Phylogeny and the Tree of Life Phylogeny: the Evolutionary History of a Species Or Group of Species

Total Page:16

File Type:pdf, Size:1020Kb

Phylogeny and the Tree of Life Phylogeny: the Evolutionary History of a Species Or Group of Species NOTES: Chapter 26 Phylogeny and the Tree of Life Phylogeny: the evolutionary history of a species or group of species ● Systematics: discipline focused on classifying organisms and determining their evolutionary relationships ● The fossil record: the ordered array of fossils, within layers, or strata, of sedimentary rock ● Paleontologists: collect and interpret fossils a “family tree”… Linnaeus Darwin provided us convinced us to with the mechanism by use a hierarchical which evolution results classification in descent with system modification ● Taxonomy – naming & classifying organisms ● Systematics – naming & classifying organisms according to their evolutionary relationships Systematics ● Phylogenetics – reconstructing the Phylogenetics evolutionary relationships among organisms Binomial Nomenclature ● In the 18th century, Carolus Linnaeus published a system of taxonomy based on resemblances ● Two key features of his system remain useful today: two-part names for species and hierarchical classification Aptenodytes forsteri Binomial Nomenclature ● The two-part scientific name of a species is called a binomial ● The first part of the name is the genus ● The second part is unique for each species within the genus ● The first letter of the genus is capitalized, and the entire species name is italicized ● Both parts together name the species Chelonia mydas Hierarchical Classification ● The taxonomic groups from broad to narrow are domain, kingdom, phylum, class, order, family, genus, and species ● A taxonomic unit at any level of hierarchy is called a taxon Species: Panthera pardus Genus: Panthera Family: Felidae Order: Carnivora Class: Mammalia Phylum: Chordata Domain: Kingdom: Bacteria Animalia Domain: Archaea Domain: Eukarya 5 Kingdom classification system in use through the late 1900s 5 Kingdom classification system in use through the late 1900s gave way to Woese’s 3 Domains 5 Kingdom classification system in use through the late 1900s gave way to Woese’s 3 Domains and multiple Kingdoms “Did King Philip Come Over From Great Spain?” The Major Lineages of Life: the 5 Kingdom System Living organisms (now PLUS 3 domains!) Prokaryotic Eukaryotic (Monera) Simple/unicells Multicellular (Protista) Autotrophic Heterotrophic (Plantae) Absorptive Ingestive nutrition nutrition (Fungi) (Animalia) Linking Classification and Phylogeny ● Systematists depict evolutionary relationships in branching phylogenetic trees Order Family Genus Species Panthera Felidae Panthera pardus (leopard) Taxidea Carnivora Mustelidae Taxidea taxus (American badger) Lutra Lutra lutra (European otter) Canis Canidae Canis latrans (coyote) Canis lupus (gray wolf) Macroevolution & Phylogeny ● Phylogenetic tree– - hypothesized genealogy traced back to the last common ancestor (i.e., the most recent) through hierarchical, dichotomous branching Phylogenetic Trees ● A phylogenetic tree represents a hypothesis about evolutionary relationships ● Each branch point represents the divergence of two species ● Sister taxa are groups that share an immediate common ancestor Phylogenetic Trees ● A rooted tree includes a branch to represent the last common ancestor of all taxa in the tree ● A basal taxon diverges early in the history of a group and originates near the common ancestor of the group ● A polytomy is a branch from which more than two groups emerge Branch point: where lineages diverge Taxon A Taxon B Sister taxa Taxon C Taxon D Taxon E ANCESTRAL LINEAGE Taxon F Basal Taxon G taxon This branch point This branch point forms a represents the polytomy: an unresolved common ancestor of pattern of divergence. taxa A–G. Macroevolution & Phylogeny Phylogenetic tree, phylogeny, or cladogram ● Node – branch point, speciation event Constructing Phylogenetic Trees ● Sorting homology vs. analogy... ● Homology: likenesses attributed to common or shared ancestry ● Analogy: likenesses attributed to similar ecological roles and natural selection ● Convergent evolution: species from different evolutionary branches that resemble one another due to similar ecological roles Phylogenies – HOMOLOGY HOMOLOGIES: Similar characters (e.g., morphological, behavioral, molecular, etc. traits or features) suggest relatedness… Wasps [Hymenoptera] Phylogenies – HOMOLOGY ● Homologous characters share common ancestry **Lack of similarity among taxa results from DIVERGENCE Phylogenies – HOMOLOGY ● As a general rule, the more homologous characters shared by two species, the more closely they are related ● Sequences of DNA & RNA (nucleotides) and proteins (amino acids) are used as characters; as a general rule, the more recently two species shared a common ancestor, the more similar their sequences Phylogenies - ANALOGY But, not all similarity derives from common ancestry! CONVERGENT EVOLUTION: can produce superficially similar traits that lack homology with one another Phylogenies - ANALOGY ● Analogous characters do not share common ancestry **Similarity among taxa results