LOVE THEM Or HATE THEM?

Total Page:16

File Type:pdf, Size:1020Kb

LOVE THEM Or HATE THEM? INVASIVEINVASIVE DECAPODSDECAPODS LOVELOVE THEMTHEM oror HATEHATE THEM?THEM? DavidDavid HoldichHoldich TheThe intentionalintentional oror accidentalaccidental introductionintroduction ofof invasiveinvasive speciesspecies isis secondsecond onlyonly toto habitathabitat destructiondestruction inin causingcausing thethe globalglobal lossloss ofof biodiversity.biodiversity. AquaticAquatic systemssystems presentpresent fewfew barriersbarriers toto thethe spreadspread ofof invasiveinvasive speciesspecies onceonce theythey becomebecome establishedestablished (Cook(Cook && Clark,Clark, 2004).2004). However,However, littlelittle emphasisemphasis hashas beenbeen putput onon thethe considerableconsiderable impactimpact thatthat decapoddecapod crustaceanscrustaceans cancan havehave onon inlandinland waters.waters. Global Strategy on Invasive e.g.e.g. Global Strategy on Invasive AlienAlien Species.Species. McNeelyMcNeely etet alal.. (2001).(2001). IUCNIUCN Gland,Gland, Switzerland,Switzerland, andand Cambridge,Cambridge, UK,UK, inin collaborationcollaboration withwith thethe GlobalGlobal InvasiveInvasive SpeciesSpecies Programme.Programme. OneOne briefbrief mentionmention ofof invasiveinvasive decapods,decapods, i.e.i.e. crayfishcrayfish escapingescaping fromfrom aa LondonLondon fishfish market!market! ApproximatelyApproximately 10,00010,000 speciesspecies ofof decapoddecapod crustaceans,crustaceans, whichwhich includeinclude thethe prawns,prawns, shrimps,shrimps, lobsters,lobsters, crabscrabs andand crayfish.crayfish. ManyMany havehave aquaculturalaquacultural oror fisheriesfisheries potentialpotential andand havehave beenbeen intentionallyintentionally movedmoved outsideoutside ofof theirtheir homehome rangerange toto newnew countries,countries, e.g.e.g. freshwaterfreshwater crayfishcrayfish.. OthersOthers havehave beenbeen movedmoved accidentallyaccidentally outsideoutside theirtheir homehome range,range, e.g.e.g. crabscrabs inin ballastballast waterwater.. WhenWhen established,established, bothboth intentionalintentional andand accidentalaccidental introductionsintroductions oftenoften dodo betterbetter inin newnew environmentsenvironments thanthan atat home,home, e.g.e.g. NorthNorth AmericanAmerican andand AsianAsian speciesspecies inin EuropeEurope.. WhetherWhether youyou ‘love’‘love’ invasive invasive decapodsdecapods oror ‘hate’‘hate’ themthem dependsdepends onon ifif youyou are are interestedinterested inin themthem becausebecause ofof thethe impactimpact theythey havehave onon thethe aquaticaquatic environmentenvironment oror fromfrom aa commercialcommercial pointpoint ofof view.view. PositivePositive featuresfeatures ofof invasiveinvasive decapods:decapods: e.g.e.g. actualactual oror potentiallypotentially valuablevaluable cropcrop oror aquariumaquarium tradetrade species;species; additionaladditional foodfood sourcesource forfor predatorspredators suchsuch asas fish,fish, birds,birds, otters,otters, andand gourmets.gourmets. CommercialCommercial harvestingharvesting andand preparationpreparation ofof thethe redred swampswamp crayfishcrayfish LargeLarge industryindustry inin LouisianaLouisiana (native),(native), ChinaChina (introduced)(introduced) andand SpainSpain (introduced)(introduced) NewNew exportexport market,market, e.g.e.g. fromfrom SpainSpain toto ScandinaviaScandinavia -- muchmuch cheapercheaper thanthan nativenative crayfishcrayfish speciesspecies AustralianAustralian yabbiesyabbies for for dinnerdinner inin SwitzerlandSwitzerland MusselsMussels ++ TurkishTurkish crayfishcrayfish ++ chipschips inin thethe SouthSouth ofof France!France! Aquarium-Aquarium- ornamentalsornamentals trade,trade, e.g.e.g. redclawredclaw and and marbledmarbled crayfishcrayfish CootCoot eatingeating aa signalsignal crayfishcrayfish –– new new foodfood sourcesource NegativeNegative featuresfeatures ofof invasiveinvasive decapodsdecapods OutOut competecompete nativenative speciesspecies forfor resourcesresources InvasiveInvasive rr-selected,-selected, nativesnatives tendtend toto bebe K-selectedK-selected CarryCarry diseasesdiseases PolytrophicPolytrophic DamageDamage toto ricerice cropscrops DamageDamage toto banksbanks byby burrowingburrowing AbilityAbility toto escapeescape andand movemove overlandoverland MortalitiesMortalities ofof nativenative crayfishcrayfish causedcaused byby crayfishcrayfish plagueplague fungusfungus DamageDamage toto riverriver banksbanks