Therapeutic Orchids: Traditional Uses and Recent Advances — an Overview

Total Page:16

File Type:pdf, Size:1020Kb

Therapeutic Orchids: Traditional Uses and Recent Advances — an Overview Fitoterapia 82 (2011) 102–140 Contents lists available at ScienceDirect Fitoterapia journal homepage: www.elsevier.com/locate/fitote Review Therapeutic orchids: traditional uses and recent advances — An overview Mohammad Musharof Hossain ⁎ Department of Botany, University of Chittagong, Chittagong 4331, Bangladesh article info abstract Article history: Orchids have been used as a source of medicine for millennia to treat different diseases and Received 27 January 2010 ailments including tuberculosis, paralysis, stomach disorders, chest pain, arthritis, syphilis, Accepted in revised form 4 September 2010 jaundice, cholera, acidity, eczema, tumour, piles, boils, inflammations, menstrual disorder, Available online 21 September 2010 spermatorrhea, leucoderma, diahorrhea, muscular pain, blood dysentery, hepatitis, dyspepsia, bone fractures, rheumatism, asthma, malaria, earache, sexually transmitted diseases, wounds Keywords: and sores. Besides, many orchidaceous preparations are used as emetic, purgative, aphrodisiac, Salep vermifuge, bronchodilator, sex stimulator, contraceptive, cooling agent and remedies in Vanilla scorpion sting and snake bite. Some of the preparations are supposed to have miraculous Chyavanprash Shi-Hu curative properties but rare scientific demonstration available which is a primary requirement Tian-Ma for clinical implementations. Incredible diversity, high alkaloids and glycosides content, Bai-Ji research on orchids is full of potential. Meanwhile, some novel compounds and drugs, both in phytochemical and pharmacological point of view have been reported from orchids. Linking of the indigenous knowledge to the modern research activities will help to discover new drugs much more effective than contemporary synthetic medicines. The present study reviews the traditional therapeutic uses of orchids with its recent advances in pharmacological investigations that would be a useful reference for plant drug researches, especially in orchids. © 2010 Elsevier B.V. All rights reserved. Contents 1. Introduction ...................................................... 103 2. Traditional uses of orchids ............................................... 103 2.1. South-East Asia ................................................. 103 2.2. China and Japan ................................................. 103 2.3. Europe ..................................................... 112 2.4. Africa ...................................................... 112 2.5. America ..................................................... 113 2.6. Australia .................................................... 113 3. Popular orchid preparations............................................... 113 3.1. Salep ...................................................... 113 3.2. Vanilla ..................................................... 114 3.3. Chavanprash. .................................................. 114 3.4. Shi-Hu, Tian-Ma and Bai-Ji ............................................ 115 4. Important phytochemicals in orchids .......................................... 115 5. Pharmacological studies of orchid phytochemicals .................................... 116 6. Threats to orchids ................................................... 138 ⁎ Tel.: +880 1712684778; fax: +880 31 726310. E-mail addresses: [email protected], [email protected]. 0367-326X/$ – see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.fitote.2010.09.007 M.M. Hossain / Fitoterapia 82 (2011) 102–140 103 7. Conclusions ....................................................... 138 Acknowledgments ...................................................... 138 References .......................................................... 