Phenoptosis” and How to Fight It?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Journal of the Palo Alto Institute
PAI is a 501(c)(3) nonprofit Vol. 5 creativity laboratory, The Journal of the dedicated to the pursuit February 2012 and promotion of unconventional truths ISSN: 1948–7843 through research, Palo Alto Institute education and entertainment. E-ISSN: 1948–7851 Future of Human Evolution 1 Status Update 13 Food Allergy, Asthma, Anaphylaxis, and Autonomic Dysfunction 17 10x 22 Therapeutics as the Next Frontier in the Evolution of Darwinian Medicine 24 Future of Human Evolution Palo Alto Institute Joon Yun February 2012, Vol. 5 DOI: 10.3907 / FHEJ5P Programmed Death Is senescence (biologic death) a programmed trait? Perhaps no topic in evolutionary biology evokes more controversy. Senescence was once assumed to be the result of so-called "wear and tear"; namely, an organism ages and eventually fails as it accumulates defects that are insufficiently corrected. However, the existence of senescence is not a thermodynamic necessity. Although entropy must increase within a closed system, organisms are not closed systems unto themselves. Since it can extract free energy from the environment and reduce its own entropy, an organism typically grows more resilient from seed stage to reproductive maturity. Indeed, life tables for humans suggest that the lowest likelihood of death in females occurs around the age of 14, which coincides with the prehistoric age of reproductive maturity. Organisms appear to be capable of self-repair when beneficial; indeed, certain organisms such as Hydra do not exhibit signs of senescence. However, most organisms undergo a failure of repair mechanisms, an increase in entropy, and an emergence of senescence after reproductive age—despite having free energy available around them. -
Generation of Reactive Oxygen Species in the Anterior Eye Segment
BBA Clinical 6 (2016) 49–68 Contents lists available at ScienceDirect BBA Clinical journal homepage: www.elsevier.com/locate/bbaclin Review article Generation of reactive oxygen species in the anterior eye segment. Synergistic codrugs of N-acetylcarnosine lubricant eye drops and mitochondria-targeted antioxidant act as a powerful therapeutic platform for the treatment of cataracts and primary open-angle glaucoma☆ Mark A. Babizhayev ⁎ Innovative Vision Products, Inc., 3511 Silverside Road, Suite 105, County of New Castle, DE 19810, USA article info abstract Article history: Senile cataract is a clouding of the lens in the aging eye leading to a decrease in vision. Symptoms may Received 13 January 2016 include faded colors, blurry vision, halos around light, trouble with bright lights, and trouble seeing at Received in revised form 5 April 2016 night. This may result in trouble driving, reading, or recognizing faces. Cataracts are the cause of half of blindness Accepted 11 April 2016 and 33% of visual impairment worldwide. Cataracts result from the deposition of aggregated proteins in the Available online 19 April 2016 eye lens and lens fiber cells plasma membrane damage which causes clouding of the lens, light scattering, Keywords: and obstruction of vision. ROS induced damage in the lens cell may consist of oxidation of proteins, DNA Aging eye damage and/or lipid peroxidation, all of which have been implicated in cataractogenesis. The inner eye pressure Age-related cataracts (also called intraocular pressure or IOP) rises because the correct amount of fluid can't drain out of the eye. Eye lens and aqueous humor With primary open-angle glaucoma, the entrances to the drainage canals are clear and should be working cor- Membrane derangement rectly. -
Aging by Design
Aging by Design How New Thinking on Aging Will Change Your Life Theodore C. Goldsmith Copyright © 2011 Azinet Press ISBN: 978-0-9788709-3-5 ISBN-10: 0-9788709-3-X Amazon Kindle Edition ASIN: B005KCO8SS Azinet Press Box 239 Crownsville, MD 21032 1-410-923-4745 Keywords: senescence, anti-aging medicine, ageing, evolution, gerontology This book contains some material previously published in An Introduction to Biological Aging Theory Pictures and illustrations courtesy of Wikipedia unless otherwise noted. 22,500 words, 49 pages (8.5 x 11 inch format), 7 illus. August 22, 2011 2 Contents Introduction......................................................................................................................... 4 Ages of Man – Human Mortality........................................................................................ 