénard threatened-species-ecological-communities- if they lose ant dispersal services10. B, Dunn RR, Sanders NJ (2012): Disruption of listed-schedules-20190201.pdf. At special risk are all the threatened ant-seed dispersal mutualisms by the invasive 12. Bednar DM, Shik JZ, Silverman J (2013): plant species in genera that rely on ant Asian needle ant (Pachycondyla chinensis). Prey handling performance facilitates dispersal. Examples in NSW include Biological Invasions. 14: 557–565. competitive dominance of an invasive over Behavioral Ecology Bertya (4 species), Boronia (7 species), 5. Nelder MP, Paysen ES, Zungoli PA, Benson native keystone ant. 24: 1312–1319. Hibbertia (10 species) and Pomaderris (16 EP (2006): Emergence of the introduced ant species)11. The arrival of these ants could Pachycondyla chinensis (Formicidae: Ponerinae) also put some native ant species at risk. as a public health threat in the southeastern United States. Journal of Medical Entomology. ABOUT THIS PROJECT The Asian needle ant is unusual among 43: 1094–1098. The Invasive Insects: Risks and invasive ants in that it can dominate Pathways Project is a partnership 12 6. Kim S-S, Park H-S, Kim H-Y, Lee S-K, Nahm relatively undisturbed forests , so it can between Monash University and the Invasive D-H (2001): Anaphylaxis caused by the new be expected to invade national parks and Species Council. To find out more visit ant, Pachycondyla chinensis: Demonstration invasives.org.au/risks-and-pathways. nature reserves. of specific IgE and IgE-binding components. INVASION WATCH: Asian needle ant.
Recommended publications
  • Morphology of the Novel Basimandibular Gland in the Ant Genus Strumigenys (Hymenoptera, Formicidae)
    insects Article Morphology of the Novel Basimandibular Gland in the Ant Genus Strumigenys (Hymenoptera, Formicidae) Chu Wang 1,* , Michael Steenhuyse-Vandevelde 1, Chung-Chi Lin 2 and Johan Billen 1 1 Zoological Institute, University of Leuven, Naamsestraat 59, Box 2466, B-3000 Leuven, Belgium; [email protected] (M.S.-V.); [email protected] (J.B.) 2 Department of Biology, National Changhua University of Education, Changhua 50007, Taiwan; [email protected] * Correspondence: [email protected] Simple Summary: Ants form a diverse group of social insects that are characterized by an over- whelming variety of exocrine glands, that play a key function in the communication system and social organization of the colony. Our focus goes to the genus Strumigenys, that comprise small slow-moving ants that mainly prey on springtails. We discovered a novel gland inside the mandibles of all 22 investigated species, using light and electron microscopy. As the gland occurs close to the base of the mandibles, we name it ‘basimandibular gland’ according to the putative description given to this mandible region in a publication by the eminent British ant taxonomist Barry Bolton in 1999. The gland exists in both workers and queens and appeared most developed in the queens of Strumigenys mutica. These queens in addition to the basimandibular gland also have a cluster of gland cells near the tip of their mandibles. The queens of this species enter colonies of other Strumigenys species and parasitize on them. We expect that the peculiar development of these glands inside the mandibles of these S. mutica queens plays a role in this parasitic lifestyle, and hope that future research can shed more light on the biology of these ants.
    [Show full text]
  • Evaluation of the Chemical Defense Fluids of Macrotermes Carbonarius
    www.nature.com/scientificreports OPEN Evaluation of the chemical defense fuids of Macrotermes carbonarius and Globitermes sulphureus as possible household repellents and insecticides S. Appalasamy1,2*, M. H. Alia Diyana2, N. Arumugam2 & J. G. Boon3 The use of chemical insecticides has had many adverse efects. This study reports a novel perspective on the application of insect-based compounds to repel and eradicate other insects in a controlled environment. In this work, defense fuid was shown to be a repellent and insecticide against termites and cockroaches and was analyzed using gas chromatography-mass spectrometry (GC– MS). Globitermes sulphureus extract at 20 mg/ml showed the highest repellency for seven days against Macrotermes gilvus and for thirty days against Periplaneta americana. In terms of toxicity, G. sulphureus extract had a low LC50 compared to M. carbonarius extract against M. gilvus. Gas chromatography–mass spectrometry analysis of the M. carbonarius extract indicated the presence of six insecticidal and two repellent compounds in the extract, whereas the G. sulphureus extract contained fve insecticidal and three repellent compounds. The most obvious fnding was that G. sulphureus defense fuid had higher potential as a natural repellent and termiticide than the M. carbonarius extract. Both defense fuids can play a role as alternatives in the search for new, sustainable, natural repellents and termiticides. Our results demonstrate the potential use of termite defense fuid for pest management, providing repellent and insecticidal activities comparable to those of other green repellent and termiticidal commercial products. A termite infestation could be silent, but termites are known as destructive urban pests that cause structural damage by infesting wooden and timber structures, leading to economic loss.