138 1. Introduction oldest references to the use of medicinal herbs in India are found in the Sanskrit literatures. There are four Vedas —‘Rig Veda’, Orchidaceae, the largest and most evolved family of the ‘Sama Veda’, ‘Ayur Veda’ and ‘Atharva Veda’ which form the main flowering plants comprises 25,000 to 35,000 species under 750 literary source for Vedic era. The ‘Rig Veda’ and ‘Atharva Veda’, to 850 genera [1–3]. They are virtually found in all regions written between 400 and 1600 B.C. dealing with varied use of around the globe except the icy Antarctica and hot deserts, but plant drugs, are the oldest books in the library of humans supply their greatest diversity occurs in the tropical and sub-tropical curious information on this subject. It is in the ‘Ayurveda’ which regions. Orchids are undoubtedly the ornamental elite because is considered as an ‘Upa Veda’ (=applied knowledge), that of their perplexingly complex flowers of exquisite beauty. property of plant drugs and their uses is described. ‘Charaka Reason being, orchids nowadays became an object of multibil- Samhita’, the earliest treatise on ‘Ayurveda’ written by Charaka in lion dollar business. Evident by recent increase in the world 600 B.C., listed 341 plants and plant products, is a great reference floriculture trade, orchids became the second most popular cut to diseases and medical procedures for health care. One flowers as well as potted floriculture crop rising at the rate of additional Sanskrit literature ‘Sushruta Samhita’ which was 10–20% [4,5]. Apart from their ornamental value, many orchids written by Sushruta, a surgeon and teacher of ‘Ayurveda’ in 600 have apparent medicinal and glycosidal importance. However, B.C., is a more comprehensive and authoritative works of the fact that orchids could play an important role in herbal ‘Ayurveda’ that contains description of 1120 illnesses, 700 medicines is often overlooked. The history of orchids probably medicinal plants and 121 preparations. Interestingly, all this started with their use for medicinal purposes. Numerous orchid ancient Sanskrit literature incorporated some orchids as medic- species have been and are being used in different countries for inal herbs. It is greatly the credit of the Indians that they were therapeutic properties. A good number of research papers, acquainted with a far larger number of orchid species than the popular articles and books have been published on medicinal native of any other country in the face of the earth [10].Inthe uses of orchids throughout the world. However, the informa- Ayurvedic system of medicine, a rejuvenating herbal formulation tion is scanty for high value medicinal plants like orchids. ‘Astavarga’ is derived from a group of 8 herbs, some of these Furthermore, all the existing information generally corre- herbs i.e. jivak (Microstylis wallichii), kakoli (Habenaria acumi- sponded to a particular region or community. It is therefore nata), riddhi (H. intermedia) and vriddhi (H. edgeworthii)are important to aggregate the information of medicinal uses of orchids [11,12]. Flickingeria macraei is used in ‘Ayurveda’ in the orchid that will provide useful references for plant drug name of ‘jeevanti’ which is used as astringent to the bowels, research. In the present study an attempt was made to amass aphrodisiac and in asthma and bronchitis [13]. Other commonly the available information on medicinal orchids throughout the used orchid drugs in the Ayurvedic system are salem (Orchis world. It would be impossible to give an exhaustive review of latifolia and Eulophia latifolia), jewanti (Dendrobium alpestre), the medicinal uses of orchids within the limits of a small essay shwethuli and rasna (Acampe papillosa and Vanda tessellata). In like this, but a brief summary will permit some idea with ‘Sushruta samhita’ it is mentioned that the underground tuber of respect to traditional use, the advances made and the Orchis latifolia is used in the drug ‘munjatak’ which pacifies cough popularity extended to orchids for the time being. [14]. The leaves of Vanda roxburghii have been prescribed in the ancient Sanskrit literature for external application in rheuma- 2. Traditional uses of orchids tism, ear infections, fractures and diseases of nervous system. In some regions of Malaya, the women boil the leaves of The origin of orchids on the earth probably dates back to Nervilia aragoana and drink the liquid immediately after 120 million years. However, available written records are as childbirth as a precaution against possible sickness. Corym- early as 4th millennium B.C. only. Orchids have been used as a borchis longiflora, Tropidia curculigoides, and Acriopsis javanica source of herbal remedies in China since 2800 B.C. [6,7].Since are valued as febrifuges in treating malaria. Eria pannea plant the Vedic period (2000 B.C.