causedcaused byby crayfishcrayfish andand crabscrabs SignalSignal crayfishcrayfish circumventingcircumventing aa weirweir andand escapingescaping fromfrom aa containercontainer withinwithin secondsseconds ofof itit beingbeing openedopened InvasionsInvasions byby decapodsdecapods intointo EuropeanEuropean inlandinland waterswaters havehave beenbeen onon twotwo fronts:fronts: 1.1. Estuarine Estuarine crabscrabs accidentallyaccidentallyintroduced introduced viavia ballastballast tanktank water,water, e.g.e.g. a.a. ChineseChinese mittenmitten crab,crab,EriocheirEriocheir sinensissinensis,, fromfrom SESE AsiaAsia toto GermanyGermany inin 1912.1912. b.b. DwarfDwarf mudmud crab,crab,RhithropanopeusRhithropanopeus harrisiiharrisii,, fromfrom thethe USAUSA –– introduced introduced fromfrom NorthNorth AmericaAmerica toto thethe NetherlandsNetherlands inin 1874.1874. NowNow widespreadwidespread inin NorthernNorthern Europe,Europe, includingincluding thethe Baltic.Baltic. VeryVery smallsmall andand notnot yetyet aa problem.problem. c.c. BlueBlue crab,crab,CallinectesCallinectes sapidussapidus,, fromfrom thethe USAUSA toto thethe NetherlandsNetherlands inin 1932.1932. SimilarSimilar lifelife historyhistory toto thethe ChineseChinese mittenmitten crab.crab. NotNot yetyet aa problem.problem. 2.2. FreshwaterFreshwater crayfishcrayfish intentionallyintentionallyintroduced introduced intointo WesternWestern EuropeEurope forfor stockingstocking andand aquacultural aquacultural purposes:purposes: Spiny-cheekSpiny-cheek crayfish:crayfish:OrconectesOrconectes limosuslimosus(USA-1890)(USA-1890) Narrow-clawedNarrow-clawed crayfish:crayfish: Astacus Astacus leptodactylusleptodactylus (Eastern(Eastern Europe-late1800s)Europe-late1800s) SignalSignal crayfish:crayfish:PacifastacusPacifastacus leniusculusleniusculus(USA-1960s)(USA-1960s) RedRed swampswamp crayfish:crayfish:ProcambarusProcambarus clarkiiclarkii(USA-1970s)(USA-1970s) Yabby:Yabby:CheraxCherax destructor destructor(Australia-1983).(Australia-1983). InvasiveInvasive decapodsdecapods FutureFuture threats threats from from crayfish,crayfish, e.g. e.g. Cherax Cherax spp. spp., , ProcambarusProcambarusspp.andspp.and OrconectesOrconectes spp. spp. CRABSCRABS ReasonsReasons forfor thethe successsuccess ofof introducedintroduced crabscrabs areare thatthat theythey areare euryhaline,euryhaline, eurythermal,eurythermal, polytrophic,polytrophic, andand somesome areare ableable toto migratemigrate longlong distancesdistances upup riversrivers andand movemove acrossacross land.land. CrabCrab developmentdevelopment involvesinvolves thethe productionproduction ofof thousandsthousands ofof free-livingfree-living larvaelarvae –– very very differentdifferent lifelife cyclecycle toto crayfish.crayfish. e.g.e.g. ChineseChinese mittenmitten crabcrab isis catadromouscatadromous – – lives lives inin freshwaterfreshwater butbut movesmoves toto estuariesestuaries toto breed.breed. LarvaeLarvae developdevelop inin estuaryestuary andand thenthen youngyoung crabscrabs movemove backback upup river,river, sometimessometimes veryvery longlong distances.distances. TheThe ChineseChinese mittenmitten crabcrab supportssupports aa $1.25$1.25 billionbillion perper annumannum aquaculturalaquacultural industryindustry inin China.China. LocalLocal andand internationalinternational marketsmarkets areare suppliedsupplied withwith livelive animals.animals. AtAt presentpresent therethere isis notnot muchmuch callcall forfor itit asas foodfood inin EuropeEurope exceptexcept amongstamongst immigrantimmigrant ChineseChinese peoples.peoples. LiveLive specimensspecimens areare soldsold inin ChineseChinese supermarketssupermarkets inin somesome countries.countries. MayMay fetchfetch 1818 euro/kgeuro/kg inin LondonLondon inin season.season. However,However, therethere isis somesome potentialpotential -- in in 19361936 242242 tonnestonnes werewere caughtcaught inin GermanyGermany alonealone (4.4(4.4 millionmillion individuals)!individuals)! EriocheirEriocheir sinensis sinensis-- Chinese Chinese mittenmitten crabcrab 66 cmcm carpacecarpace length length TheThe KingKing andand QueenQueen ChineseChinese mittenmitten crabscrabs worthworth 21,00021,000 euros!euros! ChineseChinese mitten mitten crab crab – – invasion invasion of of Europe Europe (from(from Herborg Herborg et et al., al., 2003, 2003, 2005; 2005; Karaman Karaman & & Machino, Machino, 2004) 2004) 19121912 – – R. R. Weser, Weser, Germany Germany 19141914 – – R. R. Elbe, Elbe, Germany Germany 19271927 – – Baltic Baltic via via Kiel Kiel Canal Canal 19271927 – – Austria Austria via via Germany Germany (R. (R. Danube Danube drainage) drainage) 19331933 – – Russia Russia and and Finland Finland 19271927 – – Denmark Denmark 19301930 – – Northern Northern France France 19311931 – – Netherlands Netherlands – – most most rivers rivers by by 1936 1936 19321932 – – Czech Czech Rep. Rep. via via R. R. Elbe Elbe (700 (700 km) km) 19321932 – – R. R. Rhine Rhine (512 (512 km) km) 19331933 – – Belgium Belgium 19341934 – – Poland Poland via via R. R. Oder Oder (446 (446 km) km) 19541954 – – southern southern France France (Atlantic) (Atlantic) 19591959