    [Show full text]
  • James K. Wetterer
    James K. Wetterer Wilkes Honors College, Florida Atlantic University 5353 Parkside Drive, Jupiter, FL 33458 Phone: (561) 799-8648; FAX: (561) 799-8602; e-mail: [email protected] EDUCATION UNIVERSITY OF WASHINGTON, Seattle, WA, 9/83 - 8/88 Ph.D., Zoology: Ecology and Evolution; Advisor: Gordon H. Orians. MICHIGAN STATE UNIVERSITY, East Lansing, MI, 9/81 - 9/83 M.S., Zoology: Ecology; Advisors: Earl E. Werner and Donald J. Hall. CORNELL UNIVERSITY, Ithaca, NY, 9/76 - 5/79 A.B., Biology: Ecology and Systematics. UNIVERSITÉ DE PARIS III, France, 1/78 - 5/78 Semester abroad: courses in theater, literature, and history of art. WORK EXPERIENCE FLORIDA ATLANTIC UNIVERSITY, Wilkes Honors College 8/04 - present: Professor 7/98 - 7/04: Associate Professor Teaching: Biodiversity, Principles of Ecology, Behavioral Ecology, Human Ecology, Environmental Studies, Tropical Ecology, Field Biology, Life Science, and Scientific Writing 9/03 - 1/04 & 5/04 - 8/04: Fulbright Scholar; Ants of Trinidad and Tobago COLUMBIA UNIVERSITY, Department of Earth and Environmental Science 7/96 - 6/98: Assistant Professor Teaching: Community Ecology, Behavioral Ecology, and Tropical Ecology WHEATON COLLEGE, Department of Biology 8/94 - 6/96: Visiting Assistant Professor Teaching: General Ecology and Introductory Biology HARVARD UNIVERSITY, Museum of Comparative Zoology 8/91- 6/94: Post-doctoral Fellow; Behavior, ecology, and evolution of fungus-growing ants Advisors: Edward O. Wilson, Naomi Pierce, and Richard Lewontin 9/95 - 1/96: Teaching: Ethology PRINCETON UNIVERSITY, Department of Ecology and Evolutionary Biology 7/89 - 7/91: Research Associate; Ecology and evolution of leaf-cutting ants Advisor: Stephen Hubbell 1/91 - 5/91: Teaching: Tropical Ecology, Introduction to the Scientific Method VANDERBILT UNIVERSITY, Department of Psychology 9/88 - 7/89: Post-doctoral Fellow; Visual psychophysics of fish and horseshoe crabs Advisor: Maureen K.
    [Show full text]
  • Taxonomic Classification of Ants (Formicidae)
    bioRxiv preprint doi: https://doi.org/10.1101/407452; this version posted September 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Taxonomic Classification of Ants (Formicidae) from Images using Deep Learning Marijn J. A. Boer1 and Rutger A. Vos1;∗ 1 Endless Forms, Naturalis Biodiversity Center, Leiden, 2333 BA, Netherlands *[email protected] Abstract 1 The well-documented, species-rich, and diverse group of ants (Formicidae) are important 2 ecological bioindicators for species richness, ecosystem health, and biodiversity, but ant 3 species identification is complex and requires specific knowledge. In the past few years, 4 insect identification from images has seen increasing interest and success, with processing 5 speed improving and costs lowering. Here we propose deep learning (in the form of a 6 convolutional neural network (CNN)) to classify ants at species level using AntWeb 7 images. We used an Inception-ResNet-V2-based CNN to classify ant images, and three 8 shot types with 10,204 images for 97 species, in addition to a multi-view approach, for 9 training and testing the CNN while also testing a worker-only set and an AntWeb 10 protocol-deviant test set. Top 1 accuracy reached 62% - 81%, top 3 accuracy 80% - 92%, 11 and genus accuracy 79% - 95% on species classification for different shot type approaches. 12 The head shot type outperformed other shot type approaches.