–600 B.C.), some orchids have been is boiled to furnish a medicinal bath to cure ague and several used by Indians for their curative and aphrodisiac properties species of Lissochilus are used as aphrodisiac. The stems of [8]. In the Indian Vedic scriptures there is a mention of orchid L. dilectus are used in scabies and skin lesions and the under the name ‘Vanda’. Some parts of Europe, America, pseudobulbs of Epidendrum bifidum have been used to expel Australia and Africa have also been using orchids as herbal cure tapeworms and other intestinal parasites. In Indonesia, a for long. A mega list of medicinal orchids and their traditional scented ointment made from the pseudobulbs of Gammato- uses is given in Table 1. In the following section brief history of phyllum scriptum is believed to cure sores [15]. medicinal orchids of the world is discussed. 2.2. China and Japan 2.1. South-East Asia There is no doubt that the Chinese were the first to Indians have one of the oldest, richest
Recommended publications
  • Coelogyne Flaccida
    Coelogyne flaccida Sectie : Epidendroideae, Ondersectie : Coelogyninae Naamverklaring : De geslachtsnaam Coelogyne is afgeleid van het Griekse koilos=holte en gyne(guné)=vrouw. De stempel, het vrouwelijk orgaan van de plant, heeft aan de voorzijde een diepe holte. Flaccida betekent slap, wegens de hangende bloeiwijze. Variëteiten : var.crenulata Pfitz. :de overgang naar het voorste gedeelte van de middenlob is fijn getand. var.elegans Pfitz.: terugbuiging van de lip is onduidelijk waardoor de middenlob nauwelijks te onderscheiden is; bloemen groter en bijna reukloos. Distributie : Himalya: Nepal, Sikkim en Assam tot Burma. Komt voor op een hoogte van 1000 tot 2000 m , meestal epifytisch, zelden lithofytisch. In dichte bomenbestanden op bemoste takken. Beschrijving : Coelogyne flaccida groeit in dichte pollen in humusresten in de oksels van boomtakken. Bulben dicht op elkaar, verbonden door korte rhizomen, 10 x 2,5 cm groot en al in het eerste jaar duidelijk in de lengte gegroefd. Rijpe bulben hebben aan de basis 2 droge schutbladen en dragen 2 leerachtige bladeren, tot 20 x 4 cm, smal elliptisch, spits toelopend. De bloeistengel ontwikkelt zich uit een bijzondere uitloper in de oksel van een schutblad en staat dan op een heel klein onderontwikkelde bulbe, geheel door groene schutbladeren omgeven. De bloeistengel gaat hangen, wordt tot 25 cm lang en draagt 6 - 10 bloemen. Bloemen stervormig, 4 -5 cm in doorsnee, onaangenaam geurend. Sepalen vlak, smal elliptisch, spits toelopend; petalen teruggebogen, vrijwel even lang, maar half zo breed. Kleur wit tot licht crèmekleurig. Lip in drieën gedeeld, de zijlobben staan rechtop en omvatten half het zuiltje. De middenlob steekt naar voren, met teruggeslagen of gebogen punt.
    [Show full text]
  • Diversity and Distribution of Vascular Epiphytic Flora in Sub-Temperate Forests of Darjeeling Himalaya, India
    Annual Research & Review in Biology 35(5): 63-81, 2020; Article no.ARRB.57913 ISSN: 2347-565X, NLM ID: 101632869 Diversity and Distribution of Vascular Epiphytic Flora in Sub-temperate Forests of Darjeeling Himalaya, India Preshina Rai1 and Saurav Moktan1* 1Department of Botany, University of Calcutta, 35, B.C. Road, Kolkata, 700 019, West Bengal, India. Authors’ contributions This work was carried out in collaboration between both authors. Author PR conducted field study, collected data and prepared initial draft including literature searches. Author SM provided taxonomic expertise with identification and data analysis. Both authors read and approved the final manuscript. Article Information DOI: 10.9734/ARRB/2020/v35i530226 Editor(s): (1) Dr. Rishee K. Kalaria, Navsari Agricultural University, India. Reviewers: (1) Sameh Cherif, University of Carthage, Tunisia. (2) Ricardo Moreno-González, University of Göttingen, Germany. (3) Nelson Túlio Lage Pena, Universidade Federal de Viçosa, Brazil. Complete Peer review History: http://www.sdiarticle4.com/review-history/57913 Received 06 April 2020 Accepted 11 June 2020 Original Research Article Published 22 June 2020 ABSTRACT Aims: This communication deals with the diversity and distribution including host species distribution of vascular epiphytes also reflecting its phenological observations. Study Design: Random field survey was carried out in the study site to identify and record the taxa. Host species was identified and vascular epiphytes were noted. Study Site and Duration: The study was conducted in the sub-temperate forests of Darjeeling Himalaya which is a part of the eastern Himalaya hotspot. The zone extends between 1200 to 1850 m amsl representing the amalgamation of both sub-tropical and temperate vegetation.