from CONVERGENCE Evaluating Molecular Homologies: ● Systematists use computer programs and mathematical tools when analyzing comparable DNA segments from different organisms ● Molecular systematics uses DNA and other molecular data (i.e. amino acid sequences) to determine evolutionary relationships 1 1 2 Deletion 2 1 2 Insertion 3 1 2 4 1 2 Cladistic Analysis Each nucleotide can be treated as a character Character changes (mutations) from the ancestral to the derived state include: Substitutions …AGCTCTAGG… …AGCTATAGG… Insertions …AGCTCTAGG… Mutations …AGCTGATCTAGG… Deletions …AGCTCTAGG… …AGCTCTAGG… Shared characters are used to construct phylogenetic trees ● Once homologous characters have been identified, they can be used to infer a phylogeny CLADISTICS: ● Cladistics groups organisms by common descent ● A clade is a group of species that includes an ancestral species and all its descendants ● Clades can be nested in larger clades, but not all groupings of organisms qualify as clades ● A valid clade is monophyletic, signifying that it consists of the ancestor species and all its descendants (a) Monophyletic group (clade) A B Group C D E F G CLADISTICS: ● A paraphyletic grouping consists of an ancestral species and some, but not all, of the descendants (b) Paraphyletic group A B C D E Group F G CLADISTICS: ● A polyphyletic grouping consists of various species with different ancestors (c) Polyphyletic group A B Group C D E F G (a) Monophyletic group (clade) (b) Paraphyletic group (c) Polyphyletic group A A A B Group B B Group C C C D D D E E Group E F F F G G G Macroevolution & Phylogeny Phylogenetic tree, phylogeny, or cladogram A clade is a monophyletic group, i.e., an ancestral species and all of its descendents Macroevolution & Phylogeny Taxonomic groups often reflect true clades… Shared Ancestral and Shared Derived Characters ● In comparison with its ancestor, an organism has both shared and different characteristics Ancestral vs. Derived Characters ● A shared ancestral character is a character that originated in an ancestor of the taxon ● A shared derived character is an evolutionary novelty unique (“new”) to a particular clade ● A character can be both ancestral and derived, depending on the context Inferring Phylogenies Using Derived Characters ● When inferring evolutionary relationships, it is useful to know in which clade a shared derived character first appeared TAXA Lancelet (outgroup) Lamprey Bass Turtle Lancelet (outgroup) Lamprey Frog Leopard Vertebral column 0 1 1 1 1 1 Bass (backbone) Vertebral Hinged jaws 0 0 1 1 1 1 column Frog Four walking Hinged jaws 0 0 0 1 1 1 legs Turtle Four walking legs Amnion 0 0 0 0 1 1 CHARACTERS Amnion Hair 0 0 0 0 0 1 Leopard Hair (a) Character table (b) Phylogenetic tree TAXA Bass Lancelet (outgroup) Lamprey Frog Leopard Turtle Vertebral column 0 1 1 1 1 1 (backbone) Hinged jaws 0 0 1 1 1 1 Four walking 0 0 0 1 1 1 legs Amnion 0 0 0 0 1 1 CHARACTERS Hair 0 0 0 0 0 1 (a) Character table Lancelet (outgroup) Lamprey Bass Vertebral column Frog Hinged jaws Turtle Four walking legs Amnion Leopard Hair (b) Phylogenetic tree Cladistic Analysis Shared Analogies All Primitive similar Characters characters (ancestral) Homologies Shared Derived Characters (unique to a clade) **The sequence of branching in a cladogram then represents the sequence in which evolutionary novelties (shared derived characters) evolved Ingroup vs. Outgroup ● An OUTGROUP is a species or group of species that is closely related to the INGROUP, the various species being studied ● The outgroup is a group that has diverged before the ingroup ● Systematists compare each ingroup species with the outgroup to differentiate between shared derived and shared ancestral characteristics ● Characters shared by the outgroup and ingroup are ancestral characters that predate the divergence of both groups from a common ancestor Cladistic Analysis Ingroup vs. Outgroup An outgroup helps identify shared ancestral and shared DERIVED CHARACTERS (unique to a clade) Phylogenetic Trees with Proportional Branch Lengths ● In some trees, the length of a branch can reflect the number of genetic changes that have taken place in a particular DNA sequence in that lineage Drosophila Lancelet Zebrafish Frog Chicken Human Mouse ● In other trees, branch length can represent chronological time, and branching points can be determined from the fossil record Drosophila Lancelet Zebrafish Frog Chicken Human Mouse PALEOZOIC MESOZOIC CENOZOIC 542 251 65.5 Present Millions of years ago Phylogenetic Trees as Hypotheses ● The best hypotheses for phylogenetic trees
Recommended publications
  • Oldest Known Dinosaurian Nesting Site and Reproductive Biology of the Early Jurassic Sauropodomorph Massospondylus
