Late Pleistocene Marine Paleoecology and Zoogeography in Central California

Total Page:16

File Type:pdf, Size:1020Kb

Late Pleistocene Marine Paleoecology and Zoogeography in Central California Late Pleistocene I Marine Paleoecology · and Zoogeography in Central California GEOLOGICAL SURVEY PROFESSIONAL PAPER 523-C Late Pleistocene Marine Paleoecology and Zoogeography in Central California By W. 0. ADDICOTI CONTRIBUTIONS TO PALEONTOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 523-C Invertebrate assemblages analogous to the Aleutian molluscan province indicate a former cool-temperate marine climate UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1966 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 35 cents (paper cover) CONTENTS Page Page Abstract __________________________________________ _ C1 Paleoecology-Continued Introduction ______________________________________ _ 2 Substratum ___________________________________ _ C9 Acknowledgments __________________________________ _ 2 Marine hydroclimate ___________________________ _ 9 Earlier studies _____________________________________ _ 2 Regional marine paleoclimate _______________________ _ 11 Geologic setting ___________________________________ _ 3 Outer-coast biotope ____________________________ _ 11 Point Afio Nuevo localities ______________________ _ 3 Protected-coast biotope _________________________ _ 13 Santa Cruz localities ___________________________ _ 3 Zoogeography _____________________________________ _ 1.5 Faunal composition ________________________________ _ 4 Modern molluscan provinces ____________________ _ 16 Paleoecology ______________________________________ _ 6 Late Pleistocene molluscan provinces _____________ _ 16 Mode of formation _____________________________ _ 6 Discussion ____________________________________ _ 17 Probable size of late Pleistocene fauna ____________ _ 8 References ________________________________________ _ 19 BathymetrY--------------------~--------------- 8 ILLUSTRATIONS [Plates follow index] PLATE 1. Mollusks and coral. 2. Mollusks. 3. Mollusks and echinoid. 4. Mollusks and barnacle. Page FIGURE 1. Index map of Half Moon Bay-Monterey area, central California ________________________________ ----------- C3 2. Index map of the Pacific coast showing places referred to in text__________________________________________ 7 3. Average annual temperature at surface and at 100 feet in northeastern Pacific Ocean ____ -- ______ ------------ 10 4. Modern shallow-water molluscan provinces of the northeastern Pacific Ocean ____________________ ----------- 12 5. Modern and inferred late Pleistocene shallow-water marine climate _____________________________ ----------- 14 6. Late Pleistocene shallow-water molluscan provinces---------------------------------~-------------------- 15 TABLES Page T~BLE 1. Late Pleistocene larger invertebrates _____________________________________________________ -------------- C4 I 2. Pleistocene mollusks from Point Afio Nuevo and Santa Cruz, California, listed by Arnold _____ --------------- 4 3. Late Pleistocene Foraminiferida from Point Afio N euvo and Santa Cruz, California _____ -_------------------- 5 4. Late Pleistocene Ostracoda from Point Afio N euvo, Calif_ ___________________________ --------------------- 5 5. Mollusks not previously reported as fossiL ____________________________________________ ----------------- 6 6. Modern bathymetric ranges of selected sublittoral mollusks __________________________ -_------------------- 8 7. Mollusks from the southwestern Santa Cruz Mountains that are extralimitaL_______________________________ 9 8. Southern mollusks in the upper Pleistocene Millerton Formation__________________________________________ 14 9. Late Pleistocene invertebrates from three-quarters mile southwest of Bandon, Oreg _________ ----------------- 17 10. Mollusks from central California to Oregon open-coast assemblages that are now restricted to the Aleutian molluscan province________________________________________________________________________________________ 18 11. Pleistocene invertebrates from Willapa Bay, southwestern Washington_____________________________________ 19 III CONTRIBUTIONS TO PALEONTOLOGY LATE PLEISTOCENE MARINE PALEOECOLOGY AND ZOOGEOGRAPHY IN CENTRAL CALIFORNIA By w. 0. ADDICOTT ABSTRACT surface-water temperatures of about 7.5°0 are suggested for the Open-coast molluscan assemblages of late Pleistocene age from winter-early-spring