Robust Statistics for Outlier Detection Peter J

Total Page:16

File Type:pdf, Size:1020Kb

Robust Statistics for Outlier Detection Peter J Focus Article Robust statistics for outlier detection Peter J. Rousseeuw and Mia Hubert When analyzing data, outlying observations cause problems because they may strongly influence the result. Robust statistics aims at detecting the outliers by searching for the model fitted by the majority of the data. We present an overview of several robust methods and outlier detection tools. We discuss robust proce- dures for univariate, low-dimensional, and high-dimensional data such as esti- mation of location and scatter, linear regression, principal component analysis, and classification. C 2011 John Wiley & Sons, Inc. WIREs Data Mining Knowl Discov 2011 1 73–79 DOI: 10.1002/widm.2 INTRODUCTION ESTIMATING UNIVARIATE n real data sets, it often happens that some obser- LOCATION AND SCALE I vations are different from the majority. Such ob- As an example, suppose we have five measurements servations are called outliers. Outlying observations of a length: may be errors, or they could have been recorded un- der exceptional circumstances, or belong to another 6.27, 6.34, 6.25, 6.31, 6.28 (1) population. Consequently, they do not fit the model and we want to estimate its true value. For this, well. It is very important to be able to detect these one usually computes the mean x¯ = 1 n x , which outliers. n i=1 i in this case equals x¯ = (6.27 + 6.34 + 6.25 + 6.31 + In practice, one often tries to detect outliers 6.28)/5 = 6.29. Let us now suppose that the fourth using diagnostics starting from a classical fitting measurement has been recorded wrongly and the data method. However, classical methods can be affected become by outliers so strongly that the resulting fitted model does not allow to detect the deviating observations. 6.27, 6.34, 6.25, 63.1, 6.28. (2) This is called the masking effect. In addition, some = . good data points might even appear to be outliers, In this case, we obtain x¯ 17 65, which is far from which is known as swamping. To avoid these effects, the unknown true value. On the contrary, we could the goal of robust statistics is to find a fit that is close also compute the median of these data. To this end, we to the fit we would have found without the outliers. sort the observations in (2) from smallest to largest: We can then identify the outliers by their large devia- 6.25 ≤ 6.27 ≤ 6.28 ≤ 6.34 ≤ 63.10. tion from that robust fit. First, we describe some robust procedures for The median is then the middle value, yielding 6.28, estimating univariate location and scale. Next, we which is still reasonable. We say that the median is discuss multivariate location and scatter, as well as more robust against an outlier. linear regression. We also give a summary of avail- More generally, the location-scale model states able robust methods for principal component analy- that the n univariate observations xi are independent sis (PCA), classification, and clustering. For a more and identically distributed (i.i.d.) with distribution extensive review, see Ref 1. Some full-length books function F [(x − μ)/σ ] where F is known. Typically, F on this topic are Refs 2, 3. is the standard Gaussian distribution function .We then want to find estimates for the center μ and the scale parameter σ . The classical estimate of location is the mean. ∗Correspondence to: [email protected] As we saw above, the mean is very sensitive to even Renaissance Technologies, New York, and Katholieke Universiteit 1 aberrant value out of the $n$ observations. We say Leuven, Belgium that the breakdown value4,5 of the sample mean is DOI: 10.1002/widm.2 1/n,soitis0%forlargen. In general, the breakdown Volume 1, January/February 2011 c 2011 John Wiley & Sons, Inc. 73 Focus Article wires.wiley.com/widm value is the smallest proportion of observations in the for a real function ψ. The denominatorσ ˆ is an data set that need to be replaced to carry the estimate initial robust scale estimate such as the MAD. A arbitrarily far away. See Ref 6 for precise definitions solution to (4) can be found by the Newton–Raphson and extensions. The robustness of an estimator is also algorithm, starting from the initial location estimate 7 (0) measured by its influence function, which measures θˆ = mediani (xi ). Popular choices for ψ are the the effect of one outlier. The influence function of the Huber function ψ(x) = x min(1, c/|x|), and Tukey’s