5 A Brief Summary of Aging Theories.................................................................................. 6 The Evolution of Aging ...................................................................................................... 7 Medawar’s Modification to Darwin’s Theory .................................................................. 11 Williams’ Modification to Darwin’s Theory .................................................................... 12 Evolution Theory’s Individual Benefit Clause ................................................................. 14 More Discrepancies with Traditional Darwinism – Group Selection............................... 15 More Discrepancies – Evolvability -
An Age Dependent Mechanism of Mammals Self Destruction
Ukrainica Bioorganica Acta 1—2 (2004) 3—12 www.bioorganica.org.ua Do mammals die young!? An agedependent mechanism of mammals selfdestruction O. G. Boyko MultiВranched Centre of Science & Technology «Agrobiotech» 50 Kharkivski highway, Kyiv, 02160, Ukraine Abstract. It is hypothesized the first multicellular organisms arisen on the Earth have inherited neither cell aging nor programmed cell death mechanisms from singlecellular ancestors possessing practically unlimited longevity. Both aging and aginginduced death are later evolutionary acquisitions. They are typical only for some phyla, and the majority of nowadays species of multicellular organisms are potentially immortal. Cell aging mechanisms in multicellular organisms can be somewhat involved in agedependent mechanisms of self destruction, but they cannot determine themselves the organism’s aging and longevity. An agerelated mecha nism of mammal selfdestruction appears in the evolutionary lineage from mammallike reptiles Synapsida to mammals in addition to existing systemic and cellular mechanisms of aging. Such agerelated mechanism direct ing the selfdestruction of mammal’s organism is a result of some evolutionary events leading to the «postmitot ic brain» development in mammals. In this minireview, recent results relevant to this hypothesis are surveyed and some approaches to intervening in the proposed process are discussed. Keywords: aging, hypothesis, mammals, birds, exogenous organospecific RNAs, postmitotic brain. Introduction. The ultimate aim of gerontology lachev’s version, potential immortality has alrea researches is to make human aging optional. dy considered not as a luxury, but as a fatal dan Therefore, the initial purpose of this work was ger for population, contrary to initial Weismann’s to consider the most important facts and ideas and conception. -
ER Galimov1, JN Lohr1, and D. Gems1,A
MINI-REVIEW When and How Can Death Be an Adaptation? E. R. Galimov1, J. N. Lohr1, and D. Gems1,a* 1Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK ae-mail: [email protected] * To whom correspondence should be addressed. Abstract—The concept of phenoptosis (or programmed organismal death) is problematic with respect to most species (including humans) since it implies that dying of old age is an adaptation, which contradicts the established evolutionary theory. But can dying ever be a strategy to promote fitness? Given recent developments in our understanding of the evolution of altruism, particularly kin and multilevel selection theories, it is timely to revisit the possible existence of adaptive death. Here, we discuss how programmed death could be an adaptive trait under certain conditions found in organisms capable of clonal colonial existence, such as the budding yeast Saccharomyces cerevisiae and, perhaps, the nematode Caenorhabditis elegans. The concept of phenoptosis is only tenable if consistent with the evolutionary theory; this accepted, phenoptosis may only occur under special conditions that do not apply to most animal groups (including mammals). DOI: 10.1134/S000629791912001? Keywords: adaptive death, aging, altruism, C. elegans, evolution, inclusive fitness PROGRAMMED AGING AND PHENOPTOSIS Is aging programmed? Asking this question risks falling afoul of the old warning: ask a stupid question and you’ll get a stupid answer [1, 2]. This is because the term programmed aging has multiple meanings, which can lead the questioner into logical confusion [3]. But it is possible to disambiguate this term and to avoid conceptual pratfalls, as follows. -
Coefficient of Variation of Lifespan Across the Tree of Life: Is It a Signature of Programmed Aging?