period. This is ahout 4° lower than present­ northwestern Baja California to Oregon can be grouped to day temperatures. Yearly high temperatures during the represent three faunal provinces. T'he composition of these late-summer-early-fall period may have averaged about 13°C, units differs significantly from that of modern shallow-water about zo lower than present-day temperatures. T'he late zoogeographic provinces of the near-shore northeastern Pacific Pleistocene marine climate was cool temperate, whereas the Ocean area. Late Pleistocene invertebrates of the outer-coast modern climate is temperate. biotope from central California to Oregon have modern ranges The relatively cooler late Pleistocene hydroclimate indicated that overlap in the vicinity of southern British Columbia (lat by fossil assemblages from the lowes:t emergent terrace in the 48° N.). These assemblages represent the newly recognized coastal area of central California to Oregon differs markedly Nuevan molluscan province named for the relatively large open­ from that in the southern California area, where contemporane­ coast assemblages from Point Afio Nuevo, Calif. (lat 37.1 o N.). ous fossil assemblages commonly contain both southward- and To the south, molluscan assemblages broadly comparable to those northward-ranging extralimital species. GreateT climatic ex­ of the modern Oregonian province (lat 34.5°-48° N.) occur from tremes are required by the faunal distributions in southern Estero Bay (lat 35.5° N.) south to the Channel Islands (lat 34o California. They have been interpreted as occurring within N.). This faunal unit is referred to as the Cayucan province the framework of a generally warmer marine climate because (restricted) . South of the Channel Islands mixed assemblages of the sizeable subtropical to tropical molluscan element. The with both extralimital northern and southern mollusks charac­ outer-coast assemblages in the northe•rn part of the late Pleisto­ terize the open-coast biofacies of southern California and north­ cene Verdean province are bracketed, however, by assemblages western Baja California. This faunal unit has been named the of predominantly northern aspect in central California and in Verdean molluscan province (Valentine, 1961). northern Baja California, suggesting that the near-shore marine In the Santa Cruz-Point Afio Nuevo area of central California, climate of this part of the noDtheastern Pacific Ocean may have the open-coast late Pleistocene biofacies is represented by 101 been somewhat cooler than at present. The more southern po­ larger invertebrate taxa, principally mollusks. Also represented sition of isotherms during the late Pleistocene in central Cali­ are 27 taxa of Foraminiferida, the largest late Pleistocene fornia and Oregon refl~ts an overall cooling and relatively assemblage known from the Pacific coast, and 18 species of narrow range of temperature, perhaps due to proximity to gla­ ostracodes. 'The megafossils represent a fossil assemblage con­ cial melt water. The cool-water aspect of the northwestern Baja sisting of three principal elements: a rock-boring pelecypod· California assemblages may be related to heightened seasonal element, an epifaunal gastropod element, and a sandy infaunal upwelling as the presence of a few warm-water specimens seems pelecypod element. The mollusks inhabited a level-bottom inner to indicate a relatively broader range of temperatures than sublittoral biotope consisting of a fine sand substratum with now prevails in that area. The cool-water aspect of some of local rock protuberances. The fossil assemblages are compara­ the faunal units conflicts with relatively warm interglacial ble to Shelford's (1935) Macoma-Paphia and Str·ongylocentrotus­ paleotemperature estimates from zoogeographic •and oxygen A.ruobuccinum communities of the near-shore northeastern isotope studies of foraminifers from deep-water oceani·c cores, Pacific Ocean. Bathymetric data on living mollusks suggest although these are generally from more equatorial areas of maximum water depths of 15-20 fathoms; physical data suggest other oceans. shallower depths, about 10-14 fathoms. Locally the fossil as­ The only significant protected-coast assemblages from the semblages are preserved undisturbed. Usually they are re­ central California-Oregon area occur in the upper Pleistocene worked or transported, but evidence of significant mixing with Millerton Formation of Tomales Bay (lat 