mean is unbounded, which again illustrates that the biweight function ψ(x) = x(1 − (x/c)2)2 I(|x|≤c). mean is not robust. These M-estimators contain a tuning parameter c, For a general definition of the median, we de- which needs to be chosen in advance. note the ith ordered observation as x(i). Then, the People often use rules to detect outliers. The median is x[(n+1)/2] if n is odd, and [x(n/2) + x(n/2+1)]/2 classical rule is based on the z-scores of the observa- if n is even. Its breakdown value is about 50%, mean- tions given by ing that the median can resist up to 50% of outliers, and its influence function is bounded. Both properties zi = (xi − x¯)/s (5) illustrate the median’s robustness. The situation for the scale parameter σ is simi- where s is the standard deviation. More precisely, the | | lar. The classical estimator is the standard deviation rule flags xi as outlying if zi exceeds 2.5, say. But = n − 2/ − s i=1(xi x¯) (n 1). Because a single outlier in the above-mentioned example (2) with the outlier, can already make s arbitrarily large, its breakdown the z-scores are value is 0%. For instance, for the clean data (1) above, − . , − . , − . , . , − . we have s = 0.035, whereas for the data (2) with the 0 45 0 45 0 45 1 79 0 45 outlier, we obtain s = 25.41! A robust measure of scale is the median of all absolute deviations from the so none of them attains 2.5. The largest value is only median (MAD), given by the median of all absolute 1.79, which is quite similar to the largest z-score for the clean data (1), which equals 1.41. The z-score of deviations from the median: the outlier is small because it subtracts the nonrobust MAD = 1.483 median xi − median(xj ). (3) i=1,...,n j=1,...,n mean (which was drawn toward the outlier) and be- cause it divides by the nonrobust standard deviation The constant 1.483 is a correction factor that makes (which the outlier has made much larger than in the the MAD unbiased at the normal distribution. The clean data). Plugging robust estimators of location MAD of (2) is the same as that of (1), namely 0.044. and scale into (5), such as the median and the MAD, 8 We can also use the Qn estimator, defined as yields the robust scores Qn = 2.2219 {|xi − xj |; i < j}(k) xi − median(xj ) /MAD (6) = h ≈ n / =n + ... j=1,...,n with k 2 2 4 and h 2 1. Here, rounds down to the nearest integer. This scale estima- tor is thus the first quartile of all pairwise differences which are more useful; in the contaminated example between two data points. The breakdown value of (2), the robust scores are both the MAD and the Qn estimator is 50%. Also popular is the interquartile range (IQR) −0.22, 1.35, −0.67, 1277.5, 0.0 defined as the difference between the third and first quartiles, that is, IQR = x3n/4 − xn/4 (where ... in which the outlier greatly exceeds the 2.5 cutoff. rounds up to the nearest integer). Its breakdown value Also Tukey’s boxplot is often used to pinpoint is only 25% but it has a simple interpretation. possible outliers. In this plot, a box is drawn from The robustness of the median and the MAD the first quartile Q1 = xn/4 to the third quartile comes at a cost: At the normal model they are less effi- Q3 = x3n/4 of the data. Points outside the inter- cient than the mean. To find a better balance between val [Q1 − 1.5IQR, Q3 + 1.5 IQR], called the fence, robustness and efficiency, many other robust pro- are traditionally marked as outliers. Note that the cedures have been proposed such as M-estimators.9 boxplot assumes symmetry because we add the same They are defined implicitly as the solution of the amount to Q3 as what we subtract from Q1.Atasym- equation metric distributions, the usual boxplot typically flags many regular data points as outlying. The skewness- n x − θˆ ψ i = 0(4)adjusted boxplot corrects for this by using a robust σˆ 10 i=1 measure of skewness in determining the fence. 74 c 2011 John Wiley & Sons, Inc. Volume 1, January/February 2011 WIREs Data Mining and Knowledge Discovery Robust statistics for outlier detection MULTIVARIATE LOCATION AND these subsets, h-subsets are constructed by so-called COVARIANCE ESTIMATION C-steps (see Ref 14 for details). Many other robust estimators of location and From now on, we assume that the data are p- scatter have been presented in the literature. The × dimensional and are stored in an n p data matrix first such estimator was proposed by Stahel15 and = ,..., T = ,..., T X (x1 xn) with xi (xi1 xip) the ith ob- Donoho16 (see also Ref 17).
