Pollen Production in Relation to Ecological Class of Some Hydrophytes and Marsh Plants

Total Page:16

File Type:pdf, Size:1020Kb

Pollen Production in Relation to Ecological Class of Some Hydrophytes and Marsh Plants American Journal of Plant Sciences, 2013, 4, 324-332 http://dx.doi.org/10.4236/ajps.2013.42043 Published Online February 2013 (http://www.scirp.org/journal/ajps) Pollen Production in Relation to Ecological Class of Some Hydrophytes and Marsh Plants Somnath Bhowmik*, Badal Kumar Datta Plant Taxonomy and Biodiversity Laboratory, Department of Botany, Tripura University, Suryamaninagar, India. Email: *[email protected] Received December 5th, 2012; revised January 5th, 2013; accepted January 12th, 2013 ABSTRACT The knowledge of quantitative production and method of dispersal give some idea about the frequency of presence of particular plant pollen grains in the atmosphere or hydrosphere. Pollen production in terms of number per anther along with the particular anther number per flower, anther length, pollen grain size, mode of anther dehiscence was deter- mined for 51 angiospermous hydrophytes and marsh species occurring in Tripura, India. Pollen production is species specific. The level of pollen production directly related to the anther size and anther number per flower. However, no such correlation could be drawn between pollen production and size of pollen grains. Most of the hydrophytic taxa of the present investigation are anemophilous. The anemophilous taxa are characterized by high pollen production. How- ever no correlation could be drawn from the present study between the high pollen production and mode of anther de- hiscence as in all the studied taxa they show only one kind of anther dehiscence. Keywords: Pollen Production; Hydrophytes; Ecological Class 1. Introduction as to several other disciplines like Agriculture, Forestry, Medicine. Pollen productivity may be referred to as the Studies on pollen, an organ which is considered to be less number of pollen grains per produced per anther of a influenced by changing ecological condition, are relevant flower. The total pollen production of a particular plant is to various branches of Botany as well as to several other disciplines like Agriculture, Forestry, Medicine. Pollen dependent upon the number of anthers per flower and the productivity may be referred to as the number of pollen number of flowers per plant. The pollen production in an grains per produced per anther of a flower. The total pol- individual flower is fixe well before anthesis, and thus len production of a particular plant is dependent upon the pollen presentation is a matter of doling out fixed quanti- number of anthers per flower and the number of flowers ties of floral reward. However plants can alter the pres- per plant. The pollen production in an individual flower entation schedule by sequential dehiscence of the anther is fixed well before anthesis, and thus pollen presentation or by anther time release mechanism [1]. A plant during is a matter of doling out fixed quantities of floral reward. its entire flowering period produces large amount of pol- However, plants can alter the presentation schedule by len grains most of which are not involved in fertilization. sequential dehiscence of the anther or by a within anther These large amount of pollen released may float in air or time release mechanism [1]. A plant during its entire water and finally get deposited in earth’s surface. The flowering period produces large amount of pollen grains knowledge of quantitative production and method of most of which are not involved in fertilization. These dispersal give some idea about the frequency of presence large amount of pollen released may float in air or water of particular plant pollen grains in the atmosphere or hy- and finally get deposited in earth’s surface. The knowl- drosphere [2]. A plant during its entire flowering period edge of quantitative production and method of dispersal produces large amount of pollen grains most of which are give some idea about the frequency of presence of par- not involved in fertilization. These large amount of pol- ticular plant pollen grains in the atmosphere or hydro- len released may float in air or water and finally get de- sphere [2]. Studies on pollen an organ which is consid- posited in earth’s surface. Waterborne pollen and spores ered to be less influenced by changing ecological condi- could come in contact with plants, animals and human tion, are relevant to various branches of Botany as well beings, and affect them [3]. But the literature related to pollen production of aquatic and marshy land plants are *Corresponding author. scarce except a few [4,5]. The anthesis and Pollen release Copyright © 2013 SciRes. AJPS Scrophulariaceae Pontederiaceae Polygonaceae Onagraceae , , Nymphaeceae Nelumbonaceae scan- scan- Limno- Limno- indica Menynthaceae Nym- Nym- pubes- pubes- , , , , Lythraceae Ipomoea Polygonum , , Lentibulariaceae (45,350 (45,350 Hydroleaceae Figure Figure Rotala and and , , Hydrocharitacea Floscopa showed moderate moderate showed nucifera Haloragaceae auriculata orientale Nymphaea 325 Fabaceae , , to 52,301 pollen pollen 52,301 to Droseraceaa micrantha asiatica fistulosa Convolvulaceae vaginalis Commelinaceae stellata Clusiaceae Persicaria Asteraceae Hygrophila Centella Ipomoea , , , , Apiaceae Nymphaea , , Amaranthaceae ; even within the same ge- ge- same the within even ; Alismataceae Nymphaea Acanthaceae rubra , , . Highest pollen production production pollen Highest . nucifera cristatum maritimus Monochoria and , plant families of Tripura, India. India. Tripura, of families plant Figure 1. Pollen production of some hydrophytes and marsh marsh and hydrophytes some of production Pollen 1. Figure Log pollen/Flower Log show high pollen production. production. pollen high show flava Rumex ). The members of Nelumbonaceae, Nym- Nym- Nelumbonaceae, of members The ). micrantha Nymphaea Nelumbo , , , , pollen production. While, While, production. pollen charis Nymphoides dens aquatica cens phaea Nelumbo work. present the in recorded with moderate and 19 species low pollen productivity is is productivity pollen low species 19 and moderate with Table 1 Table angiosperms 12 species with high pollen productivity, 20 20 productivity, pollen high with species 12 angiosperms pollen/anther). Among the 51 aquatic and marsh land land marsh and aquatic 51 the Among pollen/anther). pollen/anther) followed by by followed pollen/anther) per anther was estimated in Nelumbo nucifera (52,301 (52,301 nucifera Nelumbo in estimated was anther per ). The number of pollen grain per anther varied between between varied anther per grain pollen of number The ). grains in in grains Persicaria orientale Persicaria in grains pollen 169 1 top most pollen producer among the studied taxa ( taxa studied the among producer pollen most top phaeaceae, Convolvulaceae and Alismataceae rank the the rank Alismataceae and Convolvulaceae phaeaceae, nus ( nus to genus; species to species to species genus; to anther varies rather widely from family to family; genus genus family; to family from widely rather varies anther is evident that pollen production in terms of number per per number of terms in production pollen that evident is cies which were distributed over twenty three families, it it families, three twenty over distributed were which cies From the pollen production figure obtained for 51 spe- spe- 51 for obtained figure production pollen the From 3.1. Total Pollen Production Production Pollen Total 3.1. 3. Results Results 3. (VII) Wetland helophytes. helophytes. Wetland (VII) drophytes; (VI) Emergent anchored hydrophytes and and hydrophytes anchored Emergent (VI) drophytes; anchored hydrophytes; (V) Floating shoots anchored hy- hy- anchored shoots Floating (V) hydrophytes; anchored Submerged anchored hydrophytes; (IV) Floating leaved leaved Floating (IV) hydrophytes; anchored Submerged These are (I) Floating Hydrophytes; (II) Suspended; (III) (III) Suspended; (II) Hydrophytes; Floating (I) are These ass of Some Hydrophytes and Marsh Plants Marsh and Hydrophytes Some of ass AJPS AJPS isced anthers from plants plants from anthers isced The plants species for the the for species plants The n production of terrestrial terrestrial of production n ledge of anthesis and pol- pol- and anthesis of ledge Linn was also also was Linn strumarium dehiscence, pollen liberation liberation pollen dehiscence, ther time release mechanism mechanism release time ther Copyright © 2013 SciRes. 