    [Show full text]
  • Temporal Food Preference and Effectiveness of Selected Bait Products Against Pachycondyla Chinensis (Emery) (Hymenoptera: Formicidae)" (2013)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Clemson University: TigerPrints Clemson University TigerPrints All Theses Theses 5-2013 TEMPORAL OF OD PREFERENCE AND EFFECTIVENESS OF SELECTED BAIT PRODUCTS AGAINST PACHYCONDYLA CHINENSIS (EMERY) (HYMENOPTERA: FORMICIDAE) Ying Mo Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Entomology Commons Recommended Citation Mo, Ying, "TEMPORAL FOOD PREFERENCE AND EFFECTIVENESS OF SELECTED BAIT PRODUCTS AGAINST PACHYCONDYLA CHINENSIS (EMERY) (HYMENOPTERA: FORMICIDAE)" (2013). All Theses. 1650. https://tigerprints.clemson.edu/all_theses/1650 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. TEMPORAL FOOD PREFERENCE AND EFFECTIVENESS OF SELECTED BAIT PRODUCTS AGAINST PACHYCONDYLA CHINENSIS (EMERY) (HYMENOPTERA: FORMICIDAE) A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Entomology by Ying Mo May 2013 Accepted by: Dr. Patricia Zungoli, Committee Chair Dr. Eric Benson Dr. Patrick Gerard ABSTRACT Pachycondyla chinensis (Emery), commonly known as the Asian needle ant is a well-established invasive species in urban and woodland areas in South Carolina. Foraging ants are found around or under places such as sidewalks, flowerbeds, mulch, tree bases, stones, and logs where human outdoor activity takes place in urbanized area. It is not an aggressive ant, but it has a powerful sting that causes severe allergic reactions in some people.
    [Show full text]
  • Inbreeding Tolerance As a Pre‐Adapted Trait for Invasion Success
    Received: 23 March 2018 | Revised: 3 October 2018 | Accepted: 8 October 2018 DOI: 10.1111/mec.14910 ORIGINAL ARTICLE Inbreeding tolerance as a pre- adapted trait for invasion success in the invasive ant Brachyponera chinensis Pierre-André Eyer1 | Kenji Matsuura2 | Edward L. Vargo1 | Kazuya Kobayashi2 | Toshihisa Yashiro3 | Wataru Suehiro2 | Chihiro Himuro2 | Tomoyuki Yokoi4 | Benoit Guénard5 | Robert R. Dunn6,7,8 | Kazuki Tsuji9 1Department of Entomology, 2143 TAMU, Texas A&M University, College Station, Abstract Texas Identifying traits that facilitate species introductions and successful invasions of eco- 2 Laboratory of Insect Ecology, Graduate systems represents a key issue in ecology. Following their establishment into new School of Agriculture, Kyoto University, Kyoto, Japan environments, many non- native species exhibit phenotypic plasticity with post- 3Molecular Ecology, Evolution, and introduction changes in behaviour, morphology or life history traits that allow them Phylogenetics (MEEP) laboratory School to overcome the presumed loss of genetic diversity resulting in inbreeding and re- of Life and Environmental Sciences, The University of Sydney, Sydney, Australia duced adaptive potential. Here, we present a unique strategy in the invasive ant 4Laboratory of Conservation Brachyponera chinensis (Emery), in which inbreeding tolerance is a pre- adapted trait Ecology, University of Tsukuba, Tsukuba, Japan for invasion success, allowing this ant to cope with genetic depletion following a ge- 5School of Biological Sciences, The netic bottleneck. We report for the first time that inbreeding is not a consequence of University of Hong Kong, Hong Kong SAR, the founder effect following introduction, but it is due to mating between sister Hong Kong queens and their brothers that pre- exists in native populations which may have 6Department of Applied Ecology, North Carolina State University, Raleigh, North helped it circumvent the cost of invasion.
