Quantum technologies: Building a

Mher Ghulinyan Functional Materials & Photonic Systems

Luciano Serafini Data and Knowledge Management This manifesto is a call to launch an ambitious European initiative in quantum technologies, needed to ensure Europe’s leading role in a technological revolution now under way.

Europe needs strategic investment now in order to lead the second quantum revolution. Building upon its scientific excellence, Europe has the opportunity to create a competitive industry for long-term http://qurope.eu/manifesto prosperity and security.

M. Ghulinyan M. Ghulinyan Outline

 Why “quantum”?  Bit vs  Logic gates  optical C-NOT quantum gate  Reconfigurability of a Q-circuit  Quantum simulators  the project INQUEST o Hardware – Quantum simulator o Software – Quantum algorithms

M. Ghulinyan Why Quantum and not Classical?

Classical computation – Quantum computation – data unit is bit data unit is qubit

1 0 1 0

Valid output Valid output 1 or 0 1 0

M. Ghulinyan Qubit – a two-state quantum-mechanical system

• Polarization of a single Quantum computation – photon ( ↑ up or ↓ down) data unit is qubit

Superposition of two states: 1 0 Probability 2 2 0 → a ; 1 → b Valid output

store much more information 1 0 than just 1 or 0, because they can exist in any superposition of these values.

M. Ghulinyan Why Quantum and not Classical?

Valid output Valid output 0 0

1 1

M. Ghulinyan Qubit – a two-state quantum-mechanical system

Classical Bit → One out of 2N A 3-bit register: possible permutations Input Output 100 011

M. Ghulinyan CLASSICAL vs QUANTUM computation

By 2040 we will not have the capability to power all of the machines around the globe (Semiconductor Industry Association report).

Industry is focused on finding ways to make computing more energy efficient, but classical computers are limited by the minimum amount of energy it takes them to perform one operation.

This energy limit is named after Rolf Landauer (IBM Research), who in 1961 found that in any computer, each single bit operation must use an absolute minimum amount of energy. 0.0178139 @ room temperature it is 18 meV or 2.88 x10-6 fJ

Necessity in turning to radically different ways of computing, such as , to find ways to cut energy use.

M. Ghulinyan Qubit – a two-state quantum-mechanical system

Classical Bit → One out of 2N A 3-bit register: possible permutations Input Output 100 011 Qubit → All of possible 2N permutations A 3-Qubit register: are processed all at the same time! Input Output 000 000 001 001 010 010 100 100 Exponential speedup 110 110 101 101 101 101 111 111

M. Ghulinyan CLASSICAL vs QUANTUM computation

n-bit Boolean function 0 or 1 a1

0 or 1 a2 0 or 1 f (a1, a2, …, an) b

0 or 1 an single-valued function on n discrete inputs

• given an arbitrarily large function f, is it possible to identify a universal set of simple functions – called GATEs – that can be used repeatedly in sequence to simulate f on its inputs

• each gate is formed by small number of inputs from a1, …, an

M. Ghulinyan CLASSICAL vs QUANTUM computation

+ +

simulate arbitrary Boolean functions using the AND, OR, and NOT gates only

a1 Y

a2

the number of NAND (2-bit) gates needed to simulate a function with n inputs scales exponentially in n

M. Ghulinyan CLASSICAL vs QUANTUM computation

HARDWARE

a1 a2 a1 NAND a2 5 V 0 0 1 Resistance 0 1 1 1 0 1 1 1 0 Y

a1

a1 Transistor Y

a2 a2

NAND logic gate 0 V

M. Ghulinyan CLASSICAL vs QUANTUM computation

HARDWARE

a1 a2 a1 NAND a2 5 V 0 0 1 Resistance 0 1 1 1 0 1 1 1 0 Y

a1

a1 Transistor Y

a2 a2

NAND logic gate 0 V

M. Ghulinyan CLASSICAL vs QUANTUM computation

HARDWARE

a1 a2 a1 NAND a2 5 V 0 0 1 Resistance 0 1 1 1 0 1 1 1 0 Y

a1

a1 Transistor Y

a2 a2

NAND logic gate 0 V

M. Ghulinyan CLASSICAL vs QUANTUM computation

HARDWARE

a1 a2 a1 NAND a2 5 V 0 0 1 Resistance 0 1 1 1 0 1 1 1 0 Y

a1

a1 Transistor Y

a2 a2

NAND logic gate 0 V

M. Ghulinyan CLASSICAL vs QUANTUM computation

a1 a2 a1 NAND a2 a1 a2 a1 XOR a2 0 0 1 XOR 0 0 0 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0