2013 © Copyright grouped into 7 different “morpho-ecologic” classes [21]. [21]. classes “morpho-ecologic” different 7 into grouped plants so collected for the present investigation was was investigation present the for collected so plants len grains size were studied. The hydrophytes and marsh marsh and hydrophytes The studied. were size grains len ured through a 10× hand lens. The morphology and pol- pol- and morphology The lens. hand 10× a through ured collected randomly from different flowers were meas- meas- were flowers different from randomly collected grains. Filament and anther length from mature stamens stamens mature from length anther and Filament grains. pollen grain size was measured for 50 randomly chosen chosen randomly 50 for measured was size grain pollen standard ocular micrometer. For each taxon under study, study, under taxon each For micrometer. ocular standard torial axes) was measured in glycerine jelly [20] using using [20] jelly glycerine in measured was axes) torial the polar view, and for bilateral ones the polar and equa- equa- and polar the ones bilateral for and view, polar the pollen grains (for radio symmetric ones the diameter in in diameter the ones symmetric radio (for
Recommended publications
  • An Annotated Checklist of the Angiospermic Flora of Rajkandi Reserve Forest of Moulvibazar, Bangladesh
    Bangladesh J. Plant Taxon. 25(2): 187-207, 2018 (December) © 2018 Bangladesh Association of Plant Taxonomists AN ANNOTATED CHECKLIST OF THE ANGIOSPERMIC FLORA OF RAJKANDI RESERVE FOREST OF MOULVIBAZAR, BANGLADESH 1 2 A.K.M. KAMRUL HAQUE , SALEH AHAMMAD KHAN, SARDER NASIR UDDIN AND SHAYLA SHARMIN SHETU Department of Botany, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh Keywords: Checklist; Angiosperms; Rajkandi Reserve Forest; Moulvibazar. Abstract This study was carried out to provide the baseline data on the composition and distribution of the angiosperms and to assess their current status in Rajkandi Reserve Forest of Moulvibazar, Bangladesh. The study reports a total of 549 angiosperm species belonging to 123 families, 98 (79.67%) of which consisting of 418 species under 316 genera belong to Magnoliopsida (dicotyledons), and the remaining 25 (20.33%) comprising 132 species of 96 genera to Liliopsida (monocotyledons). Rubiaceae with 30 species is recognized as the largest family in Magnoliopsida followed by Euphorbiaceae with 24 and Fabaceae with 22 species; whereas, in Lilliopsida Poaceae with 32 species is found to be the largest family followed by Cyperaceae and Araceae with 17 and 15 species, respectively. Ficus is found to be the largest genus with 12 species followed by Ipomoea, Cyperus and Dioscorea with five species each. Rajkandi Reserve Forest is dominated by the herbs (284 species) followed by trees (130 species), shrubs (125 species), and lianas (10 species). Woodlands are found to be the most common habitat of angiosperms. A total of 387 species growing in this area are found to be economically useful. 25 species listed in Red Data Book of Bangladesh under different threatened categories are found under Lower Risk (LR) category in this study area.
    [Show full text]
  • Gori River Basin Substate BSAP
    A BIODIVERSITY LOG AND STRATEGY INPUT DOCUMENT FOR THE GORI RIVER BASIN WESTERN HIMALAYA ECOREGION DISTRICT PITHORAGARH, UTTARANCHAL A SUB-STATE PROCESS UNDER THE NATIONAL BIODIVERSITY STRATEGY AND ACTION PLAN INDIA BY FOUNDATION FOR ECOLOGICAL SECURITY MUNSIARI, DISTRICT PITHORAGARH, UTTARANCHAL 2003 SUBMITTED TO THE MINISTRY OF ENVIRONMENT AND FORESTS GOVERNMENT OF INDIA NEW DELHI CONTENTS FOREWORD ............................................................................................................ 4 The authoring institution. ........................................................................................................... 4 The scope. .................................................................................................................................. 5 A DESCRIPTION OF THE AREA ............................................................................... 9 The landscape............................................................................................................................. 9 The People ............................................................................................................................... 10 THE BIODIVERSITY OF THE GORI RIVER BASIN. ................................................ 15 A brief description of the biodiversity values. ......................................................................... 15 Habitat and community representation in flora. .......................................................................... 15 Species richness and life-form