    [Show full text]
  • Review Article Organic Compounds: Contents and Their Role in Improving Seed Germination and Protocorm Development in Orchids
    Hindawi International Journal of Agronomy Volume 2020, Article ID 2795108, 12 pages https://doi.org/10.1155/2020/2795108 Review Article Organic Compounds: Contents and Their Role in Improving Seed Germination and Protocorm Development in Orchids Edy Setiti Wida Utami and Sucipto Hariyanto Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia Correspondence should be addressed to Sucipto Hariyanto; [email protected] Received 26 January 2020; Revised 9 May 2020; Accepted 23 May 2020; Published 11 June 2020 Academic Editor: Isabel Marques Copyright © 2020 Edy Setiti Wida Utami and Sucipto Hariyanto. ,is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In nature, orchid seed germination is obligatory following infection by mycorrhizal fungi, which supplies the developing embryo with water, carbohydrates, vitamins, and minerals, causing the seeds to germinate relatively slowly and at a low germination rate. ,e nonsymbiotic germination of orchid seeds found in 1922 is applicable to in vitro propagation. ,e success of seed germination in vitro is influenced by supplementation with organic compounds. Here, we review the scientific literature in terms of the contents and role of organic supplements in promoting seed germination, protocorm development, and seedling growth in orchids. We systematically collected information from scientific literature databases including Scopus, Google Scholar, and ProQuest, as well as published books and conference proceedings. Various organic compounds, i.e., coconut water (CW), peptone (P), banana homogenate (BH), potato homogenate (PH), chitosan (CHT), tomato juice (TJ), and yeast extract (YE), can promote seed germination and growth and development of various orchids.
    [Show full text]
  • Vascular Epiphytic Medicinal Plants As Sources of Therapeutic Agents: Their Ethnopharmacological Uses, Chemical Composition, and Biological Activities
    biomolecules Review Vascular Epiphytic Medicinal Plants as Sources of Therapeutic Agents: Their Ethnopharmacological Uses, Chemical Composition, and Biological Activities Ari Satia Nugraha 1,* , Bawon Triatmoko 1 , Phurpa Wangchuk 2 and Paul A. Keller 3,* 1 Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, University of Jember, Jember, Jawa Timur 68121, Indonesia; [email protected] 2 Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia; [email protected] 3 School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, and Illawarra Health & Medical Research Institute, Wollongong, NSW 2522 Australia * Correspondence: [email protected] (A.S.N.); [email protected] (P.A.K.); Tel.: +62-3-3132-4736 (A.S.N.); +61-2-4221-4692 (P.A.K.) Received: 17 December 2019; Accepted: 21 January 2020; Published: 24 January 2020 Abstract: This is an extensive review on epiphytic plants that have been used traditionally as medicines. It provides information on 185 epiphytes and their traditional medicinal uses, regions where Indigenous people use the plants, parts of the plants used as medicines and their preparation, and their reported phytochemical properties and pharmacological properties aligned with their traditional uses. These epiphytic medicinal plants are able to produce a range of secondary metabolites, including alkaloids, and a total of 842 phytochemicals have been identified to date. As many as 71 epiphytic medicinal plants were studied for their biological activities, showing promising pharmacological activities, including as anti-inflammatory, antimicrobial, and anticancer agents. There are several species that were not investigated for their activities and are worthy of exploration.
    [Show full text]
  • Isolation and Structure Elucidation of Compounds with Antitumor Activity from Tamus Communis and Xanthium Italicum
    Department of Pharmacognosy University of Szeged Isolation and structure elucidation of compounds with antitumor activity from Tamus communis and Xanthium italicum Ph.D. Thesis Adriána Kovács Szeged, Hungary 2009 List of publications related to the thesis 1. Réthy B, Kovács A , Zupkó I, Forgo P, Vasas A, Falkay Gy, Hohmann J Cytotoxic phenanthrenes from the rhizomes of Tamus communis Planta Med. 72 , 767-770 (2006) 2. Kovács A , Forgo P, Zupkó I, Réthy B, Falkay Gy, Szabó P, Hohmann J Phenanthrenes and a dihydrophenanthrene from Tamus communis and their cytotoxic activity Phytochemistry 68 , 687-691 (2007) 3. Kovács A , Vasas A, Hohmann J Natural phenanthrenes and their biological activity Phytochemistry 69 , 1084-1110 (2008) 4. Kovács A , Vasas A, Forgo P, Réthy B, Zupkó I, Hohmann J Xanthanolides with antitumour activity from Xanthium italicum Z. Naturforsch,. C (in press) CONTENTS ABBREVIATIONS AND SYMBOLS ........................................................................................................ 