38.2° N.). These representatives of other communities is lacking. Zoogeographic assemblages contain extralimital southern species that sug­ criteria suggest relatively cooler surface-water temperatures gest a warm-temperate hydroclimate. T'he deposits are diffi­ during the late Pleistocene interval represented by these de­ cult to relate to the open coastal area and may not be con­ posit<;. T'here is a moderately large element of extralimital temporaneous.. Population of this protected biotope by species that today range no farther south than the latitude of warm-limited southern mollusks with long larval stages might Puget Sound ( 48o N.). The foraminifers, with one exception,
Recommended publications
  • GASTROPOD CARE SOP# = Moll3 PURPOSE: to Describe Methods Of
    GASTROPOD CARE SOP# = Moll3 PURPOSE: To describe methods of care for gastropods. POLICY: To provide optimum care for all animals. RESPONSIBILITY: Collector and user of the animals. If these are not the same person, the user takes over responsibility of the animals as soon as the animals have arrived on station. IDENTIFICATION: Common Name Scientific Name Identifying Characteristics Blue topsnail Calliostoma - Whorls are sculptured spirally with alternating ligatum light ridges and pinkish-brown furrows - Height reaches a little more than 2cm and is a bit greater than the width -There is no opening in the base of the shell near its center (umbilicus) Purple-ringed Calliostoma - Alternating whorls of orange and fluorescent topsnail annulatum purple make for spectacular colouration - The apex is sharply pointed - The foot is bright orange - They are often found amongst hydroids which are one of their food sources - These snails are up to 4cm across Leafy Ceratostoma - Spiral ridges on shell hornmouth foliatum - Three lengthwise frills - Frills vary, but are generally discontinuous and look unfinished - They reach a length of about 8cm Rough keyhole Diodora aspera - Likely to be found in the intertidal region limpet - Have a single apical aperture to allow water to exit - Reach a length of about 5 cm Limpet Lottia sp - This genus covers quite a few species of limpets, at least 4 of them are commonly found near BMSC - Different Lottia species vary greatly in appearance - See Eugene N. Kozloff’s book, “Seashore Life of the Northern Pacific Coast” for in depth descriptions of individual species Limpet Tectura sp. - This genus covers quite a few species of limpets, at least 6 of them are commonly found near BMSC - Different Tectura species vary greatly in appearance - See Eugene N.
    [Show full text]
  • Climatic Events During the Late Pleistocene and Holocene in the Upper Parana River: Correlation with NE Argentina and South-Central Brazil Joseh C
    Quaternary International 72 (2000) 73}85 Climatic events during the Late Pleistocene and Holocene in the Upper Parana River: Correlation with NE Argentina and South-Central Brazil JoseH C. Stevaux* Universidade Federal do Rio Grande do Sul - Instituto de GeocieL ncias - CECO, Universidade Estadual de Maringa& - Geography Department, 87020-900 Maringa& ,PR} Brazil Abstract Most Quaternary studies in Brazil are restricted to the Atlantic Coast and are mainly based on coastal morphology and sea level changes, whereas research on inland areas is largely unexplored. The study area lies along the ParanaH River, state of ParanaH , Brazil, at 223 43S latitude and 533 10W longitude, where the river is as yet undammed. Paleoclimatological data were obtained from 10 vibro cores and 15 motor auger holes. Sedimentological and pollen analyses plus TL and C dating were used to establish the following evolutionary history of Late Pleistocene and Holocene climates: First drier episode ?40,000}8000 BP First wetter episode 8000}3500 BP Second drier episode 3500}1500 BP Second (present) wet episode 1500 BP}Present Climatic intervals are in agreement with prior studies made in southern Brazil and in northeastern Argentina. ( 2000 Elsevier Science Ltd and INQUA. All rights reserved. 1. Introduction the excavation of Sete Quedas Falls on the ParanaH River (today the site of the Itaipu dam). Barthelness (1960, Geomorphological and paleoclimatological studies of 1961) de"ned a regional surface in the Guaira area de- the Upper ParanaH River Basin are scarce and regional in veloped at the end of the Pleistocene (Guaira Surface) nature. King (1956, pp. 157}159) de"ned "ve geomor- and correlated it with the Velhas Cycle.