Recommended publications
  • Robust Statistics Part 3: Regression Analysis
    Robust Statistics Part 3: Regression analysis Peter Rousseeuw LARS-IASC School, May 2019 Peter Rousseeuw Robust Statistics, Part 3: Regression LARS-IASC School, May 2019 p. 1 Linear regression Linear regression: Outline 1 Classical regression estimators 2 Classical outlier diagnostics 3 Regression M-estimators 4 The LTS estimator 5 Outlier detection 6 Regression S-estimators and MM-estimators 7 Regression with categorical predictors 8 Software Peter Rousseeuw Robust Statistics, Part 3: Regression LARS-IASC School, May 2019 p. 2 Linear regression Classical estimators The linear regression model The linear regression model says: yi = β0 + β1xi1 + ... + βpxip + εi ′ = xiβ + εi 2 ′ ′ with i.i.d. errors εi ∼ N(0,σ ), xi = (1,xi1,...,xip) and β =(β0,β1,...,βp) . ′ Denote the n × (p + 1) matrix containing the predictors xi as X =(x1,..., xn) , ′ ′ the vector of responses y =(y1,...,yn) and the error vector ε =(ε1,...,εn) . Then: y = Xβ + ε Any regression estimate βˆ yields fitted values yˆ = Xβˆ and residuals ri = ri(βˆ)= yi − yˆi . Peter Rousseeuw Robust Statistics, Part 3: Regression LARS-IASC School, May 2019 p. 3 Linear regression Classical estimators The least squares estimator Least squares estimator n ˆ 2 βLS = argmin ri (β) β i=1 X If X has full rank, then the solution is unique and given by ˆ ′ −1 ′ βLS =(X X) X y The usual unbiased estimator of the error variance is n 1 σˆ2 = r2(βˆ ) LS n − p − 1 i LS i=1 X Peter Rousseeuw Robust Statistics, Part 3: Regression LARS-IASC School, May 2019 p. 4 Linear regression Classical estimators Outliers in regression Different types of outliers: vertical outlier good leverage point • • y • • • regular data • ••• • •• ••• • • • • • • • • • bad leverage point • • •• • x Peter Rousseeuw Robust Statistics, Part 3: Regression LARS-IASC School, May 2019 p.