a1 a1 Y Y

a2 a2

M. Ghulinyan CLASSICAL vs QUANTUM computation

a1 a2 a1 XOR a2 0 0 0 a1 CONTROL XOR 0 1 1 TARGET a2 1 0 1 1 1 0

Input Output a1 a1 a2 a1 a2 a1 0 0 0 0 0 1 0 1 a2 a2 1 0 1 1 1 1 1 0

M. Ghulinyan CLASSICAL vs QUANTUM computation

If the CONTROL bit is set to 0 it does nothing. If it is set to 1, the TARGET bit is flipped. a1 CONTROL That is, the gate causes the target bit to be correlated to the control bit. a2 TARGET Here comes the “ENTANGLEMENT”

Input Output Input Output

a1 a2 a1 a2 CONTROL TARGET CONTROL TARGET 0 0 0 0 |0> |0> |0> |0> 0 1 0 1 |0> |1> |0> |1> 1 0 1 1 |1> |0> |1> |1> 1 1 1 0 |1> |1> |1> |0>

M. Ghulinyan

Quantum ENTANGLEMENT is a quantum mechanical phenomenon in which the quantum states of two or more objects have to be described with reference to each other (CORRELATED), even though the individual objects may be spatially separated.

Hey, Alice, I’ve measured |1>, so I 50% know you had |0> 50%

50% 50%

Although the outcomes seemed random, they are CORRELATED

Alice (A) Bob (B) M. Ghulinyan QUANTUM ENTANGLEMENT

Quantum ENTANGLEMENT is a quantum mechanical phenomenon in which the quantum states of two or more objects have to be described with reference to each other (CORRELATED), even though the individual objects may be spatially separated.

Polarization Energy Pump

V-polarization E = hv E hv + D

E hv – D H-polarization

M. Ghulinyan The quantum C-NOT gate

The CNOT gate is the "quantization" of a classical XOR gate. It is a quantum gate that is an essential component in the construction of a quantum computer. It can be used to entangle and disentangle quantum states. Any can be simulated to an arbitrary degree of accuracy using a combination of CNOT gates.

C-NOT (Controlled NOT) Input Output CONTROL TARGET CONTROL TARGET |0> |0> |0> |0> |0> |1> |0> |1> |1> |0> |1> |1> |1> |1> |1> |0>

M. Ghulinyan The quantum C-NOT gate

The CNOT gate transforms a 2-qubit state

into

C-NOT (Controlled NOT) The CNOT gate operates on a quantum register consisting of 2 Input Output qubits. CONTROL TARGET CONTROL TARGET The CNOT gate flips the second |0> |0> |0> |0> qubit (the target qubit) if and only |0> |1> |0> |1> if the first qubit (the control qubit) is |1> |1> |0> |1> |1> |1> |1> |1> |0>

M. Ghulinyan How to realize physically a C-NOT gate?

M. Ghulinyan In an optics lab…

Optical fibers or free-space beams Beam splitters and mirrors

M. Ghulinyan …or integrate these functions into tiny chips

Sqeesing the area by million times ! Volume reduced by 1011 times !

M. Ghulinyan http://www2.optics.rochester.edu/workgroups/cml/opt307/spr07/luke/

50 microns

M. Ghulinyan 50 microns

M. Ghulinyan Waveguide coupler

Waveguide

http://www.photonics.umbc.edu/

Optical fiber Waveguide = Free-beam + mirror

500 nanometers Waveguide coupler = Beam splitter

M. Ghulinyan Beam splitter – waveguide coupler

Output 2 Periodic exchange of power Output 1 between waveguides

Transfer length L0

L0 Input 2 Input 1

M. Ghulinyan Beam splitter – waveguide coupler

Output 2 Periodic exchange of power Output 1 between waveguides

L0 / 2

L0 / 2 3L0 / 2 5L0 / 2 Input 2 Input 1

M. Ghulinyan Beam splitter – waveguide coupler

50/50 splitter Full transfer No transfer

L0 / 2 L0

M. Ghulinyan An optical C-NOT quantum gate

requires the control photon to induce a π phase shift on the target photon if the control photon is in the ‘1’ state

0/1 Control 1/0 Nonlinear phase shifter 0/1 Target 1/0 50/50 50/50 splitter splitter