    [Show full text]
  • For Enumeration of This Part a Linear Sequence of Lycophytes and Ferns After Christenhusz, M
    PTERIDOPHYTA For enumeration of this part A linear sequence of Lycophytes and Ferns after Christenhusz, M. J. M.; Zhang, X.C. & Schneider, H. (2011) has been followed Subclass: Lycopodiidae Beketov (1863). Order: Selaginellales (1874). Selaginellaceae Willkomm, Anleit. Stud. Bot. 2: 163. 1854; Prodr. FI. Hisp. 1(1): 14. 1861. SELAGINELLA P. Beauvois, Megasin Encycl. 9: 478. 1804. Selaginella monospora Spring, Mém. Acad. Roy. Sci. Belgique 24: 135. 1850; Monogr. Lyc. II:135. 1850; Alston, Bull. Fan. Mem. Inst. Biol. Bot. 5: 288, 1954; Alston, Proc. Nat. Inst. Sc. Ind. 11: 228. 1945; Reed, C.F., Ind. Sellaginellarum 160 – 161. 1966; Panigrahi et Dixit, Proc. Nat. Inst. Sc. Ind. 34B (4): 201, f.6. 1968; Kunio Iwatsuki in Hara, Fl. East. Himal. 3: 168. 1972; Ghosh et al., Pter. Fl. East. Ind. 1: 127. 2004. Selaginella gorvalensis Spring, Monogr. Lyc. II: 256. 1850; Bak, Handb. Fern Allies 107. 1887; Selaginella microclada Bak, Jour. Bot. 22: 246. 1884; Selaginella plumose var. monospora (Spring) Bak, Jour. Bot. 21:145. 1883; Selaginella semicordata sensu Burkill, Rec. Bot. Surv. Ind. 10: 228. 1925, non Spring. Plant up to 90 cm, main stem prostrate, rooting on all sides and at intervals, unequally tetragonal, main stem alternately branched 5 – 9 times, branching unequal, flexuous; leavesobscurely green, dimorphus, lateral leaves oblong to ovate-lanceolate, subacute, denticulate to serrulate at base. Spike short, quadrangular, sporophylls dimorphic, large sporophyls less than half as long as lateral leaves, oblong- lanceolate, obtuse, denticulate, small sporophylls dentate, ovate, acuminate. Fertile: October to January. Specimen Cited: Park, Rajib & AP Das 0521, dated 23. 07.
    [Show full text]
  • Semester Course Hours Cred It Subject CODE Marks III CC9 6 5 18KP3BO9 25+75=100
    Semester Course Hours Cred Subject Marks it CODE III CC9 6 5 18KP3BO9 25+75=100 PLANT SYSTEMATICS AND ECONOMIC BOTANY UNIT II : Taxonomical studies of selected families and their economic importance and medicinal uses. Polypetalae : Menispermaceae, Carryophyllaceae, Portulacaceae, Rhamnaceae, Sapindaceae, Anacardiaceae, Combretaceae, Myrtaceae, Umbelliferae. UNIT IV : Taxonomical studies of selectd families and their economic importance and medicinal uses. Monochylamydeae: Chenopodiaceae, Aristolociaceae, Lorantheceae, Orchidaceae. Monocotyledons: Amarylidaceae, Commelineceae, Arecaceae and Cyperaceae UNIT V: Economic Botany: Cereals(Wheat,Maize), Pulses(Red Gram,Black gram),Vegetable oil(groundnut and oil palm), fibers(gossypium and corchorus),Nuts(cashew,walnut),Spices(pepper,clove), Wood(teak,pine) REFERENCES 1.Lawrence, G.H.M., 1955, The taxonomy of Vascular Plants, Central Book Ddepot, Mac Millan, New York. 2. Vashista, P.C., 1990, Taxonomy of angiosperms- S.Chand & co, New Delhi. 3.B.P.Pandey and Anitha., 1990, Economic Botany, S.Chand & Co, New Delhi 4.Sharma O.P., 2000, Economic Botany, Tata Mc Graw Hill Publications, New Delhi. Prepared by UNIT II : Dr.G.Subasri, Asst. Professor, Dept. of Botany, KNGAC, Thanjavur. UNIT IV & V: Dr.G.Santhi, Asst. Professor, Dept. of Botany, KNGAC, Thanjavur. UNIT II Menispermaceae: Distribution of Menispermaceae: It is commonly known as Moonseed family, includes 70 genera and 400 species, distributed largely throughout paleotropic regions and a few genera extend into the eastern Mediterranean region and eastern Asia Characters of Menispermaceae: Mostly woody vines – lianas, dioecious; flowers trimerous, unisexual; double whorls of sepals and petals; curved seed. Habit: Mostly twining, woody vines (lianas), rarely erect shrubs or small trees. Root – Tap and branched.