1. INTRODUCTION .................................................................................................................................1 2. OVERVIEW OF THE LITERATURE DATA ...................................................................................3 2.1. STRUCTURAL CHARACTERISTICS OF NATURAL PHENANTHRENES AND XANTHANOLIDES ..................3 2.1.1. Phenanthrenes ..........................................................................................................................3 2.1.2. Xanthanolides ..........................................................................................................................4
    [Show full text]
  • Orchid Wealth for Immunity Development-An Overview L.C
    International Journal of Science, Environment ISSN 2278-3687 (O) and Technology, Vol. 9, No 4, 2020, 647 – 655 2277-663X (P) ORCHID WEALTH FOR IMMUNITY DEVELOPMENT-AN OVERVIEW L.C. De ICAR-NRC for Orchids, Pakyong, Sikkim E-mail: [email protected] Abstract: Orchids are one of the largest families of flowering plants which are best-known plant groups in the global horticultural and cut flower trades, including as ornamental plants, medicinal products and food. The medicinal orchids belong mainly to the genera namely Calanthe, Coelogyne, Cymbidium, Cypipedium, Dendrobium, Ephemerantha, Eria, Galeola, Gastrodia, Gymnadenia, Habenaria, Ludisia, Luisia, Nevilia, Satirium and Thunia. In the Ayurvedic system of medicine, there is one rejuvenating herbal formulation ‘Astavarga’ that is derived from orchid species i.e. jivak (Microstylis wallichii), kakoli (Habenaria acuminata), riddhi (H. intermedia) and vriddhi (H. edgeworthii) are orchids. Orchid are packed with phytochemicals such as stilbenoids, anthraquinones, pyrenes, coumarins, flavonoids, anthocyanins and anthocyanidins, chroman derivatives, lignans, simple benzenoid compounds, terpenoids, steroids, alkamines, amino acids, mono- and dipeptides, Alkaloids and higher fatty acids which play vital role for immunity development and curing other critical ailments of individuals. Keywords: Medicinal orchids, ayurvedic medicines, phytochemicals, immunity. Introduction Orchids are one of the largest families of flowering plants and are globally distributed. To date, 29,199 species have been accepted [1]. One of the best-known plant groups in the global horticultural and cut flower trades, orchids are also grown and traded for a variety of purposes, including as ornamental plants, medicinal products and food. The medicinal orchids belong mainly to the genera: Calanthe, Coelogyne, Cymbidium, Cypipedium, Dendrobium, Ephemerantha, Eria, Galeola, Gastrodia, Gymnadenia, Habenaria, Ludisia, Luisia, Nevilia and Thunia [2].
    [Show full text]
  • Total Evidence Phylogeny of Coelogyne and Allied Genera (Coelogyninae, Epidendroideae, Orchidaceae) Based on Morphological, Anatomical and Molecular Characters
    B. Gravendeel & E.F. de Vogel: Phylogeny of Coelogyne and allied genera 35 Chapter 3 TOTAL EVIDENCE PHYLOGENY OF COELOGYNE AND ALLIED GENERA (COELOGYNINAE, EPIDENDROIDEAE, ORCHIDACEAE) BASED ON MORPHOLOGICAL, ANATOMICAL AND MOLECULAR CHARACTERS B. GRAVENDEEL & E.F. DE VOGEL Nationaal Herbarium Nederland, Universiteit Leiden branch, P.O. Box 9514, 2300 RA Leiden, The Netherlands SUMMARY A phylogenetic analysis of subtribe Coelogyninae (Epidendroideae, Orchidaceae) is performed based on 41 macromorphological and 4 anatomical characters scored from 43 taxa in Coelogyninae (27 Coelogyne species and 13 representatives of other genera) and three outgroups from Bletiinae and Thuniinae. The results from this analysis are analysed together with an earlier constructed molecular data set for the same species. All datasets confirm the monophyly of the Coelogyninae. Coelogyne appears to be polyphyletic, with species falling in at least two different clades. Key characters for generic and sectional delimitation were mapped on the total evidence tree and a comparison of their states within the various groups in Coelogyninae is used for a discussion of evolutionary polarity. Trichome type, presence of stegmata, inflorescence type, number of flowers per inflorescence, persistence of floral bracts, presence of sterile bracts on the rhachis, ovary indu- mentum, petal shape, presence and shape of lateral lobes of hypochile, number of keels on the epichile and presence of a fimbriate margin on the epichile appear to be good characters for defining major clades in Coelogyninae. The number of leaves per pseudobulb, size of the flowers, shape of the lip base and petals and presence of stelidia and calli show many reversals. The total evidence phylogeny is compared with traditional classifications of Coelogyne and Coelogyninae.