O’Brien, Jeremy L., Akira Furusawa, and Jelena Vučković. "Photonic quantum technologies." Nature Photonics 3.12 (2009): 687-695. M. Ghulinyan A linear optical C-NOT quantum gate Single Photon Detector

Auxiliary photon1 1/3 0/1 Control 1/0 1/3 0/1 Target 1/2 1/2 1/0 1/3 Auxiliary photon2

The CNOT operation is applied to the control and target qubits, conditional on a single photon being detected at Ralph, Timothy C., et al. "Linear optical controlled-NOT gate in the each detector coincidence basis." Physical Review A 65.6 (2002): 062324. M. Ghulinyan Reconfigurable Quantum circuit

The two qubits are input in C-NOT gate the logical zero states of both the control and target (upper waveguides)

Phase-shifter Mach Zehnder interferometer

Shadbolt, Peter J., et al. "Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit." Nature Photonics 6.1 (2012): 45-49. M. Ghulinyan Reconfigurable Quantum circuit

Arbitrary C-NOT gate state preparation

Phase-shifter Mach Zehnder interferometer

Shadbolt, Peter J., et al. "Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit." Nature Photonics 6.1 (2012): 45-49. M. Ghulinyan A Quantum simulator

Controllable quantum systems that can be used to mimic other quantum systems. They have the potential to enable the tackling of problems that are intractable on conventional computers

… the physical world is quantum mechanical, and therefore the proper problem is the simulation of quantum .

Let the computer itself be built of quantum mechanical elements which obey quantum mechanical laws.

…therefore, I believe it's true that with a suitable class of quantum machines you could imitate any quantum system, including the physical world.

M. Ghulinyan Quantum simulators

Supercomputers cannot yet predict if a material composed of few hundred atoms will conduct electricity or behave as a magnet, or if a chemical reaction will take place. Quantum simulators based on the laws of quantum physics will allow us to overcome the shortcomings of and to simulate materials or chemical compounds, as well as to solve equations in other areas, like high-energy physics …

Results of experiment for simulating the energy of the hydrogen molecule in the minimal basis set. Plot of the molecular energies of the different electronic states as a function of interatomic distance.

Lanyon, B. P. et al. Towards on a quantum computer. Nature Chem. 2, 106 (2010)

M. Ghulinyan Bulky quantum simulators/computers

UCSB superconducting qubit chip

Google

IBM Quantum Experience ETH-Z Quantum Optics lab

M. Ghulinyan Photonic Quantum simulator: ingredients

Hardware level Software level

Analog drivers User interface Digitalcontrol Photon source Decision making

State preparator (qubits) Quantum algorithms Simulator

(Quantum gates) Quantum hardware Quantum Detection

M. Ghulinyan INQUEST - Hybrid integrated photonic-electronic platform for quantum simulations

M. Ghulinyan INQUEST – the concept

M. Ghulinyan INQUEST – our vision

M. Ghulinyan INQUEST – on chip photon source

M. Ghulinyan

    !"#! $ #% & '()01(234516)789

@ABCDEBFGHIIPQQRSBDTBDUPFVEBWXCQYPCFGP`aH`bPGBWXcVQQXVTFVIRC WCDVaCQDBbCWGPWBIWH`aPWWBFGaH`bPGVFTdeBEBWCQCXbBaGXVFaQPDBf gPCFGP`bWHTWC``VFTQCFTPCTBXCFDaH`bVQBWX ICPQGhGHQBWCFGYPCFGP`aH`bPGCGVHF YPCFGP`CQTHWVGA`X bHXGhYPCFGP`aWRbGHTWCbAR

ipqrspt upvwxyu€ru‚ƒq„ €†p‡w ˆr‰‘’“”•–—˜™de’fghwijiklmnkiopkikqqmnhw     !"#! $ r% & '()01(2s42t(1u0v)0wx)syu08z8)70u0v{

|CaAVFBQBCWFVFT}~YPCFGP`XRXGB`X

gPCFGP`eRXGB`X}~|CaAVFBBCWFVFT

#€€vq‚s€‚qrpp€ƒwxyu€ru‚‚€v„srpƒp€†rsr ‡w ˆr‰‘’“”•fghwijiklmnkiow €††s‡‰kjkkwnhˆgiw     !"#! $ ‰% & '()01(2s42t(1u0v)0wx)syu08z8)70u0v{

|CaAVFBQBCWFVFT}~YPCFGP`XRXGB`X Š PXB`CaAVFBQBCWFVFTGBaAFVYPBXIHWCFCQRXVFTCFDXV`PQCGVFTGAB ‹BACEVHPXHIbAVXVaCQYPCFGP`DBEVaBX Š `CaAVFBQBCWFVFTGHGCaŒQBFHVXBUGCVQHWTCGBXCFDDBEBQHbaHWB YPCFGP`VFIHW`CGVHFbWHaBXXVFT‹PVQDVFT‹QHaŒXd gPCFGP`eRXGB`X}~|CaAVFBBCWFVFT