    [Show full text]
  • Robustbase: Basic Robust Statistics
    Package ‘robustbase’ June 2, 2021 Version 0.93-8 VersionNote Released 0.93-7 on 2021-01-04 to CRAN Date 2021-06-01 Title Basic Robust Statistics URL http://robustbase.r-forge.r-project.org/ Description ``Essential'' Robust Statistics. Tools allowing to analyze data with robust methods. This includes regression methodology including model selections and multivariate statistics where we strive to cover the book ``Robust Statistics, Theory and Methods'' by 'Maronna, Martin and Yohai'; Wiley 2006. Depends R (>= 3.5.0) Imports stats, graphics, utils, methods, DEoptimR Suggests grid, MASS, lattice, boot, cluster, Matrix, robust, fit.models, MPV, xtable, ggplot2, GGally, RColorBrewer, reshape2, sfsmisc, catdata, doParallel, foreach, skewt SuggestsNote mostly only because of vignette graphics and simulation Enhances robustX, rrcov, matrixStats, quantreg, Hmisc EnhancesNote linked to in man/*.Rd LazyData yes NeedsCompilation yes License GPL (>= 2) Author Martin Maechler [aut, cre] (<https://orcid.org/0000-0002-8685-9910>), Peter Rousseeuw [ctb] (Qn and Sn), Christophe Croux [ctb] (Qn and Sn), Valentin Todorov [aut] (most robust Cov), Andreas Ruckstuhl [aut] (nlrob, anova, glmrob), Matias Salibian-Barrera [aut] (lmrob orig.), Tobias Verbeke [ctb, fnd] (mc, adjbox), Manuel Koller [aut] (mc, lmrob, psi-func.), Eduardo L. T. Conceicao [aut] (MM-, tau-, CM-, and MTL- nlrob), Maria Anna di Palma [ctb] (initial version of Comedian) 1 2 R topics documented: Maintainer Martin Maechler <[email protected]> Repository CRAN Date/Publication 2021-06-02 10:20:02 UTC R topics documented: adjbox . .4 adjboxStats . .7 adjOutlyingness . .9 aircraft . 12 airmay . 13 alcohol . 14 ambientNOxCH . 15 Animals2 . 18 anova.glmrob . 19 anova.lmrob .
    [Show full text]
  • CFE-Cmstatistics 2020 Book of Abstracts
    CFE-CMStatistics 2020 PROGRAMME AND ABSTRACTS 14th International Conference on Computational and Financial Econometrics (Virtual CFE 2020) http://www.cfenetwork.org/CFE2020 and 13th International Conference of the ERCIM (European Research Consortium for Informatics and Mathematics) Working Group on Computational and Methodological Statistics (Virtual CMStatistics 2020) http://www.cmstatistics.org/CMStatistics2020 19 – 21 December 2020 Computational and Methodological Statistics CMStatistics Computational and CFENetwork Financial Econometrics ⃝c ECOSTA ECONOMETRICS AND STATISTICS. All rights reserved. I CFE-CMStatistics 2020 ISBN 978-9963-2227-9-7 ⃝c 2020 - ECOSTA ECONOMETRICS AND STATISTICS All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any other form or by any means without the prior permission from the publisher. II ⃝c ECOSTA ECONOMETRICS AND STATISTICS. All rights reserved. CFE-CMStatistics 2020 International Organizing Committee: Ana Colubi, Erricos Kontoghiorghes and Manfred Deistler. CFE 2020 Co-chairs: Anurag Banerjee, Scott Brave, Peter Pedroni and Mike So. CFE 2020 Programme Committee: Knut Are Aastveit, Alessandra Amendola, David Ardia, Josu Arteche, Anindya Banerjee, Travis Berge, Mon- ica Billio, Raffaella Calabrese, Massimiliano Caporin, Julien Chevallier, Serge Darolles, Luca De Angelis, Filippo Ferroni, Ana-Maria Fuertes, Massimo Guidolin, Harry Haupt, Masayuki Hirukawa, Benjamin Hol- cblat, Rustam Ibragimov, Laura Jackson Young, Michel Juillard, Edward Knotek, Robinson Kruse-Becher, Svetlana Makarova, Ilia Negri, Ingmar Nolte, Jose Olmo, Yasuhiro Omori, Jesus Otero, Michael Owyang, Alessia Paccagnini, Indeewara Perera, Jean-Yves Pitarakis, Tommaso Proietti, Artem Prokhorov, Tatevik Sekhposyan, Etsuro Shioji, Michael Smith, Robert Taylor, Martin Wagner and Ralf Wilke. CMStatistics 2020 Co-chairs: Tapabrata Maiti, Sofia Olhede, Michael Pitt, Cheng Yong Tang and Tim Verdonck.