ISSN 0006-2979, Biochemistry (Moscow), 2017, Vol. 82, No. 12, pp. 1480-1492. © Pleiades Publishing, Ltd., 2017. Original Russian Text © G. A. Shilovsky, T. S. Putyatina, V. V. Ashapkin, O. S. Luchkina, A. V. Markov, 2017, published in Biokhimiya, 2017, Vol. 82, No. 12, pp. 1842-1857. Coefficient of Variation of Lifespan Across the Tree of Life: Is It a Signature of Programmed Aging? G. A. Shilovsky1,2*, T. S. Putyatina2, V. V. Ashapkin1, O. S. Luchkina3, and A. V. Markov2 1Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; E-mail: [email protected], [email protected] 2Lomonosov Moscow State University, Faculty of Biology, 119991 Moscow, Russia 3Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia Received August 9, 2017 Revision received September 15, 2017 Abstract—Measurements of variation are of great importance for studying the stability of pathological phenomena and processes. For the biology of aging, it is very important not only to determine average mortality, but also to study its stabil- ity in time and the size of fluctuations that are indicated by the variation coefficient of lifespan (CVLS). It is believed that a ∼ relatively small ( 20%) value of CVLS in humans, comparable to the coefficients of variation of other events programmed in ontogenesis (for example, menarche and menopause), indicates a relatively rigid determinism (N. S. Gavrilova et al. (2012) Biochemistry (Moscow), 77, 754-760). To assess the prevalence of this phenomenon, we studied the magnitude of CVLS, as well as the coefficients of skewness and kurtosis in diverse representatives of the animal kingdom using data provided by the Institute for Demographic Research (O. -
Appendices Appendix 1 Energy, Work, and Laws Of
Appendices Appendix 1 Energy, Work, and Laws of Thermodynamics A.1 Introduction Energy (from Greek eme9qceia1—action, activity) can be generally defined as the property of a material system that characterizes the ability of this system to produce some changes in the environment (work, W). Such a work can consist of growth of the total amount of matter in a system, the uneven distribution of matter particles in space, and/or movement of these particles. Physical interactions between matter particles in a system are accompanied by the mutual transformation of different types of energy (mechanical, thermal, electromagnetic, gravitational, nuclear, and chemical). How is life ensured by energy? The laws of thermodynamics provide us with a quantitative answer to this question. Energy transductions in living self-replicating material systems (organisms) follow the laws of thermodynamics. It seems quite remarkable that the first law of thermodynamics (the law of conservation and transformation of energy) was first formulated in 1841 by the German physicist and physician Julius Robert von Mayer as the result of his studies of the energy processes in the human organism; it was only some time later that this law was applied to the systems of technical energetics. Thermodynamics deals with three types of systems: isolated, closed, and open. Hypothetical isolated (adiabatic) systems are completely self-contained, i.e., there is no exchange of matter, energy, and information with the environment. Closed systems are materially self-sufficient, but they are open energetically and informationally. In other words, there is exchange of energy and information, but not matter through the borders of closed systems. -
The-Future-Of-Immortality-Remaking-Life
The Future of Immortality Princeton Studies in Culture and Technology Tom Boellstorff and Bill Maurer, Series Editors This series presents innovative work that extends classic ethnographic methods and questions into areas of pressing interest in technology and economics. It explores the varied ways new technologies combine with older technologies and cultural understandings to shape novel forms of subjectivity, embodiment, knowledge, place, and community. By doing so, the series demonstrates the relevance of anthropological inquiry to emerging forms of digital culture in the broadest sense. Sounding the Limits of Life: Essays in the Anthropology of Biology and Beyond