    Oldest known dinosaurian nesting site and reproductive biology of the Early Jurassic sauropodomorph Massospondylus Robert R. Reisza,1, David C. Evansb, Eric M. Robertsc, Hans-Dieter Suesd, and Adam M. Yatese aDepartment of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; bRoyal Ontario Museum, Toronto, ON M5S 2C6, Canada; cSchool of Earth and Environmental Sciences, James Cook University, Townsville, 4811 QLD, Australia; dDepartment of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013; and eBernard Price Institute for Palaeontological Research, University of the Witwatersrand, Wits 2050, Johannesburg, South Africa Edited by Steven M. Stanley, University of Hawaii, Honolulu, HI, and approved December 16, 2011 (received for review June 10, 2011) The extensive Early Jurassic continental strata of southern Africa clutches and recognition of the earliest known dinosaurian nesting have yielded an exceptional record of dinosaurs that includes complex at the Rooidraai locality. scores of partial to complete skeletons of the sauropodomorph Massospondylus, ranging from embryos to large adults. In 1976 an Results incomplete egg clutch including in ovo embryos of this dinosaur, Our work at the Rooidraai locality has yielded multiple in situ the oldest known example in the fossil record, was collected from clutches of eggs as well as fragmentary eggshell and bones, all from a road-cut talus, but its exact provenance was uncertain. An exca- a 2-m-thick interval of muddy siltstone 25 m from the top of the vation program at the site started in 2006 has yielded multiple in Lower Jurassic Upper Elliot Formation (“Stormberg Group,” situ egg clutches, documenting the oldest known dinosaurian Karoo Supergroup) (11).
    [Show full text]
  • A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes
    J Mammal Evol DOI 10.1007/s10914-007-9062-6 ORIGINAL PAPER A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes Robert W. Meredith & Michael Westerman & Judd A. Case & Mark S. Springer # Springer Science + Business Media, LLC 2007 Abstract Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • A Model Based on Curvatures of Extant Avian Ungual Bones
    Inferring lifestyle for Aves and Theropoda: A model based on curvatures of extant avian ungual bones A thesis submitted to the University of Manchester for the degree of Master of Science by Research in the Faculty of Science & Engineering 2019 Savannah E. Cobb School of Earth and Environmental Sciences Contents List of Figures.........................................................................................................................4-5 List of Tables..............................................................................................................................6 List of Abbreviations..............................................................................................................7-8 Abstract......................................................................................................................................9 Declaration...............................................................................................................................10 Copyright Statement...............................................................................................................11 Acknowledgements..................................................................................................................12 1 Literature Review........................................................................................................13 1.1 Avians, avialans, and theropod dinosaurs..........................................................13 1.2 Comparative study and claws............................................................................18
    [Show full text]
  • Paleontological Contributions
    Paleontological Contributions Number 14 The first giant raptor (Theropoda: Dromaeosauridae) from the Hell Creek Formation Robert A. DePalma, David A. Burnham, Larry D. Martin, Peter L. Larson, and Robert T. Bakker October 30, 2015 Lawrence, Kansas, USA ISSN 1946-0279 (online) paleo.ku.edu/contributions Life restoration by Emily Willoughby of Dakotaraptor steini running with the sparrow-sized birds, Cimolopteryx petra while the mammal, Purgatorius, can be seen in the foreground. Paleontological Contributions October 30, 2015 Number 14 THE FIRST GIANT RAPTOR (THEROPODA: DROMAEOSAURIDAE) FROM THE HELL CREEK FORMATION Robert A. DePalma1,2, David A. Burnham2,*, Larry D. Martin2,†, Peter L. Larson3 and Robert T. Bakker4 1 Department of Vertebrate Paleontology, The Palm Beach Museum of Natural History, Fort Lauderdale, Florida; 2 University of Kansas Bio- diversity Institute, Lawrence, Kansas; 3Black Hills Institute of Geological Research, Hill City, South Dakota; 4Houston Museum of Nature and Science, Houston, Texas; e-mail: [email protected] ABSTRACT Most dromaeosaurids were small- to medium-sized cursorial, scansorial, and arboreal, sometimes volant predators, but a comparatively small percentage grew to gigantic proportions. Only two such giant “raptors” have been described from North America. Here, we describe a new giant dromaeosaurid, Dakotaraptor steini gen. et sp. nov., from the Hell Creek Formation of South Dakota. The discovery represents the first giant dromaeosaur from the Hell Creek Formation, and the most recent in the fossil record worldwide. A row of prominent ulnar papilli or “quill knobs” on the ulna is our first clear evidence for feather quills on a large dromaeosaurid forearm and impacts evolutionary reconstructions and functional morphology of such derived, typically flight-related features.