    [Show full text]
  • Robust Linear Regression: Optimal Rates in Polynomial Time
    Robust Linear Regression: Optimal Rates in Polynomial Time Ainesh Bakshi* Adarsh Prasad [email protected] [email protected] CMU CMU Abstract We obtain robust and computationally efficient estimators for learning several linear mod- els that achieve statistically optimal convergence rate under minimal distributional assump- tions. Concretely, we assume our data is drawn from a k-hypercontractive distribution and an ǫ-fraction is adversarially corrupted. We then describe an estimator that converges to the 2 2/k optimal least-squares minimizer for the true distribution at a rate proportional to ǫ − , when the noise is independent of the covariates. We note that no such estimator was known prior to our work, even with access to unbounded computation. The rate we achieve is information- theoretically optimal and thus we resolve the main open question in Klivans, Kothari and Meka [COLT’18]. Our key insight is to identify an analytic condition that serves as a polynomial relaxation of independence of random variables. In particular, we show that when the moments of the noise and covariates are negatively-correlated, we obtain the same rate as independent noise. 2 4/k Further, when the condition is not satisfied, we obtain a rate proportional to ǫ − , and again match the information-theoretic lower bound. Our central technical contribution is to algo- rithmically exploit independence of random variables in the ”sum-of-squares” framework by formulating it as the aforementioned polynomial inequality. arXiv:2007.01394v4 [stat.ML] 4 Dec 2020 *AB would like to thank the partial support from the Office of Naval Research (ONR) grant N00014-18-1-2562, and the National Science Foundation (NSF) under Grant No.
    [Show full text]
  • Computational Statistics and Data Analysis Robust PCA for Skewed
    Computational Statistics and Data Analysis 53 (2009) 2264–2274 Contents lists available at ScienceDirect Computational Statistics and Data Analysis journal homepage: www.elsevier.com/locate/csda Robust PCA for skewed data and its outlier map a b b, Mia Hubert , Peter Rousseeuw , Tim Verdonck ∗ a Department of Mathematics, LSTAT, Katholieke Universiteit Leuven, Belgium b Department of Mathematics and Computer Science, University of Antwerp, Belgium article info abstract Article history: The outlier sensitivity of classical principal component analysis (PCA) has spurred the Available online 6 June 2008 development of robust techniques. Existing robust PCA methods like ROBPCA work best if the non-outlying data have an approximately symmetric distribution. When the original variables are skewed, too many points tend to be flagged as outlying. A robust PCA method is developed which is also suitable for skewed data. To flag the outliers a new outlier map is defined. Its performance is illustrated on real data from economics, engineering, and finance, and confirmed by a simulation study. © 2008 Elsevier B.V. All rights reserved. 1. Introduction Principal component analysis is one of the best known techniques of multivariate statistics. It is a dimension reduction technique which transforms the data to a smaller set of variables while retaining as much information as possible. These new variables, called the principal components (PCs), are uncorrelated and maximize variance (information). Once the PCs are computed, all further analysis like cluster analysis, discriminant analysis, regression, ...can be carried out on the transformed data. When given a data matrix X with n observations and p variables, the PCs ti are linear combinations of the data ti Xpi where = pi argmax var(Xa) = a { } under the constraints a 1 and a p1,...,pi 1 .