#€€vq‚s€‚qrpp€ƒwxyu€ru‚‚€v„srpƒp€†rsr ‡w ˆr‰‘’“”•fghwijiklmnkiow €††s‡‰kjkkwnhˆgiw     !"#! $ ‰% & '()01(2s42t(1u0v)0wx)syu08z8)70u0v{

|CaAVFBQBCWFVFT}~YPCFGP`XRXGB`X Š PXB`CaAVFBQBCWFVFTGBaAFVYPBXIHWCFCQRXVFTCFDXV`PQCGVFTGAB ‹BACEVHPXHIbAVXVaCQYPCFGP`DBEVaBX Š `CaAVFBQBCWFVFTGHGCaŒQBFHVXBUGCVQHWTCGBXCFDDBEBQHbaHWB YPCFGP`VFIHW`CGVHFbWHaBXXVFT‹PVQDVFT‹QHaŒXd gPCFGP`eRXGB`X}~|CaAVFBBCWFVFT Š DBEBQHbCFDGCVQHWGABXBYPCFGP``BGAHDXGHCbbQRGHbWH‹QB`XcABF ICaVFTŽ‘’‘“”’“ Š •Ž‘‘’Ž–—˜‘™’˜š›œ’ŽšŽ‘’Ž›™džDVC‹CGVaYPCFGP`aH`bPGVFT WBQVBXHFGABVDBCHIB`‹BDDVFTCbWH‹QB`VFXGCFaBVFGHCbARXVaCQ XRXGB`UXPaAGACGGABXRXGB`ŸXQHcBXGBFBWTR Š Ž“¡‘šœ¢Ž™£DBEBQHbVFTC¤V‹‹XXGCGBbWBbCWCGVHFCFDXC`bQVFT bWHGHaHQUCQXHcVGAGABH‹¥BaGVEBHIGWCVFVFTDBBb‹BQVBIFBGcHWŒXd

#€€vq‚s€‚qrpp€ƒwxyu€ru‚‚€v„srpƒp€†rsr ‡w ˆr‰‘’“”•fghwijiklmnkiow €††s‡‰kjkkwnhˆgiw     !"#! $ ‰% & '(¦u1§

gPCFGP``BaACFVaXGBQQXPXGACGCFRXPaAXRXGB`aCFB¨VXGVFC XPbBWbHXVGVHFHIXGCGBXd ©FTBFBWCQUGABXGCGBHICYPCFGP`‹VGªHWYP‹VGIHWXAHWG«VXDBXaWV‹BD ‹Rf ¬­®¯°±­9¯ cABWBU¬CFD±CWBaH`bQB¨FP`‹BWXUXCGVXIRVFT

­¬#­°­±#­²9

    !"#! $ ³% & 3u0v´8µ¦u1¶u01(u1u·8·u§()´u¸)1u40 ¹6y80º)0w»)7878)´0(2¦87§¼

9 žYP‹VG`CR‹BEVXPCQVXBDCXCPFVG ± ¬­®¯°±­9¯ EBaGHWHFGABbQCFBd

h9 ¬ 9

h9

    !"#! $ &% & 3u0v´8µ¦u1¶u01(u1u·8·u§()´u¸)1u40 ¹6y80º)0w»)7878)´0(2¦87§¼

9 žYP‹VG`CR‹BEVXPCQVXBDCXCPFVG ± ¬­®¯°±­9¯ EBaGHWHFGABbQCFBd ¬#CFD±#UaCF‹BXBBFCXC bWH‹C‹VQVGRDVXGWV‹PGVHFHIGABGcH h9 ¬ 9 ½aQCXXVaCQXGCGBX¾­®¯CFD­9¯ªXVFaB ¬#°±#²9CFD¬#¿±#À®Á

h9

    !"#! $ &% & 3u0v´8µ¦u1¶u01(u1u·8·u§()´u¸)1u40 ¹6y80º)0w»)7878)´0(2¦87§¼

9 žYP‹VG`CR‹BEVXPCQVXBDCXCPFVG ± ¬­®¯°±­9¯ EBaGHWHFGABbQCFBd ¬#CFD±#UaCF‹BXBBFCXC bWH‹C‹VQVGRDVXGWV‹PGVHFHIGABGcH h9 ¬ 9 ½aQCXXVaCQXGCGBX¾­®¯CFD­9¯ªXVFaB ¬#°±#²9CFD¬#¿±#À®Á ©FTBFBWCQUAHcBEBWU¬CFD±CWB h9 aH`bQB¨FP`‹BWXd