    [Show full text]
  • Check List of Wild Angiosperms of Bhagwan Mahavir (Molem
    Check List 9(2): 186–207, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Check List of Wild Angiosperms of Bhagwan Mahavir PECIES S OF Mandar Nilkanth Datar 1* and P. Lakshminarasimhan 2 ISTS L (Molem) National Park, Goa, India *1 CorrespondingAgharkar Research author Institute, E-mail: G. [email protected] G. Agarkar Road, Pune - 411 004. Maharashtra, India. 2 Central National Herbarium, Botanical Survey of India, P. O. Botanic Garden, Howrah - 711 103. West Bengal, India. Abstract: Bhagwan Mahavir (Molem) National Park, the only National park in Goa, was evaluated for it’s diversity of Angiosperms. A total number of 721 wild species belonging to 119 families were documented from this protected area of which 126 are endemics. A checklist of these species is provided here. Introduction in the National Park are Laterite and Deccan trap Basalt Protected areas are most important in many ways for (Naik, 1995). Soil in most places of the National Park area conservation of biodiversity. Worldwide there are 102,102 is laterite of high and low level type formed by natural Protected Areas covering 18.8 million km2 metamorphosis and degradation of undulation rocks. network of 660 Protected Areas including 99 National Minerals like bauxite, iron and manganese are obtained Parks, 514 Wildlife Sanctuaries, 43 Conservation. India Reserves has a from these soils. The general climate of the area is tropical and 4 Community Reserves covering a total of 158,373 km2 with high percentage of humidity throughout the year.
    [Show full text]
  • Munnar Landscape Project Kerala
    MUNNAR LANDSCAPE PROJECT KERALA FIRST YEAR PROGRESS REPORT (DECEMBER 6, 2018 TO DECEMBER 6, 2019) SUBMITTED TO UNITED NATIONS DEVELOPMENT PROGRAMME INDIA Principal Investigator Dr. S. C. Joshi IFS (Retd.) KERALA STATE BIODIVERSITY BOARD KOWDIAR P.O., THIRUVANANTHAPURAM - 695 003 HRML Project First Year Report- 1 CONTENTS 1. Acronyms 3 2. Executive Summary 5 3.Technical details 7 4. Introduction 8 5. PROJECT 1: 12 Documentation and compilation of existing information on various taxa (Flora and Fauna), and identification of critical gaps in knowledge in the GEF-Munnar landscape project area 5.1. Aim 12 5.2. Objectives 12 5.3. Methodology 13 5.4. Detailed Progress Report 14 a.Documentation of floristic diversity b.Documentation of faunistic diversity c.Commercially traded bio-resources 5.5. Conclusion 23 List of Tables 25 Table 1. Algal diversity in the HRML study area, Kerala Table 2. Lichen diversity in the HRML study area, Kerala Table 3. Bryophytes from the HRML study area, Kerala Table 4. Check list of medicinal plants in the HRML study area, Kerala Table 5. List of wild edible fruits in the HRML study area, Kerala Table 6. List of selected tradable bio-resources HRML study area, Kerala Table 7. Summary of progress report of the work status References 84 6. PROJECT 2: 85 6.1. Aim 85 6.2. Objectives 85 6.3. Methodology 86 6.4. Detailed Progress Report 87 HRML Project First Year Report- 2 6.4.1. Review of historical and cultural process and agents that induced change on the landscape 6.4.2. Documentation of Developmental history in Production sector 6.5.