    [Show full text]
  • BIOLOGY EDITION Reece • Urry • Cain • Wasserman • Minorsky • Jackson 26 Phylogeny and the Tree of Life
    CAMPBELL TENTH BIOLOGY EDITION Reece • Urry • Cain • Wasserman • Minorsky • Jackson 26 Phylogeny and the Tree of Life Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick © 2014 Pearson Education, Inc. Investigating the Tree of Life . Legless lizards have evolved independently in several different groups © 2014 Pearson Education, Inc. Figure 26.1 © 2014 Pearson Education, Inc. Phylogeny is the evolutionary history of a species or group of related species . For example, a phylogeny shows that legless lizards and snakes evolved from different lineages of legged lizards . The discipline of systematics classifies organisms and determines their evolutionary relationships © 2014 Pearson Education, Inc. Figure 26.2 Geckos ANCESTRAL No limbs LIZARD Snakes (with limbs) Iguanas Monitor lizard Eastern glass lizard No limbs © 2014 Pearson Education, Inc. Concept 26.1: Phylogenies show evolutionary relationships . Taxonomy is the scientific discipline concerned with classifying and naming organisms © 2014 Pearson Education, Inc. Binomial Nomenclature . In the 18th century, Carolus Linnaeus published a system of taxonomy based on resemblances . Two key features of his system remain useful today: two-part names for species and hierarchical classification © 2014 Pearson Education, Inc. The two-part scientific name of a species is called a binomial . The first part of the name is the genus . The second part, called the specific epithet, is unique for each species within the genus . The first letter of the genus is capitalized, and the entire species name is italicized . Both parts together name the species (not the specific epithet alone) © 2014 Pearson Education, Inc. Hierarchical Classification . Linnaeus introduced a system for grouping species in increasingly inclusive categories .
    [Show full text]
  • Phylogeny and the Tree of Life 537 That Pines and firs Are Different Enough to Be Placed in Sepa- History
    how do biologists distinguish and categorize the millions of species on Earth? An understanding of evolutionary relationships suggests 26 one way to address these questions: We can decide in which “container” to place a species by comparing its traits with those of potential close relatives. For example, the scaly-foot does not have a fused eyelid, a highly mobile jaw, or a short tail posterior to the anus, three traits shared by all snakes. Phylogeny and These and other characteristics suggest that despite a superfi- cial resemblance, the scaly-foot is not a snake. Furthermore, a the Tree of Life survey of the lizards reveals that the scaly-foot is not alone; the legless condition has evolved independently in several different groups of lizards. Most legless lizards are burrowers or live in grasslands, and like snakes, these species lost their legs over generations as they adapted to their environments. Snakes and lizards are part of the continuum of life ex- tending from the earliest organisms to the great variety of species alive today. In this unit, we will survey this diversity and describe hypotheses regarding how it evolved. As we do so, our emphasis will shift from the process of evolution (the evolutionary mechanisms described in Unit Four) to its pattern (observations of evolution’s products over time). To set the stage for surveying life’s diversity, in this chapter we consider how biologists trace phylogeny, the evolution- ary history of a species or group of species. A phylogeny of lizards and snakes, for example, indicates that both the scaly- foot and snakes evolved from lizards with legs—but that they evolved from different lineages of legged lizards.