by Stefan Helmreich with contributions from Sophia Roosth and Michele Friedner Digital Keywords: A Vocabulary of Information Society and Culture edited by Benjamin Peters Democracy’s Infrastructure: Techno- Politics and Protest after Apartheid by Antina von Schnitzler Everyday Sectarianism in Urban Lebanon: Infrastructures, Public Services, and Power by Joanne Randa Nucho Disruptive Fixation: School Reform and the Pitfalls of Techno- Idealism by Christo Sims Biomedical Odysseys: Fetal Cell Experiments from Cyberspace to China by Priscilla Song Watch Me Play: Twitch and the Rise of Game Live Streaming by T. L. Taylor Chasing Innovation: Making Entrepreneurial Citizens in Modern India by Lilly Irani The Future of Immortality: Remaking Life and Death in Contemporary Russia by Anya Bernstein The Future of Immortality Remaking Life and Death in Contemporary Russia Anya Bernstein -
Oxidative Stress in Obesity: a Critical Component in Human Diseases
Int. J. Mol. Sci. 2015, 16, 378-400; doi:10.3390/ijms16010378 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Oxidative Stress in Obesity: A Critical Component in Human Diseases Lucia Marseglia 1,*, Sara Manti 2, Gabriella D’Angelo 1, Antonio Nicotera 3, Eleonora Parisi 3, Gabriella Di Rosa 3, Eloisa Gitto 1 and Teresa Arrigo 2 1 Neonatal and Pediatric Intensive Care Unit, Department of Pediatrics, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; E-Mails: [email protected] (G.D.); [email protected] (E.G.) 2 Unit of Paediatric Genetics and Immunology, Department of Paediatrics, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; E-Mails: [email protected] (S.M.); [email protected] (T.A.) 3 Unit of Child Neurology and Psychiatry, Department of Pediatrics, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; E-Mails: [email protected] (A.N.); [email protected] (E.P.); [email protected] (G.D.R.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-090-221-3100; Fax: +39-090-692-308. Academic Editor: Anthony Lemarié Received: 3 November 2014 / Accepted: 15 December 2014 / Published: 26 December 2014 Abstract: Obesity, a social problem worldwide, is characterized by an increase in body weight that results in excessive fat accumulation. Obesity is a major cause of morbidity and mortality and leads to several diseases, including metabolic syndrome, diabetes mellitus, cardiovascular, fatty liver diseases, and cancer. Growing evidence allows us to understand the critical role of adipose tissue in controlling the physic-pathological mechanisms of obesity and related comorbidities. -
Mitochondria As a Therapeutic Target for Cardiac Ischemia‑Reperfusion Injury (Review)
INTERNATIONAL JOURNAL OF MOleCular meDICine 47: 485-499, 2021 Mitochondria as a therapeutic target for cardiac ischemia‑reperfusion injury (Review) WENWEN MARIN1, DENNIS MARIN2, XIANG AO3 and YING LIU1,3 1Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266071; 2Qingdao University of Science and Technology, Qingdao, Shandong 266061; 3School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China Received June 8, 2020; Accepted November 18, 2020 DOI: 10.3892/ijmm.2020.4823 Abstract. Acute myocardial infarction is the leading cause 3. Alterations in mitochondrial metabolism during cardiac IR of cardiovascular-related mortality and chronic heart failure injury worldwide. As regards treatment, the reperfusion of ischemic 4. Mitochondrial dynamics in response to IR stress tissue generates irreversible damage to the myocardium, 5. Current developments in mitochondria-targeted agents which is termed ‘cardiac ischemia-reperfusion (IR) injury’. with cardioprotective effects against IR injury Due to the large number of mitochondria in cardiomyocytes, 6. Future perspectives an increasing number of studies have focused on the roles of 7. Conclusions mitochondria in IR injury. The primary causes of IR injury are reduced oxidative phosphorylation during hypoxia and the increased production of reactive oxygen species (ROS), 1. Introduction together with the insufficient elimination of these oxidative species following reperfusion. IR injury includes the oxidation Ischemia is the disruption of blood flow to tissues, which also of DNA, incorrect modifications of proteins, the disruption results in the reduction of delivery of oxygen and metabo- of the mitochondrial membrane and respiratory chain, the lites to cells (1). -