Recommended publications
  • Invasion of Asian Tiger Shrimp, Penaeus Monodon Fabricius, 1798, in the Western North Atlantic and Gulf of Mexico
    Aquatic Invasions (2014) Volume 9, Issue 1: 59–70 doi: http://dx.doi.org/10.3391/ai.2014.9.1.05 Open Access © 2014 The Author(s). Journal compilation © 2014 REABIC Research Article Invasion of Asian tiger shrimp, Penaeus monodon Fabricius, 1798, in the western north Atlantic and Gulf of Mexico Pam L. Fuller1*, David M. Knott2, Peter R. Kingsley-Smith3, James A. Morris4, Christine A. Buckel4, Margaret E. Hunter1 and Leslie D. Hartman 1U.S. Geological Survey, Southeast Ecological Science Center, 7920 NW 71st Street, Gainesville, FL 32653, USA 2Poseidon Taxonomic Services, LLC, 1942 Ivy Hall Road, Charleston, SC 29407, USA 3Marine Resources Research Institute, South Carolina Department of Natural Resources, 217 Fort Johnson Road, Charleston, SC 29422, USA 4Center for Coastal Fisheries and Habitat Research, National Centers for Coastal Ocean Science, National Ocean Service, NOAA, 101 Pivers Island Road, Beaufort, NC 28516, USA 5Texas Parks and Wildlife Department, 2200 Harrison Street, Palacios, TX 77465, USA E-mail: [email protected] (PLF), [email protected] (DMK), [email protected] (PRKS), [email protected] (JAM), [email protected] (CAB), [email protected] (MEH), [email protected] (LDH) *Corresponding author Received: 28 August 2013 / Accepted: 20 February 2014 / Published online: 7 March 2014 Handling editor: Amy Fowler Abstract After going unreported in the northwestern Atlantic Ocean for 18 years (1988 to 2006), the Asian tiger shrimp, Penaeus monodon, has recently reappeared in the South Atlantic Bight and, for the first time ever, in the Gulf of Mexico. Potential vectors and sources of this recent invader include: 1) discharged ballast water from its native range in Asia or other areas where it has become established; 2) transport of larvae from established non-native populations in the Caribbean or South America via ocean currents; or 3) escape and subsequent migration from active aquaculture facilities in the western Atlantic.
    [Show full text]
  • Eriocheir Sinensis
    Behavioural Processes 165 (2019) 44–50 Contents lists available at ScienceDirect Behavioural Processes journal homepage: www.elsevier.com/locate/behavproc Aggressive behavior variation and experience effects in three families of juvenile Chinese mitten crab (Eriocheir sinensis) T ⁎ Yi Lia, Qiuyue Jianga, Sining Fana, Na Sunb, Xiao Dong Lia,b, , Yan Zhengb a College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China b Panjin Guanghe Fisheries Co., Ltd, Panjin 124200, China ARTICLE INFO ABSTRACT Keywords: To assess how variable is the aggressive behavior among families (A, B, and C) and the experience effect of Eriocheir sinensis fighting among juvenile Chinese mitten crab (Eriocheir sinensis), we performed a total of 36 pairs of intrafamily Aggressive behavior and interfamily contests between three families of Eriocheir sinensis, qualifying and quantifying their aggressive Family acts and 13 pairs of winners within family and between family A and B. A table of aggression intensity was Experience established, ranging from 1 (chasing) to 4 (intense combat). Crabs of intrafamily association performed more aggressive acts of shorter duration than interfamily, family B was more aggressive than those from families A and C: family C was the least aggressive, which is also the most morphologically distinct strain (a new strain with a red carapace). During the second fighting trail, the intensity and number of fights were significantly different to first fight conditions and also differed among families. Therefore, our results suggest that the aggressive behavior of Eriocheir sinensis is different among different families, and the combat experience has a significant effect on the secondary fight.