    [Show full text]
  • Biodiversity Journal, 2021, 12 (1): 225–228
    Biodiversity Journal, 2021, 12 (1): 225–228 https://doi.org/10.31396/Biodiv.Jour.2021.12.4.225.228 First record of Calliostoma lusitanicum F. Nordsieck et García- Talavera, 1979 (Gastropoda Calliostomatiidae) in the Mediter- ranean Sea and remarks on C. alexandrinum Pallary, 1912 Andrea Nappo1*, Daniel Pellegrini2 & Attilio Pagli3 1Via S’Arrulloni 25, 09045 Quartu Sant’Elena, Cagliari, Italy; e-mail: [email protected] 2Via Colle Morello 2, 00038 Valmontone, Roma, Italy; e-mail: [email protected] 3Via Valdorme 55, 50053 Empoli, Firenze, Italy; e-mail: [email protected] *Corresponding author ABSTRACT In this work is reported for the first time the presence of Calliostoma lusitanicum F. Nordsieck et García-Talavera, 1979 (Gastropoda Calliostomatiidae) in the Mediterranean Sea. Present sightings widen the known distribution of this species, found in the Madeira Archipelago and Canary Islands. The relationship between C. lusitanicum and C. alexandrinum Pallary, 1912 is discussed. KEY WORDS Calliostoma lusitanicum; Calliostomatiidae; Mollusca; Mediterranean Sea. Received 08.11.2020; accepted 26.02.2021; published online 15.03.2021 INTRODUCTION as shell height. Photos are obtained with a Nikon D90 and processed with Adobe Photoshop CC®. According to WoRMS (accessed on ABBREVIATIONS AND ACRONYMS. The 14.10.2020), 291 re cent species are currently placed following abbreviations and acronyms are used: in the genus Calliostoma Swainson, 1840 (Gas- AN: Andrea Nappo collection (Quartu Sant’Elena, tropoda Calliostomatiidae) with a worldwide distri- Cagliari, Italy); AP: Attilio Pagli collection (Em- bution. In the Medi terranean Sea, according to the poli, Firenze, Italy); DP: Daniel Pellegrini collec- systematic list of the SIM (Italian Society of Mala- tion (Valmontone, Roma, Italy); MNHN: Muséum cology) (accessed 14.10.2020), 11 species are pres- National d’Histoire Naturelle (Paris, France); SIM: ent.
    [Show full text]
  • Sea Level and Global Ice Volumes from the Last Glacial Maximum to the Holocene
    Sea level and global ice volumes from the Last Glacial Maximum to the Holocene Kurt Lambecka,b,1, Hélène Roubya,b, Anthony Purcella, Yiying Sunc, and Malcolm Sambridgea aResearch School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia; bLaboratoire de Géologie de l’École Normale Supérieure, UMR 8538 du CNRS, 75231 Paris, France; and cDepartment of Earth Sciences, University of Hong Kong, Hong Kong, China This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2009. Contributed by Kurt Lambeck, September 12, 2014 (sent for review July 1, 2014; reviewed by Edouard Bard, Jerry X. Mitrovica, and Peter U. Clark) The major cause of sea-level change during ice ages is the exchange for the Holocene for which the direct measures of past sea level are of water between ice and ocean and the planet’s dynamic response relatively abundant, for example, exhibit differences both in phase to the changing surface load. Inversion of ∼1,000 observations for and in noise characteristics between the two data [compare, for the past 35,000 y from localities far from former ice margins has example, the Holocene parts of oxygen isotope records from the provided new constraints on the fluctuation of ice volume in this Pacific (9) and from two Red Sea cores (10)]. interval. Key results are: (i) a rapid final fall in global sea level of Past sea level is measured with respect to its present position ∼40 m in <2,000 y at the onset of the glacial maximum ∼30,000 y and contains information on both land movement and changes in before present (30 ka BP); (ii) a slow fall to −134 m from 29 to 21 ka ocean volume.
    [Show full text]
  • Science Journals
    Early human impacts and ecosystem reorganization in southern-central Africa Item Type Article; text Authors Thompson, J.C.; Wright, D.K.; Ivory, S.J.; Choi, J.-H.; Nightingale, S.; Mackay, A.; Schilt, F.; Otárola-Castillo, E.; Mercader, J.; Forman, S.L.; Pietsch, T.; Cohen, A.S.; Arrowsmith, J.R.; Welling, M.; Davis, J.; Schiery, B.; Kaliba, P.; Malijani, O.; Blome, M.W.; O'Driscoll, C.A.; Mentzer, S.M.; Miller, C.; Heo, S.; Choi, J.; Tembo, J.; Mapemba, F.; Simengwa, D.; Gomani-Chindebvu, E. Citation Thompson, J. C., Wright, D. K., Ivory, S. J., Choi, J.-H., Nightingale, S., Mackay, A., Schilt, F., Otárola-Castillo, E., Mercader, J., Forman, S. L., Pietsch, T., Cohen, A. S., Arrowsmith, J. R., Welling, M., Davis, J., Schiery, B., Kaliba, P., Malijani, O., Blome, M. W., … Gomani-Chindebvu, E. (2021). Early human impacts and ecosystem reorganization in southern-central Africa. Science Advances, 7(19). DOI 10.1126/sciadv.abf9776 Publisher American Association for the Advancement of Science Journal Science Advances Rights Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S.Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). Download date 01/10/2021 20:13:45 Item License https://creativecommons.org/licenses/by-nc/4.0/ Version Final published version Link to Item http://hdl.handle.net/10150/660624 SCIENCE ADVANCES | RESEARCH ARTICLE ANTHROPOLOGY Copyright © 2021 The Authors, some rights reserved; Early human impacts and ecosystem reorganization exclusive licensee American Association in southern-central Africa for the Advancement Jessica C.