    [Show full text]
  • Robust Covariance Estimation for Financial Applications
    Robust covariance estimation for financial applications Tim Verdonck, Mia Hubert, Peter Rousseeuw Department of Mathematics K.U.Leuven August 30 2011 Tim Verdonck, Mia Hubert, Peter Rousseeuw Robust covariance estimation August 30 2011 1 / 44 Contents 1 Introduction Robust Statistics 2 Multivariate Location and Scatter Estimates 3 Minimum Covariance Determinant Estimator (MCD) FAST-MCD algorithm DetMCD algorithm 4 Principal Component Analysis 5 Multivariate Time Series 6 Conclusions 7 Selected references Tim Verdonck, Mia Hubert, Peter Rousseeuw Robust covariance estimation August 30 2011 2 / 44 Introduction Robust Statistics Introduction Robust Statistics Real data often contain outliers. Most classical methods are highly influenced by these outliers. What is robust statistics? Robust statistical methods try to fit the model imposed by the majority of the data. They aim to find a ‘robust’ fit, which is similar to the fit we would have found without outliers (observations deviating from robust fit). This also allows for outlier detection. Robust estimate applied on all observations is comparable with the classical estimate applied on the outlier-free data set. Robust estimator A good robust estimator combines high robustness with high efficiency. ◮ Robustness: being less influenced by outliers. ◮ Efficiency: being precise at uncontaminated data. Tim Verdonck, Mia Hubert, Peter Rousseeuw Robust covariance estimation August 30 2011 3 / 44 Introduction Robust Statistics Univariate Scale Estimation: Wages data set 6000 households with male head earning
    [Show full text]
  • Robust Statistics Part 1: Introduction and Univariate Data General References
    Robust Statistics Part 1: Introduction and univariate data Peter Rousseeuw LARS-IASC School, May 2019 Peter Rousseeuw Robust Statistics, Part 1: Univariate data LARS-IASC School, May 2019 p. 1 General references General references Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A. Robust Statistics: the Approach based on Influence Functions. Wiley Series in Probability and Mathematical Statistics. Wiley, John Wiley and Sons, New York, 1986. Rousseeuw, P.J., Leroy, A. Robust Regression and Outlier Detection. Wiley Series in Probability and Mathematical Statistics. John Wiley and Sons, New York, 1987. Maronna, R.A., Martin, R.D., Yohai, V.J. Robust Statistics: Theory and Methods. Wiley Series in Probability and Statistics. John Wiley and Sons, Chichester, 2006. Hubert, M., Rousseeuw, P.J., Van Aelst, S. (2008), High-breakdown robust multivariate methods, Statistical Science, 23, 92–119. wis.kuleuven.be/stat/robust Peter Rousseeuw Robust Statistics, Part 1: Univariate data LARS-IASC School, May 2019 p. 2 General references Outline of the course General notions of robustness Robustness for univariate data Multivariate location and scatter Linear regression Principal component analysis Advanced topics Peter Rousseeuw Robust Statistics, Part 1: Univariate data LARS-IASC School, May 2019 p. 3 General notions of robustness General notions of robustness: Outline 1 Introduction: outliers and their effect on classical estimators 2 Measures of robustness: breakdown value, sensitivity curve, influence function, gross-error sensitivity, maxbias curve. Peter Rousseeuw Robust Statistics, Part 1: Univariate data LARS-IASC School, May 2019 p. 4 General notions of robustness Introduction What is robust statistics? Real data often contain outliers.
    [Show full text]
  • Mia Hubert, Peter Rousseeuw, & Karlien Vanden Branden
    Home About Scientific Press Room Contact Us ● ScienceWatch Home ● Inside This Month... ● Interviews Featured Interviews Author Commentaries 2009 : January 2009 - Fast Moving Fronts : Mia Hubert, Peter Rousseeuw, & Karlien Vanden Branden Institutional Interviews Journal Interviews FAST MOVING FRONTS - 2009 Podcasts January 2009 ● Analyses Mia Hubert, Peter Rousseeuw, & Karlien Vanden Branden talk with ScienceWatch.com and answer Featured Analyses a few questions about this month's Fast Moving Front in the field of Mathematics. What's Hot In... Article: ROBPCA: A new approach to robust principal component Special Topics analysis Authors: Hubert, M;Rousseeuw, PJ;Vanden Branden, K Journal: TECHNOMETRICS, 47 (1): 64-79, FEB 2005 ● Data & Rankings Addresses: Katholieke Univ Leuven, Dept Math, B-3001 Louvain, Belgium. Katholieke Univ Leuven, Dept Math, B-3001 Louvain, Belgium. Sci-Bytes Univ Antwerp, Dept Math & Comp Sci, B-2020 Antwerp, Belgium. Fast Breaking Papers Katholieke Univ Leuven, Dept Math, B-3001 Heverlee, Belgium. New Hot Papers Emerging Research Fronts Fast Moving Fronts Why do you think your paper is highly cited? Research Front Maps Our paper offers a solution to an important problem in statistics and data analysis: how to perform data Current Classics reduction when the observations may be contaminated with outlying values. This problem is especially Top Topics important for the analysis of high-dimensional data sets, such as spectral data in chemometrics and Rising Stars genetic data in bio-informatics. We propose an algorithm which is highly robust and computationally New Entrants feasible, and we also provide a graphical tool for outlier detection. Country Profiles Moreover, our method serves as the cornerstone of new highly robust calibration methods (principal component regression and partial least squares regression), a robust classifier, and robust multi-way ● About Science Watch techniques.