The Aaptl Gene of Soybean Complements a Cholinephosphotransferase-Deficient Mutant of Yeast
The Plant Cell, Vol. 6;1495-1507, October 1994 0 1994 American Society of Plant Physiologists The AAPTl Gene of Soybean Complements a Cholinephosphotransferase-Deficient Mutant of Yeast Ralph E. Dewey,'" Richard F. Wilson,b William P. Novitzky,b and John H. Goodea a Department of Crop Science, North Carolina State University, Raleigh, North Carolina 27695-7620 b United States Department of Agriculture, Agricultura1 Research Service, Raleigh, North Carolina 27695-7620 Aminoalcoholphosphotransferases(AAPTases) utilize diacylglycerolsand cytidine diphosphate (CDP)-aminoalcohols as substrates in the synthesis of the abundant membrane liplds phosphatidylcholine and phosphatidylethanolamine. A soybean cDNA encoding an AAPTase that demonstrates high levels of CDP-choline:sn-l,2-diacylglycerolcholinephosphotrans- ferase activity was isolated by complementation of a yeast strain deficient in this function and was designated AAPn. The deduced amino acid sequence of the soybean cDNA showed nearly equal similarity to each of the two characterized AAPTase sequences from yeast, cholinephosphotransferase and ethanolaminephosphotransferase (CDP4hanolamine:sn- 1,2-diacylglycerol ethanolaminephosphotransferase).Moreover, assays of soybean AAPT1-encoded enzyme activity in yeast microsomal membranes revealed that the addition of CDP-ethanolamine to the reaction inhibited incorporation of 14C-CDP-cholineinto phosphatidylcholine in a manner very similar to that observed using unlabeled CDP-choline. Al- though DNA gel blot analysis suggested that AAPTT-like sequences are represented in soybean as a small multigene family, the same AAPn isoform isolated from a young leaf cDNA library was also recovered from a developing seed cDNA library. Expression assays in yeast using soybean AAPTT cDNAs that differed only in length suggested that sequences in the 5'leader of the transcript were responsiblefor the negative regulation of gene activity in this heterologoussystem. -
Simulation of the Evolution of Aging: Effects of Aggression and Kin-Recognition
Simulation of the evolution of aging: effects of aggression and kin-recognition Svetlana Krivenko1, Mikhail Burtsev2 1 Moscow Institute of Physics and Technologies, Institutsky per., 9, Dolgoprudny, RU-141700, Russia 2 Keldysh Institute of Applied Mathematics, 4 Miusskaya sq., Moscow, RU-125047, Russia 1 [email protected], 2 [email protected] Abstract. Current biological theory has no commonly accepted view on the phenomenon of aging. On the one hand it is considered as an inescapable degradation immanent to complex biological systems and on the other hand as outcome of evolution. At the moment, there are three major complementary theories of evolutionary origin of senescence – the programmed death theory, the mutation accumulation theory, and the antagonistic pleiotropy theory. The later two are rather extensively studied theoretically and computationally then the former one is paid less attention. Here we present computer multi-agent model of aging evolution compatible with theories of programmed death and mutation accumulation. In our study we test how presence of aggression and kin-recognition affects evolution of age dependent suicide which is an analog of programmed death in the model. Keywords. Aging, senescence, evolution, simulation, model, artificial life, Weismann, programmed death, mutation accumulation, cooperation. Introduction One of the fundamental problems of biology is the problem of phenomenon of aging [1,2]. There are two alternative approaches to the explanation of senescence. The first assumes that the aging is an immanent feature of all living matter. For example, the disposable soma theory [3,4,5] considers senescence as decline in somatic maintenance and repair. The second approach to the problem of aging is constituted by the evolutionary theories.