    [Show full text]
  • 554 Journal of Paleontology, V. 66, No. 4, 1992 Figure 9
    554 JOURNAL OF PALEONTOLOGY, V. 66, NO. 4, 1992 FIGURE 9—Crepidula adunca encrusting living Calliostoma ligatum, Friday Harbor, Washington, shell height of C. ligatum, 21.0 mm, UCMP Type No. 39688. 1, two C. adunca conforming to upper whorls of C. ligatum; 2, C. adunca permanent scar on last whorl of hermitted C. ligatum, shell height, 22.0 mm, UCMP Type No. 39689. 1979). Other species also compete for, or inhabit, gastropod (Hyden and Forest, 1980). However, the shell-encrusting and shells (McLean, 1983; Vermeij, 1987; Walker, 1990). Because boring organisms that occur with hermit crabs have a long fossil empty shells may be rare, post-Triassic gastropod fossil assem- record, dating from the middle Jurassic. Determining the extent blages have most likely been taphonomically affected by sec- of hermitted shells in fossil assemblages should be the first line ondary occupants of shells. Because hermit crab modification of inquiry before paleoecological or evolutionary assessments of gastropod assemblages is great, Shimoyama et al. (1979) sug- are made. gested that the bivalve fossil record provided a more accurate Pagurized shells can be recognized by the settlement of bionts paleoecological record than gastropod assemblages. However, in specific locations on fossil shells (Palmer and Hancock, 1973; gastropod fossil assemblages provide valuable paleoecological Walker, 1988b, 1989, this paper). Recent and fossil biont pat- information for the history of the hermit crab. terns appear to be conservative from the Oligocene to the pres- Hermit crab body fossils are rare. Therefore, it is important ent. That is, taphonomically preserved biont patterns (e.g., east to study their other fossil record: that of the epi- and endobionts Gulf Coast examples) are similar to Recent pagurized shells.
    [Show full text]
  • Appendix 3 Marine Spcies Lists
    Appendix 3 Marine Species Lists with Abundance and Habitat Notes for Provincial Helliwell Park Marine Species at “Wall” at Flora Islet and Reef Marine Species at Norris Rocks Marine Species at Toby Islet Reef Marine Species at Maude Reef, Lambert Channel Habitats and Notes of Marine Species of Helliwell Provincial Park Helliwell Provincial Park Ecosystem Based Plan – March 2001 Marine Species at wall at Flora Islet and Reef Common Name Latin Name Abundance Notes Sponges Cloud sponge Aphrocallistes vastus Abundant, only local site occurance Numerous, only local site where Chimney sponge, Boot sponge Rhabdocalyptus dawsoni numerous Numerous, only local site where Chimney sponge, Boot sponge Staurocalyptus dowlingi numerous Scallop sponges Myxilla, Mycale Orange ball sponge Tethya californiana Fairly numerous Aggregated vase sponge Polymastia pacifica One sighting Hydroids Sea Fir Abietinaria sp. Corals Orange sea pen Ptilosarcus gurneyi Numerous Orange cup coral Balanophyllia elegans Abundant Zoanthids Epizoanthus scotinus Numerous Anemones Short plumose anemone Metridium senile Fairly numerous Giant plumose anemone Metridium gigantium Fairly numerous Aggregate green anemone Anthopleura elegantissima Abundant Tube-dwelling anemone Pachycerianthus fimbriatus Abundant Fairly numerous, only local site other Crimson anemone Cribrinopsis fernaldi than Toby Islet Swimming anemone Stomphia sp. Fairly numerous Jellyfish Water jellyfish Aequoria victoria Moon jellyfish Aurelia aurita Lion's mane jellyfish Cyanea capillata Particuilarly abundant
    [Show full text]
  • The Biology of Seashores - Image Bank Guide All Images and Text ©2006 Biomedia ASSOCIATES
    The Biology of Seashores - Image Bank Guide All Images And Text ©2006 BioMEDIA ASSOCIATES Shore Types Low tide, sandy beach, clam diggers. Knowing the Low tide, rocky shore, sandstone shelves ,The time and extent of low tides is important for people amount of beach exposed at low tide depends both on who collect intertidal organisms for food. the level the tide will reach, and on the gradient of the beach. Low tide, Salt Point, CA, mixed sandstone and hard Low tide, granite boulders, The geology of intertidal rock boulders. A rocky beach at low tide. Rocks in the areas varies widely. Here, vertical faces of exposure background are about 15 ft. (4 meters) high. are mixed with gentle slopes, providing much variation in rocky intertidal habitat. Split frame, showing low tide and high tide from same view, Salt Point, California. Identical views Low tide, muddy bay, Bodega Bay, California. of a rocky intertidal area at a moderate low tide (left) Bays protected from winds, currents, and waves tend and moderate high tide (right). Tidal variation between to be shallow and muddy as sediments from rivers these two times was about 9 feet (2.7 m). accumulate in the basin. The receding tide leaves mudflats. High tide, Salt Point, mixed sandstone and hard rock boulders. Same beach as previous two slides, Low tide, muddy bay. In some bays, low tides expose note the absence of exposed algae on the rocks. vast areas of mudflats. The sea may recede several kilometers from the shoreline of high tide Tides Low tide, sandy beach.