    [Show full text]
  • Fast Detection of Outliers in Data Streams with the $ Q N $ Estimator
    Fast Detection of Outliers in Data Streams with the Qn Estimator Massimo Cafaroa,∗, Catiuscia Mellea, Marco Pulimenoa, Italo Epicocoa aUniversity of Salento, Lecce, Italy Abstract We present fqn (Fast Qn), a novel algorithm for fast detection of outliers in data streams. The algorithm works in the sliding window model, checking if an item is an outlier by cleverly computing the Qn scale estimator in the current window. We thoroughly compare our algorithm for online Qn with the state of the art competing algorithm by Nunkesser et al, and show that fqn (i) is faster, (ii) its computational complexity does not depend on the input distribution and (iii) it requires less space. Extensive experimental results on synthetic datasets confirm the validity of our approach. Keywords: data streams, outliers, sliding window model, Qn estimator. Declaration of interest Declarations of interest: none. 1. Introduction A data stream σ can be thought as a sequence of n items drawn from a universe U. In particular, the items need not be distinct, so that an item may appear multiple times in the stream. Data streams are ubiquitous, and, depending on the specific context, items may be IP addresses, graph edges, points, geographical coordinates, numbers etc. Since the items in the input data stream come at a very high rate, and the stream may be of potentially infinite length (in which case n refers to the number of items seen so far), it is hard for an algorithm in charge of processing its items to compute an expensive function of a large piece of the input.
    [Show full text]
  • Package 'Mrfdepth'
    Package ‘mrfDepth’ August 26, 2020 Type Package Version 1.0.13 Date 2020-08-24 Title Depth Measures in Multivariate, Regression and Functional Settings Description Tools to compute depth measures and implementations of related tasks such as outlier detection, data exploration and classification of multivariate, regression and functional data. Depends R (>= 3.6.0), ggplot2 Imports abind, geometry, grid, matrixStats, reshape2, Suggests robustbase LinkingTo RcppEigen (>= 0.3.2.9.0), Rcpp (>= 0.12.6), RcppArmadillo (>= 0.7.600.1.0) License GPL (>= 2) LazyLoad yes URL https://github.com/PSegaert/mrfDepth BugReports https://github.com/PSegaert/mrfDepth/issues RoxygenNote 6.1.0 NeedsCompilation yes Author Pieter Segaert [aut], Mia Hubert [aut], Peter Rousseeuw [aut], Jakob Raymaekers [aut, cre], Kaveh Vakili [ctb] Maintainer Jakob Raymaekers <[email protected]> Repository CRAN Date/Publication 2020-08-26 16:10:33 UTC 1 2 R topics documented: R topics documented: adjOutl . .3 bagdistance . .6 bagplot . .9 bloodfat . 11 cardata90 . 12 characterA . 13 characterI . 14 cmltest . 15 compBagplot . 16 depthContour . 19 dirOutl . 22 distSpace . 25 dprojdepth . 28 dprojmedian . 30 fheatmap . 31 fom ............................................. 32 fOutl . 34 geological . 37 glass . 37 hdepth . 38 hdepthmedian . 42 medcouple . 43 mfd ............................................. 45 mfdmedian . 47 mrainbowplot . 49 mri.............................................. 50 octane . 52 outlyingness . 52 plane . 56 plotContours . 58 projdepth . 59 projmedian . 61 rdepth . 63 rdepthmedian . 65 sdepth . 66 sprojdepth . 68 sprojmedian . 70 stars . 72 symtest . 73 tablets . 74 wine............................................. 75 Index 76 adjOutl 3 adjOutl Adjusted outlyingness of points relative to a dataset Description Computes the skew-adjusted outlyingness of p-dimensional points z relative to a p-dimensional dataset x.