    [Show full text]
  • The Biomechanics Behind Extreme Osteophagy in Tyrannosaurus Rex Paul M
    www.nature.com/scientificreports OPEN The Biomechanics Behind Extreme Osteophagy in Tyrannosaurus rex Paul M. Gignac1 & Gregory M. Erickson2 Most carnivorous mammals can pulverize skeletal elements by generating tooth pressures between Received: 25 November 2016 occluding teeth that exceed cortical bone shear strength, thereby permitting access to marrow and Accepted: 7 April 2017 phosphatic salts. Conversely, carnivorous reptiles have non-occluding dentitions that engender Published: xx xx xxxx negligible bone damage during feeding. As a result, most reptilian predators can only consume bones in their entirety. Nevertheless, North American tyrannosaurids, including the giant (13 metres [m]) theropod dinosaur Tyrannosaurus rex stand out for habitually biting deeply into bones, pulverizing and digesting them. How this mammal-like capacity was possible, absent dental occlusion, is unknown. Here we analyzed T. rex feeding behaviour from trace evidence, estimated bite forces and tooth pressures, and studied tooth-bone contacts to provide the answer. We show that bone pulverization was made possible through a combination of: (1) prodigious bite forces (8,526–34,522 newtons [N]) and tooth pressures (718–2,974 megapascals [MPa]) promoting crack propagation in bones, (2) tooth form and dental arcade configurations that concentrated shear stresses, and (3) repetitive, localized biting. Collectively, these capacities and behaviors allowed T. rex to finely fragment bones and more fully exploit large dinosaur carcasses for sustenance relative to competing carnivores. Most vertebrates cannot generate sufficient tooth pressures to gain access to marrow and phosphatic minerals trapped within the major bones of large animals. Carnivorous mammals (Carnivora) are the exception. Many, such as grey wolves (Canis lupus) and spotted hyenas (Crocuta crocuta), use their occluding incisors and cheek teeth to produce tooth pressures exceeding cortical bone shear strength to promote bone fragmentation1–4.
    [Show full text]
  • The Ligamental Scar in the Costovertebral Articulation of the Tyrannosaurid Dinosaurs
    The ligamental scar in the costovertebral articulation of the tyrannosaurid dinosaurs TATSUYA HIRASAWA Hirasawa, T. 2009. The ligamental scar in the costovertebral articulation of the tyrannosaurid dinosaurs. Acta Palaeonto− logica Polonica 54 (1): 49–59. The costovertebral articulation is integral to constrain the thoracic kinematics and to infer the breathing mechanism in the respect with costal aspiration. However, the structure of the costovertebral articulation in non−avian theropods has not been studied in great detail before. This study highlights the Tyrannosauridae, which is represented by numerous com− plete specimens. Costovertebral articulations of ten tyrannosaurid specimens, including two nearly in−situ articulated fos− sils, were investigated and compared with those in extant Archosauria. For extant archosaurs, dissections were conducted to rationalize the soft tissue anatomy in tyrannosaurids. This study shows that the rib articulates ventrally or postero− ventrally with the distal end of the corresponding vertebral transverse process in the tyrannosaurid ribcage. A ligament (ligamentum costotransversarium) can be reconstructed to connect the rib tuberculum to the transverse process in each ar− ticulation. The scar for lig. costotransversarium is recognizable in many theropod skeletons, and this rugosity can be used to identify the rotational axis for the rib. This result provides a cornerstone for exploring the evolution of the ribcage and breathing mechanisms across the theropod lineage leading to birds. Key words: Dinosauria, Theropoda, Tyrannosauridae, ribcage, vertebra, rib, soft tissue anatomy. Tatsuya Hirasawa [[email protected]−tokyo.ac.jp], Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, 7−3−1 Hongo, Bunkyo−ku, Tokyo, 113−0033, Japan.