    [Show full text]
  • The Easternmost Occurrence of Mammut Pacificus (Proboscidea: Mammutidae), Based on a Partial Skull from Eastern Montana, USA
    The easternmost occurrence of Mammut pacificus (Proboscidea: Mammutidae), based on a partial skull from eastern Montana, USA Andrew T. McDonald1, Amy L. Atwater2, Alton C. Dooley Jr1 and Charlotte J.H. Hohman2,3 1 Western Science Center, Hemet, CA, United States of America 2 Museum of the Rockies, Montana State University, Bozeman, MT, United States of America 3 Department of Earth Sciences, Montana State University, Bozeman, MT, United States of America ABSTRACT Mammut pacificus is a recently described species of mastodon from the Pleistocene of California and Idaho. We report the easternmost occurrence of this taxon based upon the palate with right and left M3 of an adult male from the Irvingtonian of eastern Montana. The undamaged right M3 exhibits the extreme narrowness that characterizes M. pacificus rather than M. americanum. The Montana specimen dates to an interglacial interval between pre-Illinoian and Illinoian glaciation, perhaps indicating that M. pacificus was extirpated in the region due to habitat shifts associated with glacial encroachment. Subjects Biogeography, Evolutionary Studies, Paleontology, Zoology Keywords Mammut pacificus, Mammutidae, Montana, Irvingtonian, Pleistocene INTRODUCTION Submitted 7 May 2020 The recent recognition of the Pacific mastodon (Mammut pacificus (Dooley Jr et al., 2019)) Accepted 3 September 2020 as a new species distinct from and contemporaneous with the American mastodon Published 16 November 2020 (M. americanum) revealed an unrealized complexity in North American mammutid Corresponding author evolution during the Pleistocene. Dooley Jr et al. (2019) distinguished M. pacificus from Andrew T. McDonald, [email protected] M. americanum by a suite of dental and skeletal features: (1) upper third molars (M3) Academic editor and lower third molars (m3) much narrower relative to length in M.
    [Show full text]
  • Feeding Mechanisms in the Gastropod Crepidula Fecunda*
    MARINE ECOLOGY PROGRESS SERIES Vol. 234: 171–181, 2002 Published June 3 Mar Ecol Prog Ser Feeding mechanisms in the gastropod Crepidula fecunda* O. R. Chaparro1,**, R. J. Thompson2, S. V. Pereda1 1Instituto de Biología Marina ‘Dr. J. Winter’, Universidad Austral de Chile, Casilla 567, Valdivia, Chile 2Ocean Sciences Centre, Memorial University of Newfoundland, St. John’s, Newfoundland A1C 5S7, Canada ABSTRACT: The gastropod Crepidula fecunda feeds in 2 distinct ways: grazing of the substrate and suspension feeding. The taenioglossan radula plays a role in both processes. In the former, the radula rasps the surface, and the material is immediately ingested. This means of food acquisition is mainly used by motile individuals, i.e. juveniles and adult males. Adult females are sessile, and are only able to rasp the area beneath the head region, severely limiting the amount of food acquired. Females brooding egg capsules are even more restricted, since the area normally grazed is occupied by the capsule mass. The second mode of feeding, suspension feeding, is exhibited by late juveniles and all adults. Suspended particles are captured in mucous nets on the ventral and dorsal surfaces of the single gill lamella. The entrained particles, loosely bound in mucus, are transported by ciliary action to the distal tips of the filaments, which are bulbous. The material accumulates in 2 mucous strings which traverse the ventral surfaces of the filaments at right angles to the filaments along the entire length of the distal margin of the gill. These strings coalesce into a single, thicker string, which is transferred at intervals to a food canal in the neck, where it is twisted into a compact, mucous cord by a spiral action of the neck canal musculature.