    [Show full text]
  • Hymenoptera: Formicidae) Authors: Benoit Guénard, James K
    Global and Temporal Spread of a Taxonomically Challenging Invasive ant, Brachyponera chinensis (Hymenoptera: Formicidae) Authors: Benoit Guénard, James K. Wetterer, and Joe A. MacGown Source: Florida Entomologist, 101(4) : 649-656 Published By: Florida Entomological Society URL: https://doi.org/10.1653/024.101.0402 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Florida-Entomologist on 10 Oct 2019 Terms of Use: https://bioone.org/terms-of-use Global and temporal spread of a taxonomically challenging invasive ant, Brachyponera chinensis (Hymenoptera: Formicidae) Benoit Guénard1,*, James K. Wetterer2, and Joe A. MacGown3 Abstract The Asian needle ant, Brachyponera chinensis (Emery) (Hymenoptera: Formicidae), is an East Asian species currently spreading through the eastern US. Although not aggressive, B. chinensis has a painful sting that can induce a severe allergic reaction in humans and disrupt native ecological com- munities.
    [Show full text]
  • Hymenoptera: Formicidae: Ponerinae)
    Molecular Phylogenetics and Taxonomic Revision of Ponerine Ants (Hymenoptera: Formicidae: Ponerinae) Item Type text; Electronic Dissertation Authors Schmidt, Chris Alan Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 10/10/2021 23:29:52 Link to Item http://hdl.handle.net/10150/194663 1 MOLECULAR PHYLOGENETICS AND TAXONOMIC REVISION OF PONERINE ANTS (HYMENOPTERA: FORMICIDAE: PONERINAE) by Chris A. Schmidt _____________________ A Dissertation Submitted to the Faculty of the GRADUATE INTERDISCIPLINARY PROGRAM IN INSECT SCIENCE In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2009 2 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Chris A. Schmidt entitled Molecular Phylogenetics and Taxonomic Revision of Ponerine Ants (Hymenoptera: Formicidae: Ponerinae) and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: 4/3/09 David Maddison _______________________________________________________________________ Date: 4/3/09 Judie Bronstein
    [Show full text]
  • Pachycondyla Sennaarensis (Formicidae: Ponerinae)
    Received: December 16, 2008 J Venom Anim Toxins incl Trop Dis. Accepted: March 4, 2009 V.15, n.3, p.509-526, 2009. Abstract published online: March 23, 2009 Original paper. Full paper published online: August 31, 2009 ISSN 1678-9199. BIOECOLOGY AND CHEMICAL DIVERSITY OF ABDOMINAL GLANDS IN THE IRANIAN SAMSUM ANT Pachycondyla sennaarensis (Formicidae: Ponerinae) Nikbakhtzadeh MR (1), Akbarzadeh K (2), Tirgari S (3) (1) Department of Medical Parasitology and Entomology, College of Medical Sciences, Tarbiat Modares University, Tehran, Iran; (2) Iranshahr Station of Public Health Research, Iranshahr, Iran; (3) Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran. ABSTRACT: The genus Pachycondyla is a large group of ants in the Ponerini tribe, known mostly from tropical and subtropical regions. Pachycondyla sennaarensis, the so-called Samsum ant in the Middle East, is distributed throughout the African tropics, Arabian Peninsula and Iran, where it is responsible for many cases of insect- induced dermal lesions and systemic reactions in humans. Populations of P. sennaarensis were studied in two regions of Iran and some aspects of their biology, ecology and medical importance are herein presented. Colonies of P. sennaarensis contain less than 850 workers that live in complicated underground galleries approximately one meter deep. Because of the harsh weather conditions of southern Iran, they can survive only in human disturbed habitats with higher humidity. Neither a real queen (without reproductive division of labor) nor a caste system is found in a P. sennaarensis colony. Observations indicated that P. sennaarensis is omnivorous, feeding on seeds of various plants, dead ants of other species, the larvae of dipterans and a few other invertebrates.