    [Show full text]
  • Molecular Phylogenetics and Evolution 82 (2015) 358–374
    Molecular Phylogenetics and Evolution 82 (2015) 358–374 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Biogeography in deep time – What do phylogenetics, geology, and paleoclimate tell us about early platyrrhine evolution? Richard F. Kay Department of Evolutionary Anthropology & Division of Earth and Ocean Sciences, Duke University, Box 90383, Durham, NC 27708, United States article info abstract Article history: Molecular data have converged on a consensus about the genus-level phylogeny of extant platyrrhine Available online 12 December 2013 monkeys, but for most extinct taxa and certainly for those older than the Pleistocene we must rely upon morphological evidence from fossils. This raises the question as to how well anatomical data mirror Keywords: molecular phylogenies and how best to deal with discrepancies between the molecular and morpholog- Platyrrhini ical data as we seek to extend our phylogenies to the placement of fossil taxa. Oligocene Here I present parsimony-based phylogenetic analyses of extant and fossil platyrrhines based on an Miocene anatomical dataset of 399 dental characters and osteological features of the cranium and postcranium. South America I sample 16 extant taxa (one from each platyrrhine genus) and 20 extinct taxa of platyrrhines. The tree Paraná Portal Anthropoidea structure is constrained with a ‘‘molecular scaffold’’ of extant species as implemented in maximum par- simony using PAUP with the molecular-based ‘backbone’ approach. The data set encompasses most of the known extinct species of platyrrhines, ranging in age from latest Oligocene ( 26 Ma) to the Recent. The tree is rooted with extant catarrhines, and Late Eocene and Early Oligocene African anthropoids.
    [Show full text]
  • PDF Download Feathered Dinosaurs: the Origin of Birds Kindle
    FEATHERED DINOSAURS: THE ORIGIN OF BIRDS PDF, EPUB, EBOOK John L. Long,Peter Schouten | 208 pages | 08 Jan 2009 | Oxford University Press Inc | 9780195372663 | English | New York, United States Feathered Dinosaurs: The Origin of Birds PDF Book Journal of Morphology. This is the ultimate in dinosaur books. However, some fossils support the version of this theory that holds that some non- flying carnivorous dinosaurs may have had flying ancestors. Photo of dromaeosaurid feather courtesy of Xing Xu, from: Xu, X. Teach your students about the evolution of birds: The evolution of flight in birds , an online investigation for grades After the extinction of the dinosaurs and before large carnivorous mammals evolved, two groups of large flightless birds evolved to fill a similar niche. Archaeopteryx was the first and for a long time the only known feathered Mesozoic animal. The tide began to turn against the 'thecodont' hypothesis after the discovery of a new theropod dinosaur in Montana. Give Feedback External Websites. Instead, they indicate that Archaeopteryx is closer to birds, within the clade Avialae , than it is to deinonychosaurs or oviraptorosaurs. Schouten, an acclaimed natural history artist, has created 80 full-color paintings that capture the striking physical traits of these feathered dinosaurs. In Currie, Philip J. A small minority of researchers have claimed that the simple filamentous "protofeather" structures are simply the result of the decomposition of collagen fiber under the dinosaurs' skin or in fins along their backs, and that species with unquestionable feathers, such as oviraptorosaurs and dromaeosaurs are not dinosaurs, but true birds unrelated to dinosaurs.
    [Show full text]
  • Modeling Dragons: Using Linked Mechanistic Physiological and Microclimate Models To
    bioRxiv preprint doi: https://doi.org/10.1101/790980; this version posted October 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Modeling Dragons: Using linked mechanistic physiological and microclimate models to explore environmental, physiological, and morphological constraints on the early evolution of dinosaurs 1* 2 3 2#a David M. Lovelace ,​ Scott A. Hartman ,​ Paul D. Mathewson ,​ Benjamin J. Linzmeier ,​ ​ ​ ​ ​ Warren P. Porter3* ​ 1 ​ University of Wisconsin Geology Museum, Department of Geosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America 2 ​ Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, United States of America 3 ​ Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America #a ​ Current Address: Earth and Planetary Sciences Department, Northwestern University, Evanston, Illinois, United States of America * Corresponding authors E-mail: [email protected] ​ E-mail: [email protected] ​ 1 bioRxiv preprint doi: https://doi.org/10.1101/790980; this version posted October 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract We employed the widely-tested biophysiological modeling software, Niche Mapper™ to investigate the metabolic function of Late Triassic dinosaurs Plateosaurus ​ and Coelophysis during global greenhouse conditions. We tested them under a variety ​ ​ of assumptions about resting metabolic rate, evaluated within six microclimate models that bound paleoenvironmental conditions at 12° N paleolatitude, as determined by sedimentological and isotopic proxies for climate within the Chinle Formation of the southwestern United States.
    [Show full text]