    !"#! $ &% & 3u0v´8µ¦u1¶u01(u1u·8·u§()´u¸)1u40 ¹6y80º)0w»)7878)´0(2¦87§¼

9 žYP‹VG`CR‹BEVXPCQVXBDCXCPFVG ± ¬­®¯°±­9¯ EBaGHWHFGABbQCFBd ¬#CFD±#UaCF‹BXBBFCXC bWH‹C‹VQVGRDVXGWV‹PGVHFHIGABGcH h9 ¬ 9 ½aQCXXVaCQXGCGBX¾­®¯CFD­9¯ªXVFaB ¬#°±#²9CFD¬#¿±#À®Á ©FTBFBWCQUAHcBEBWU¬CFD±CWB h9 aH`bQB¨FP`‹BWXd

    !"#! $ &% & x8)§(7u0v)µ¦u1

Y‹VGXGCGBXCWBFHGDVWBaGQRH‹XBWEC‹QBÁ

  r ‰­®¯° ‰­9¯ x8)§(7u0v)µ¦u1

Y‹VGXGCGBXCWBFHGDVWBaGQRH‹XBWEC‹QBÁ @AB`BCXPWVFTHICY‹VGVXCXGHaACXGVabWHaBXXÁ ©F`BCXPWVFT¬­®¯°±­9¯UcBH‹GCVFf Š ­®¯cVGAbWH‹C‹VQVGR­¬­# Š ­9¯cVGAbWH‹C‹VQVGR­±­#

`BCXPWVFTGABY‹VGVXQVŒB WCFDH`bVaŒVFTC‹CQQ IWH`CPWFBaHFGCVFVFT WBDCFD‹QPB‹CQQXÁ

  r ‰­®¯° ‰­9¯ x8)§(7u0v)µ¦u1

Y‹VGXGCGBXCWBFHGDVWBaGQRH‹XBWEC‹QBÁ @AB`BCXPWVFTHICY‹VGVXCXGHaACXGVabWHaBXXÁ ©F`BCXPWVFT¬­®¯°±­9¯UcBH‹GCVFf Š ­®¯cVGAbWH‹C‹VQVGR­¬­# Š ­9¯cVGAbWH‹C‹VQVGR­±­# CIGBWGAB`BCXPWBGABY‹VGcVQQTHVFGABH‹XBWEBD½aQCXXVaCQ¾XGCGBd

`BCXPWVFTGABY‹VGVXQVŒB WCFDH`bVaŒVFTC‹CQQ IWH`CPWFBaHFGCVFVFT WBDCFD‹QPB‹CQQXÁcAVGA GABXVDBBÃBaGXGABCQQ GAB‹CQQX‹BaH`BXHIGAB XC`BaHQHWHIGABbVaŒBD 9­®¯°®­9¯ ‹CQQ

    !"#! $ Ä% & x(´1ut´8'¦u1§§(t87¶t4§u1u40§

@ABXPbBWbHXVGVHFXHIÅY‹VGXUVXFHG¥PXGGABbWHDPaGHIGABXPbBWbHXVGVHFX HIGABXVFTQBY‹VGXdVdBdUCXBGHIY‹VGXaCFFHG‹BXBBFCXCGPbQBHIXVFTQB Yh‹VGX ÆÇÈÉ ÆÇÈÉÏ Ê ËÌ Í Ê ËÌ Í ¬ ­®¯°± ­9¯¿ÎÎο¬Ï­®¯°±Ï­9¯ ‹PGVGVXWCGABWGABBFGVWBGPbQBHIY‹VGXGACGaCF‹BVFCXPbBWbHXVGVHFVdBdU