    [Show full text]
  • A Novel Intramandibular Gland in the Ant Brachyponera Sennaarensis
    1 Insectes Sociaux 2 A novel intramandibular gland in the ant 3 Brachyponera sennaarensis 4 Johan Billen 1 and Mohammed Al-Khalifa 2 5 1 Zoological Institute, University of Leuven, Naamsestraat 59, box 2466, B-3000 6 Leuven, Belgium. E-mail: [email protected] 7 2 Department of Zoology, College of Science, P.O. Box 2455, King Saud University, 8 Riyadh 11451 (Saudi Arabia). E-mail: [email protected] 9 Keywords: morphology, ultrastructure, intramandibular gland, Brachyponera 10 sennaarensis. 11 Running title: novel intramandibular gland in Brachyponera sennaarensis 12 Contact address: 13 Johan Billen, KU Leuven, Zoological Institute, Naamsestraat 59, box 2466, B-3000 14 Leuven, Belgium 15 Tel : (32) 16 323975 16 Fax : (32) 16 324575 17 E-mail: [email protected] 18 19 ABSTRACT 20 One of the diagnostic characters of the ponerine ant genus Brachyponera is the 21 presence of a mandibular pit near the insertion of the mandible. This paper describes 22 the morphology and ultrastructure of a novel intramandibular gland in B. sennaarensis, 23 that is associated with this pit. The gland appears as a conspicuous epithelium that 24 lines the invaginated cuticle of the pit, and that extends distally into the upper and lower 25 outer wall of the mandible. This novel ‘mandibular pit gland’ occurs in both workers and 26 queens, but is absent in males. At the ultrastructural level, the cytoplasm of the 27 cylindrical secretory cells is dominated by a well-developed smooth endoplasmic 28 reticulum. Apical microvilli and clear transcuticular channels allow secretion to reach 29 the mandibular surface.
    [Show full text]
  • 1803456116.Full.Pdf
    Correction ECOLOGY Correction for “Predicting future invaders and future invasions,” by Alice Fournier, Caterina Penone, Maria Grazia Pennino, and Franck Courchamp, which was first published March 29, 2019; 10.1073/pnas.1803456116 (Proc. Natl. Acad. Sci. U.S.A. 116, 7905–7910). The authors note that due to a technical error in the script that selected the species based on their amount of missing values, the species names did not match their trait values. This resulted in the wrong set of species to be evaluated for their invasive po- tential. This error affects the invasiveness probabilities and in- vasive identity in Table 1 and Fig. 1, and associated numbers in text; the cumulative map in Fig. 2C; and, in the SI Appendix, Figs. S1, S5, S8A, S9, and S11 and Tables S1, S3, S4, and S5. CORRECTION PNAS 2021 Vol. 118 No. 31 e2110631118 https://doi.org/10.1073/pnas.2110631118 | 1of3 Downloaded by guest on September 29, 2021 Table 1. Predicted invasiveness probabilities, or “invasion profiles,” of 19 invasive species from the IUCN red list (in boldface) and 18 potential future invaders identified with our model Species P ± % Superinvasive profiles Technomyrmex difficilis 0.87 0.02 100 Lasius neglectus 0.87 0.02 100 Solenopsis geminata 0.87 0.02 100 Solenopsis invicta 0.87 0.02 100 Technomyrmex albipes 0.87 0.02 100 Trichomyrmex destructor 0.87 0.02 100 Lepisiota canescens 0.83 0.01 100 Anoplolepis gracilipes 0.83 0.01 100 Linepithema humile 0.83 0.01 100 Monomorium pharaonis 0.83 0.01 100 Myrmica rubra 0.83 0.01 100 Nylanderia pubens 0.83
    [Show full text]
  • Asian Needle Ant | an INVASIVE STINGING ANT
    Forest Service U.S. DEPARTMENT OF AGRICULTURE Southern Research Station Science Update SRS-SU-143 February 2021 Asian Needle Ant | AN INVASIVE STINGING ANT Ants are among the most successful and widespread invasive species worldwide. One stinging invasive ant, the Asian needle ant (Brachyponera chinensis; fig. 1), is beginning to cause problems in North America after being relatively unnoticed for many years. The Asian needle ant’s native range includes China, Japan, and the Koreas. By the time it was first discovered in the U.S. in 1932, it was already present in at least three Southeastern States (Smith 1934). Over the past few decades, it has been documented in several U.S. States and in the Mediterranean region (fig. 2) (Guénard and others 2017, Janicki and others 2016), and it is capable of invading much of North America’s temperate forests (Bertelsmeier and others 2013). Unlike many invasive species that tend to colonize areas in the wake of natural or human disturbance, Asian needle ants are capable of invading undisturbed forest areas Figure 1—Asian needle ant (Brachyponera chinensis) worker. (Photo by where they nest under and within logs and other debris, under stones, and in leaf Chris Hartley, Missouri Botanical Garden; inset courtesy of Joe MacGown, litter (fig. 3). They can also occur near homes and businesses under mulch, pavers, Mississippi Entomological museum; bar is 1 mm for scale) landscape timbers, and other objects. The Federal Register defines invasive species as those that are nonnative (or alien) to the ecosystem under consideration and whose introduction causes, or is likely to cause, economic or environmental harm or harm to human health (EO 1999).
    [Show full text]