    [Show full text]
  • January 2011
    Tan Bark January 2011 Toowoomba Orchid Society Inc PO Box 7710, Toowoomba Mail Centre Qld, 4352 ABN: 32 603 296 231 Our thoughts and prayers go out to anyone who was affected by the floods. To everyone in our Toowoomba and regional areas and all over Queensland and Victoria who has suffered. It has been an incredible couple of weeks for all of us. Next General Meeting Friday 28th January, 2011 Meetings: Fourth Friday of each month except September and December. Meeting commences at 7.30 pm Venue: St Pauls Hall (cnr James & Phillip Streets) Membership Fee: $15 paid annually at February AGM. Website: www.toowoombaorchidsociety.org.au Disclaimer: While every effort is made to ensure the accuracy of the content of Tan Bark, the Toowoomba Orchid Society Inc accepts no liability for the views expressed by the author/s of the published article/s or for damage to or loss of plants, from actions taken by members, as a result of articles or views expressed in Tan Bark. No part of this publication is to be reproduced without the written permission of the Tan Bark editor. President: Rick Emmerson 46 976126 Secretary: Carolyn Woolf 46 590780 Treasurer: Angela Emmerson 46 976126 Editor: [email protected] HAPPY DINERS: The January lunch at the Spotted Cow was very good. We are changing the day to the first Thursday in the month now so the Happy Dinners will be at the Westbrook Tavern on 3rd February at 11.30am, hope to see you all there. March happy diners will be a breakfast at the South Our best wishes go to Heather Toowoomba Bowls Club on Hume St commencing at 8am.
    [Show full text]
  • Growing Coelogyne
    Growing Coelogyne Jim Brydie General - There are about 150 species in Coelogyne (usually abbreviated to Coel.), and they come from the area around India, Asia, PNG, the Philippines and in between. Many are hardy growers that tolerate out Sydney winters quite well, but unfortunately others would need a heated glasshouse. You need to know which is which and be selective. Having said that though, the ones you can grow easily are beautiful orchids and easily acquired because they are so prolific growers and multiply well. There are generally divisions of plants available for sale at society meetings and orchid shows. If I could mention just 5 hardy, cold growers to buy, they would be the species Coel cristata, C. flaccida, C. tomentosa, and C. ovalis and the hybrid C. Unchained Melody. All are shady, moist growers that do well grown in a hanging basket once they are big enough. Don’t be in a rush with fresh divisions or small plants though. They don’t appreciate being overpotted in too large a container. They will grow to a large plant when managed and left undivided. The pick of the 5 mentioned above would be Coelogyne cristata (pictured right) which has an arching to pendant 20 to 30cm raceme of up to 10 crystalline white, slightly floppy, 8 to 10cm flowers with yellow in the lip. There are different clones available with slightly different characteristics but this species pseudobulbs are often quite spaced apart on a creeping rhizome and when grown in a basket, it is normal for the plant to dangle chains of bulbs and rhizome out over the edges of the basket.
    [Show full text]
  • Network Scan Data
    Selbyana 29(1): 69-86. 2008. THE ORCHID POLLINARIA COLLECTION AT LANKESTER BOTANICAL GARDEN, UNIVERSITY OF COSTA RICA FRANCO PUPULIN* Lankester Botanical Garden, University of Costa Rica. P.O. Box 1031-7050 Cartago, Costa Rica, CA Angel Andreetta Research Center on Andean Orchids, University Alfredo Perez Guerrero, Extension Gualaceo, Ecuador Harvard University Herbaria, Cambridge, MA, USA The Marie Selby Botanical Gardens, Sarasota, FL, USA Email: [email protected] ADAM KARREMANS Lankester Botanical Garden, University of Costa Rica. P.O. Box 1031-7050 Cartago, Costa Rica, CA Angel Andreetta Research Center on Andean Orchids, University Alfredo Perez Guerrero, Extension Gualaceo, Ecuador ABSTRACT. The relevance of pollinaria study in orchid systematics and reproductive biology is summa­ rized. The Orchid Pollinaria Collection and the associate database of Lankester Botanical Garden, University of Costa Rica, are presented. The collection includes 496 pollinaria, belonging to 312 species in 94 genera, with particular emphasis on Neotropical taxa of the tribe Cymbidieae (Epidendroideae). The associated database includes digital images of the pollinaria and is progressively made available to the general public through EPIDENDRA, the online taxonomic and nomenclatural database of Lankester Botanical Garden. Examples are given of the use of the pollinaria collection by researchers of the Center in a broad range of systematic applications. Key words: Orchid pollinaria, systematic botany, pollination biology, orchid pollinaria collection,