    [Show full text]
  • DIVERSITY in ANGIOSPERM FLORA of SIJU WILDLIFE SANCTUARY, SOUTH GARO HILLS DISTRICT of MEGHALAYA, INDIA *Dilip Kr
    Indian Journal of Plant Sciences ISSN: 2319–3824(Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jps.htm 2014 Vol. 3 (3) July-September, pp.87-101/Roy et al. Research Article DIVERSITY IN ANGIOSPERM FLORA OF SIJU WILDLIFE SANCTUARY, SOUTH GARO HILLS DISTRICT OF MEGHALAYA, INDIA *Dilip Kr. Roy1, Anupam Das Talukdar2, M. Dutta Choudhury2 and Bipin Kr. Sinha3 1Botanical Survey of India, Eastern Regional Centre, Shillong-793003, India 2Department of Life Science and Bioinformatics, Assam University, Silchar-788011, India 3Industrial Section, Indian Museum, Botanical Survey of India, Kolkata-700016, India *Author for Correspondence ABSTRACT Diversity of vascular plants was studied in the Siju Wildlife Sanctuary of Meghalaya, in Northeast India. A total of 257 species of angiosperms comprising 213 genera and 83 families were recorded from 5.20 sq. kms area, between 90-200m altitudes. Of these, Dicotyledons comprise of 67 families, 158 genera and 189 species and monocotyledons comprise of 16 families, 55 genera and 68 species. 12 species of rare occurrence in the state of Meghalaya including 9 species listed under CITES were reported from the sanctuary along with some primitive taxa. Keywords: Angiosperm Diversit, Siju Wildlife Sanctuary, Meghalaya INTRODUCTION The North-Eastern region of India, south of the Brahmaputra River, is part of the globally recognized Indo-Burma biodiversity hotspot and host to a remarkable biodiversity that includes a high proportion of endemic, rare and endangered species (http://www.conservation.org/where/priority_areas/hotspots/asia- pacific/Indo-Burma/Pages/default.aspx). The region is a unique transitional zone between the Indian, Indo-Malayan and Indo-Chinese bio-geographical zones as well as the confluence of the Himalayan region with peninsular India (Rao, 1994).
    [Show full text]
  • Major Creeper and Climber Weeds in India
    TechnicalTechnical Bulletin Bulletin No. 13 No. 13 Major Creeper and Climber weeds in India V.C. Tyagi, R.P. Dubey, Subhash Chander and Anoop Kumar Rathore Hkk-d`-vuq-i-& [kjirokj vuqla/kku funs'kky;] tcyiqj ICAR - Directorate of Weed Research, Jabalpur ISO 9001 : 2015 Certified Correct citation Major Creeper and Climber Weeds in India, 2017. ICAR-Directorate of Weed Research, Jabalpur, 50 p. Published by Dr. P.K. Singh Director, ICAR - Directorate of Weed Research, Jabalpur Compiled and edited by V.C. Tyagi R.P. Dubey Subhash Chander Anoop Kumar Rathore Technical Assistance Sandeep Dhagat Year of publication March, 2017 Contact address ICAR - Directorate of Weed Research, Jabalpur (M.P.), India Phone : 0761-2353934, 2353101; Fax : 0761-2353129 Email: [email protected] Website : http://www.dwr.org.in Cover theme (a) (b) Photos of major creeper and climber weeds, viz. (a) Convolvulus arvensis, (b) Diplocyclos palmatus, (c) Lathyrus aphaca....................................................................... (c) PREFACE Weeds are plants which interfere in human activities and welfare. They are a problem not only in cropped lands but also in non-cropped areas, pastures, aquatic bodies, roadsides, parks etc. In agricultural crops, weeds may cause on an average 37% reduction in yields, whereas, in non-cropped areas they reduce the value of the land. Weeds can be of different types. The category of creeper or climber weeds has characteristics different than other weeds. These weeds are capable of creeping or climbing as they have special structures such as tendrils, hooks, twining stems and leaves etc. In agricultural crops they can climb up the crop plants, shade them and compete for resources reducing the yields.