    [Show full text]
  • Review of Robustbase Software for R
    Research Collection Review Article Review of ‘Robustbase’ software for R Author(s): Finger, Robert Publication Date: 2010-11 Permanent Link: https://doi.org/10.3929/ethz-b-000159379 Originally published in: Journal of Applied Econometrics 25(7), http://doi.org/10.1002/jae.1194 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Postprint This is the accepted version of a paper published in the Journal of Applied Econometrics. This paper has been peer-reviewed but does not include the final publisher proof- corrections or journal pagination. Citation for the original published paper: Finger, R. (2010). Review of ‘robustbase’ software for R. Journal of Applied Econometrics 25(7): 1205-1210 https://doi.org/10.1002/jae.1194 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper Review of ‘robustbase’ software for R Robert Finger (ETH Zürich, Switzerland) 1. Introduction Robust statistical methods are powerful tools to increase the reliability and accuracy of statistical modeling and data analysis because these methods still work well when some observations deviate from (or violate) the assumed model. For many statistical models (e.g. location, scale and regression), several robust methods are available as alternative approaches to classical statistical methods (Maronna et al., 2006). However, there has been a lack of availability of robust methods in statistical software (e.g. Stromberg, 2004). The R package ‘robustbase’ (as well as other related packages) helps to fill the gap between theoretically developed robust methods and their availability in standard statistical software and makes both basic and advanced methods available to a broad range of researchers.
    [Show full text]
  • Robust Regression and Outlier Detection with the ROBUSTREG Procedure
    SUGI 27 Statistics and Data Analysis Paper265-27 Robust Regression and Outlier Detection with the ROBUSTREG Procedure Colin Chen, SAS Institute Inc., Cary, NC Many methods have been developed for these prob- lems. However, in statistical applications of outlier Abstract detection and robust regression, the methods most commonly used today are Huber M estimation, high Robust regression is an important tool for analyz- breakdown value estimation, and combinations of ing data that are contaminated with outliers. It these two methods. The ROBUSTREG procedure can be used to detect outliers and to provide re- provides four such methods: M estimation, LTS es- sistant (stable) results in the presence of outliers. timation, S estimation, and MM estimation. This paper introduces the ROBUSTREG procedure, which is experimental in SAS/STAT Version 9. The 1. M estimation was introduced by Huber (1973), ROBUSTREG procedure implements the most com- and it is the simplest approach both computa- monly used robust regression techniques. These tionally and theoretically. Although it is not ro- include M estimation (Huber, 1973), LTS estima- bust with respect to leverage points, it is still tion (Rousseeuw, 1984), S estimation (Rousseeuw used extensively in analyzing data for which and Yohai, 1984), and MM estimation (Yohai, 1987). it can be assumed that the contamination is The paper will provide an overview of robust re- mainly in the response direction. gression methods, describe the syntax of PROC ROBUSTREG, and illustrate the use of the procedure 2. Least Trimmed Squares (LTS) estimation is a to fit regression models and display outliers and lever- high breakdown value method introduced by age points.
    [Show full text]