    [Show full text]
  • The Diet and Predator-Prey Relationships of the Sea Star Pycnopodia Helianthoides (Brandt) from a Central California Kelp Forest
    THE DIET AND PREDATOR-PREY RELATIONSHIPS OF THE SEA STAR PYCNOPODIA HELIANTHOIDES (BRANDT) FROM A CENTRAL CALIFORNIA KELP FOREST A Thesis Presented to The Faculty of Moss Landing Marine Laboratories San Jose State University In Partial Fulfillment of the Requirements for the Degree Master of Arts by Timothy John Herrlinger December 1983 TABLE OF CONTENTS Acknowledgments iv Abstract vi List of Tables viii List of Figures ix INTRODUCTION 1 MATERIALS AND METHODS Site Description 4 Diet 5 Prey Densities and Defensive Responses 8 Prey-Size Selection 9 Prey Handling Times 9 Prey Adhesion 9 Tethering of Calliostoma ligatum 10 Microhabitat Distribution of Prey 12 OBSERVATIONS AND RESULTS Diet 14 Prey Densities 16 Prey Defensive Responses 17 Prey-Size Selection 18 Prey Handling Times 18 Prey Adhesion 19 Tethering of Calliostoma ligatum 19 Microhabitat Distribution of Prey 20 DISCUSSION Diet 21 Prey Densities 24 Prey Defensive Responses 25 Prey-Size Selection 27 Prey Handling Times 27 Prey Adhesion 28 Tethering of Calliostoma ligatum and Prey Refugia 29 Microhabitat Distribution of Prey 32 Chemoreception vs. a Chemotactile Response 36 Foraging Strategy 38 LITERATURE CITED 41 TABLES 48 FIGURES 56 iii ACKNOWLEDGMENTS My span at Moss Landing Marine Laboratories has been a wonderful experience. So many people have contributed in one way or another to the outcome. My diving buddies perse- vered through a lot and I cherish our camaraderie: Todd Anderson, Joel Thompson, Allan Fukuyama, Val Breda, John Heine, Mike Denega, Bruce Welden, Becky Herrlinger, Al Solonsky, Ellen Faurot, Gilbert Van Dykhuizen, Ralph Larson, Guy Hoelzer, Mickey Singer, and Jerry Kashiwada. Kevin Lohman and Richard Reaves spent many hours repairing com­ puter programs for me.
    [Show full text]
  • Kelp Forest Monitoring Handbook — Volume 1: Sampling Protocol
    KELP FOREST MONITORING HANDBOOK VOLUME 1: SAMPLING PROTOCOL CHANNEL ISLANDS NATIONAL PARK KELP FOREST MONITORING HANDBOOK VOLUME 1: SAMPLING PROTOCOL Channel Islands National Park Gary E. Davis David J. Kushner Jennifer M. Mondragon Jeff E. Mondragon Derek Lerma Daniel V. Richards National Park Service Channel Islands National Park 1901 Spinnaker Drive Ventura, California 93001 November 1997 TABLE OF CONTENTS INTRODUCTION .....................................................................................................1 MONITORING DESIGN CONSIDERATIONS ......................................................... Species Selection ...........................................................................................2 Site Selection .................................................................................................3 Sampling Technique Selection .......................................................................3 SAMPLING METHOD PROTOCOL......................................................................... General Information .......................................................................................8 1 m Quadrats ..................................................................................................9 5 m Quadrats ..................................................................................................11 Band Transects ...............................................................................................13 Random Point Contacts ..................................................................................15
    [Show full text]