    [Show full text]
  • Plant Science Today (2019) 6(2): 218-231 218
    Plant Science Today (2019) 6(2): 218-231 218 https://doi.org/10.14719/pst.2019.6.2.527 ISSN: 2348-1900 Plant Science Today http://www.plantsciencetoday.online Research Article Seedling Morphology of some selected members of Commelinaceae and its bearing in taxonomic studies Animesh Bose1* & Nandadulal Paria2 1 Department of Botany, Vidyasagar College, 39 Sankar Ghosh Lane, Kolkata 700006, West Bengal, India 2 Taxonomy & Biosystematics Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India Article history Abstract Received: 13 March 2019 Seedling morphology of eight species from four genera of the family Commelinaceae viz. Accepted: 09 April 2019 Commelina appendiculata C.B. Clarke, C. benghalensis L., C. caroliniana Walter, C. paludosa Published: 16 May 2019 Blume, Cyanotis axillaris (L.) D. Don ex Sweet, C. cristata (L.) D. Don, Murdannia nudiflora (L.) Brenan and Tradescantia spathacea Sw. are investigated using both light and scanning electron microscopy. The seedling morphological features explored include germination pattern, seed shape, surface and hilum, root system, cotyledon type, cotyledonary hyperphyll (apocole), cotyledonary hypophyll (cotyledonary sheath), hypocotyl, first leaf and subsequent leaves. All taxa studied had hypogeal and remote tubular cotyledons. However, differences in cotyledon structure (apocole, cotyledonary sheath), seed, hypocotyl, internodes, first leaf and subsequent leaves were observed. Variations of those characters were used to prepare an identification key for the investigated taxa. Commelina spp. and Murdannia nudiflora of the tribe Commelineae were found to differ from Cyanotis spp. and Tradescantia spathacea of tribe Tradescantieae in the petiolate first leaf with papillate margins on upper surface with 6- celled stomata and the glabrous epicotyl.
    [Show full text]
  • Potential Ornamental Plants from Meenachil Taluk of Kottayam District, Kerala, India
    Aparna Prasad and Binu Thomas. / European Journal of Environmental Ecology. 2015; 2(2):108-122. e - ISSN – 2393-9672 Print ISSN - XXXX-XXXX European Journal of Environmental Ecology Journal homepage: www.mcmed.us/journal/ejee POTENTIAL ORNAMENTAL PLANTS FROM MEENACHIL TALUK OF KOTTAYAM DISTRICT, KERALA, INDIA Aparna Prasad and Binu Thomas* PG Department of Botany, Deva Matha College, Kuravilangad, Kottayam - 686 633, Kerala, India. Corresponding Author Article Info Dr. Binu Thomas Received 13/04/2015; Revised 29/04/2015; Email:- [email protected] Accepted 20/05/2015 ABSTRACT The present paper highlights the diversity of sculpting gardens into a form of art and fashioning them ornamental potential plants from Meenachil taluk of into expressions of philosophical belief. From the 1970s Kottayam district, Kerala. As a result of present onwards there has been a remarkable resurgence in investigation, There are 98 taxa belonging to 80 genera in worldwide interest in ornamental plants which resulted in 37 families were documented. The ornamental renewed efforts to search for and develop new ornamental potentiality of documented plant species is mainly based plants. This trend is continuing to this day [3]. Ornamental on their attractive flower colour, good looking habit and plants used in horticulture should be understood as an various plant parts with their beautiful appearance. The expression of the human desire not only to improve the present study also emphasizes safe conservation and quality of life but also to ensure survival. This may sustainable uses of wild resources are essential for future include everything from producing a steady, secure generations. supply of selected and improved fruits, vegetables and other crops, to the creation of beauty, concentrated in a Keywords: Ornamental Plants, Meenachil Taluk, given location, in the form of a garden as a work of art [4, Kottayam District, Kerala.