¬ ­®ÎÎή®¯°¬#­®ÎÎή9¯°¬r­®ÎÎÎ9®¯°¬‰­®ÎÎÎ99¯°ÎÎά#Ï­9ÎÎÎ99¯ cVGA Ð#Ï # ­¬È­²9 ÈÑ

    !"#! $ $% & '()01(2Ò42t(1)1u40

žYPCFGP`aVWaPVGVXCXBYPBFaBHIPFVGCWRHbBWCGVHFXCFD`BCXPWB`BFGX HFCFÅhYP‹VGXGCGBd

Ï Ï BCaAÓÈVXDBXaWV‹BD‹RC{ Ô{ `CGWV¨d

    !"#! $ Õ% & '()01(28·4´(1u40§

ÖCPXCQVGR×WVFaVbQBfGABBEHQPGVHFHICYPCFGP`XVXGB`VXDBXaWV‹BD‹R XH`BIPFaGVHFÓØ GACGDBbBFDXHFGV`BÁ

­ÙªÚ«¯²ÓÉ­Ùª®«¯

BCaAÓÉbWHDPaBXCQBTCQYPCFGP`XGCGBªVUBU­­ÓÉ­Ù¯­­²9«Á

BCaAÓÉVXCQVFBCWGWCFXIHW`CGVHFÁ

    !"#! $ !% & '()01(2v)18§¶¹8Û)2t´8§¼

ܛ’ ‘’”­®¯Þ~­Ý 9¯­9¯Þ~­Ý ®¯

ßà‘“”ᢎœ ‘’”­®¯Þ~­â ®¯­9¯Þ~}­â 9¯

å å 㑐‘š‘ä ‘’”­®¯Þ~ æ ª­®¯°­9¯«­9¯Þ~ æ ª­®¯}­9¯« # #

    !"#! $ % & çy8§8)7syt74¦´82

èBcCFGGHXBCWaAIHWXH`BTHHDVGB`VFCFPFHWDBWBDéhBQB`BFG XBCWaAXbCaB |HDBQGAVXCXIPFaGVHF

êf뮿9ìÏ~뮿9ìcVGAé ² {ÏÁ î 9©IíVXCXHQPGVHF êªí«² ®ïGABWcVXB ÖQCXXVaCQQRGAVXGCŒBXðªé«XGBbXªYPBWVBXGHê« ñ ¤WHEBWŸXCQTHWVGA`DHBXVGVFðª é«XGBbX

    !"#! $ #% & çy8ò74·87)´v47u1y2547§8)7sy óBôFBGABIHQQHcVFT‹HHQBCFTCGBf

õ ö ðõªí«f²ª}9« ­í¯

XPbbHXBGACGêªí¿÷«²øªøíù÷«UGABF

­®®¯~ ­®®¯ ­®9¯~ ­®9¯ ð ² õ ­9®¯~ }­9®¯ ­99¯~ ­99¯

BGXBBAHcðõGWCFXIHW`CY‹VGVFXPbBWbHXVGVHFXf

ðõª¬ ­®®¯°¬#­®9¯°¬r­9®¯°¬‰­99¯« ²

¬ ­®®¯°¬#­®9¯}¬r­9®¯°¬‰­99¯

    !"#! $ r% & ò74·87ú´v47u1y2

þÏ þÏ ûüý ÿý õ  # r ‰ È È È È !!!! !!!  !! ! !!  ! !! ! !  ! ! !   !!!  !!   ! !  !   !!  !   !  

    !"#! $ ‰% & y)1'()01(2Ò42t(1u0vs)0w4547ú

    !"#! $ ³% & 858780s8§

BHFVB|PBad½gPCFGP`XHIGcCWB¾d ©Ff   !d"#"9 ª{®9"«U9"9$${®!

# ¤VCaH`H%CFFVaVFVd½žF©FGWHDPaGVHFGHgPCFGP`ÖH`bPGVFTU èVGAHPGGAB×ARXVaX¾d ©Ff &'(( &')0123425637ª{®9"«

r eGBICFH8BGGBQQVU@H``CXHÖCQCWaHUCFDPaVCFHeBWCôFVd½@HcCWDCF CWaAVGBaGPWBIHWYPCFGP`bWHTWC``VFT¾d ©Ff9@A( BCD E FA EGHI APDQRAEDE QS( D E TBE P BCD{d{ ª{®®U«Ubbd9V9${®®

‰ WCaH‹8VC`HFGBBGCQd½gPCFGP``CaAVFBQBCWFVFT¾d ©Ff   !d"#"9ª{®9"«dCWXVEf9#99d®!U "

    !"#! $ &% &