    [Show full text]
  • VOL. 15, No. 2 AUGUST, 2015
    ISSN 1409-3871 VOL. 15, No. 2 AUGUST, 2015 Vol 15, No. 2 — August 2015 INTERNATIONAL JOURNAL ON ORCHIDOLOGY INTERNATIONAL JOURNAL ON ORCHIDOLOGY LANKESTERIANA, the Scientific Journal of Jardín Botánico Lankester - Universidad de Costa Rica, is devoted to the publi- LANKESTERIANA cation of original contributions on orchidology, including orchid systematics, ecology, evolution, anatomy, physiology, INTERNATIONAL JOURNAL ON ORCHIDOLOGY history, etc., as well as reviews of books and conferences on these topics. Short communications and commentaries are also accepted, and should be titled as such. The official language ofthe journal is the English (papers are published with a Spanish summary), and works submitted in Spanish will be considerd case by case. Manuscripts are evaluated critically Editor-in-Chief (Director) by two or more external referees. FRANCO PUPULIN LANKESTERIANA is indexed by Thomson Reuters’ Biosis, Scielo, Scopus, Latindex, Scirus, and WZB, it is included in the Universidad de Costa Rica, Costa Rica databases of E-journals, Ebookbrowse, FAO Online Catalogues, CiteBank, Mendeley, WorldCat, Core Electronic Journals [email protected] Library, and Biodiveristy Heritage Library, and in the electronic resources of the Columbia University, the University of Managing Editor Florida, the University of Hamburg, and the Smithsonian Institution, among others. ADAM P. KARREMANS LANKESTERIANA is published periodically in volumes, three times a year - in April, August and December - by the Jardín Universidad de Costa Rica, Costa Rica Botánico Lankester, Universidad de Costa Rica. POSTMASTER: Jardín Botánico Lankester, Universidad de Costa Rica, P.O. [email protected] Box 302-7050 Cartago, Costa Rica, C.A. EDITORIAL OffICE: Jardín Botánico Lankester, Universidad de Costa Rica, P.O.
    [Show full text]
  • Natural Phenanthrenes and Their Biological Activity
    CORE Metadata, citation and similar papers at core.ac.uk Provided by SZTE Publicatio Repozitórium - SZTE - Repository of Publications Available online at www.sciencedirect.com PHYTOCHEMISTRY Phytochemistry 69 (2008) 1084–1110 www.elsevier.com/locate/phytochem Review Natural phenanthrenes and their biological activity Adria´na Kova´cs, Andrea Vasas, Judit Hohmann * Department of Pharmacognosy, University of Szeged, Eo¨tvo¨s u. 6, H-6720 Szeged, Hungary Received 12 July 2007; received in revised form 6 December 2007 Abstract The aim of this review is to survey the various naturally occurring phenanthrene compounds that have been isolated from different plants. Only one review has previously been published on this topic. Gorham [Gorham, J., 1989. Stilbenes and phenanthrenes. Meth. Plant Biochem. 1, 159–196] reviewed the structures, biosynthesis, separations and spectroscopy of stilbenes and phenanthrenes. The present study furnishes an overview of the hydroxy or/and methoxy-substituted 9,10-dihydro/phenanthrenes, methylated, preny- lated and other monomeric derivatives, dimeric and trimeric phenanthrenes and their biological activities. A fairly large number of phenanthrenes have been reported from higher plants, mainly in the Orchidaceae family, in the species Dendrobium, Bulbophyllum, Eria, Maxillaria, Bletilla, Coelogyna, Cymbidium, Ephemerantha and Epidendrum. A few phenanthrenes have been found in the Hepaticae class and Dioscoreaceae, Combretaceae and Betulaceae families. Their distribution correlates strongly with the taxonomic divisions. These plants have often been used in traditional medicine, and phenanthrenes have therefore been studied for their cytotoxicity, antimicrobial, spasmolytic, anti-inflammatory, antiplatelet aggregation, antiallergic activities and phytotoxicity. On the basis of 120 references, this review covers the phytochemistry and pharmacology of phenanthrenes, describing 252 compounds.
    [Show full text]