    [Show full text]
  • II. a Cladistic Analysis of Rbcl Sequences and Morphology
    Systematic Botany (2003), 28(2): pp. 270±292 q Copyright 2003 by the American Society of Plant Taxonomists Phylogenetic Relationships in the Commelinaceae: II. A Cladistic Analysis of rbcL Sequences and Morphology TIMOTHY M. EVANS,1,3 KENNETH J. SYTSMA,1 ROBERT B. FADEN,2 and THOMAS J. GIVNISH1 1Department of Botany, University of Wisconsin, 430 Lincoln Drive, Madison, Wisconsin 53706; 2Department of Systematic Biology-Botany, MRC 166, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012; 3Present address, author for correspondence: Department of Biology, Hope College, 35 East 12th Street, Holland, Michigan 49423-9000 ([email protected]) Communicating Editor: John V. Freudenstein ABSTRACT. The chloroplast-encoded gene rbcL was sequenced in 30 genera of Commelinaceae to evaluate intergeneric relationships within the family. The Australian Cartonema was consistently placed as sister to the rest of the family. The Commelineae is monophyletic, while the monophyly of Tradescantieae is in question, due to the position of Palisota as sister to all other Tradescantieae plus Commelineae. The phylogeny supports the most recent classi®cation of the family with monophyletic tribes Tradescantieae (minus Palisota) and Commelineae, but is highly incongruent with a morphology-based phylogeny. This incongruence is attributed to convergent evolution of morphological characters associated with pollination strategies, especially those of the androecium and in¯orescence. Analysis of the combined data sets produced a phylogeny similar to the rbcL phylogeny. The combined analysis differed from the molecular one, however, in supporting the monophyly of Dichorisandrinae. The family appears to have arisen in the Old World, with one or possibly two movements to the New World in the Tradescantieae, and two (or possibly one) subsequent movements back to the Old World; the latter are required to account for the Old World distribution of Coleotrypinae and Cyanotinae, which are nested within a New World clade.
    [Show full text]
  • COMMELINACEAE 鸭跖草科 Ya Zhi Cao Ke Hong Deyuan (洪德元)1; Robert A
    Flora of China 24: 19–39. 2000. COMMELINACEAE 鸭跖草科 ya zhi cao ke Hong Deyuan (洪德元)1; Robert A. DeFilipps2 Herbs annual or perennial, sometimes woody at base. Stems with prominent nodes and internodes. Leaves alternate, distichous or spirally arranged, sessile or petiolate; leaf sheath prominent, open or closed; leaf blade simple, entire. Inflorescence usually of cin- cinni in panicles or solitary, sometimes shortened into heads, sometimes sessile with flowers fascicled, sometimes axillary and pene- trating enveloping leaf sheath, rarely flowers solitary and terminal or axillary. Flowers bisexual, rarely unisexual, actinomorphic or zygomorphic. Sepals 3, free or connate only at base, often boat-shaped or carinate, sometimes galeate at apex. Petals (2 or)3, free, sometimes connate and tubular at middle and free at 2 ends (Cyanotis), sometimes clawed. Stamens 6, free, all or only 2 or 3 fertile; filaments glabrous or torulose villous; anthers parallel or slightly divergent, longitudinally dehiscent, rarely dehiscent by apical pores; staminodes 1–3; antherodes 4-lobed and butterflylike, 3-sect, 2-lobed and dumbbell-shaped, or entire. Ovary 3-loculed, or reduced to 2-loculed; ovules 1 to several per locule, orthotropous. Fruit a loculicidal, 2- or 3-valved capsule, rarely baccate and indehiscent. Seeds few, large; endosperm copious; hilum orbicular or linear. About 40 genera and 650 species: mainly in tropical regions, fewer species in subtropical and temperate regions; 15 genera (two introduced) and 59 species (12 endemic, three introduced) in China. Hong Deyuan. 1997. Commelinaceae. In: Wu Kuo-fang, ed., Fl. Reipubl. Popularis Sin. 13(3): 69–133. 1a. Inflorescence penetrating leaf sheath, sessile, capitate; fertile stamens 6.
    [Show full text]