    [Show full text]
  • The Home Range of Signal Crayfish in a British Lowland River
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aquatic Commons HOME RANGE OF SIGNAL CRAYFISH 45 THE HOME RANGE OF SIGNAL CRAYFISH IN A BRITISH LOWLAND RIVER RUI-ZHANG GUAN AND PETER WILES (Dr R.-Z. Guan, Xiamen Fisheries College, Jimei University, Xiamen, Fuijan 361021, P.R. China and P. R. Wiles, The Clore Laboratory for Life Sciences, The University of Buckingham, Bucks MK18 1EG, England.) Introduction The signal crayfish Pacifastacus leniusculus (Dana), a native of north-western North America, is now a common resident in some British fresh waters following its introduction to England in 1976 (Lowery & Holdich 1988). In 1984, signal crayfish were introduced into the River Great Ouse, the major lowland river in southern central England, where they have established a large breeding population, with a mean density of 15 per m2 in riffles during summer and 2 per m2 in pools. By the summer of 1994, they had occupied an 11.4 km section of river (Guan 1995). The unexpected burrowing behaviour of signal crayfish in the river was reported by Guan (1994). Signal crayfish not only take natural shelters but they also dig extensive burrows in the mud banks of the river. They are typically nocturnal. In this study we have investigated crayfish movements and addressed two questions: (1), how large is the home range? [Burt's (1943) definition of home range was adopted here, i.e., "The area traversed by the individual in its normal activities of food gathering, mating, and caring for young"]; and (2), does the home range vary between sexes and crayfish of different sizes? Study sites Two sites near Thornborough Weir (map reference: OS 738355) were chosen for study.
    [Show full text]
  • Pacifastacus Leniusculus) out Consume Newly Introduced Crayfishes for Invasive Chinese Mystery Snail (Bellamya Chinensis)
    Aquat Ecol (2009) 43:1073–1084 DOI 10.1007/s10452-009-9244-9 Home-field advantage: native signal crayfish (Pacifastacus leniusculus) out consume newly introduced crayfishes for invasive Chinese mystery snail (Bellamya chinensis) Julian D. Olden Æ Eric R. Larson Æ Meryl C. Mims Received: 5 November 2008 / Accepted: 3 April 2009 / Published online: 21 April 2009 Ó Springer Science+Business Media B.V. 2009 Abstract The introduction of non-indigenous plants, the most profitable prey choice. By contrast, previous animals and pathogens is one of today’s most pressing studies have reported the opposite pattern for crayfish environmental challenges. Freshwater ecologists are consumption on thin-shelled snails. For all snail size challenged to predict the potential consequences of classes, we found that native P. leniusculus and species invasions because many ecosystems increas- invasive O. virilis consumed greater numbers of snails ingly support novel assemblages of native and non- than invasive P. clarkii. Moreover, P. leniusculus native species that are likely to interact in complex consistently handled and consumed snails at a faster ways. In this study we evaluated how native signal pace compared to both invasive crayfishes across the crayfish (Pacifastacus leniusculus) and non-native red range of snail sizes examined in our study. These swamp crayfish (Procambarus clarkii) and northern results suggest not only that B. chinensis is a suitable crayfish (Orconectes virilis) utilize a novel prey food source for crayfish, but also that native resource: the non-native Chinese mystery snail (Bell- P. leniusculus may ultimately out-consume invasive amya chinensis). All species are widespread in the crayfishes for this new prey resource.
    [Show full text]
  • Establishment of the Exotic Invasive Redclaw Crayfish Cherax
    BioInvasions Records (2020) Volume 9, Issue 2: 357–366 CORRECTED PROOF Research Article Establishment of the exotic invasive redclaw crayfish Cherax quadricarinatus (Von Martens, 1868) in the Coastal Plain of San Blas, Nayarit, SE Gulf of California, Mexico José R. Tapia-Varela1, Jesús T. Ponce-Palafox1,2,*, Deivis S. Palacios-Salgado2,†, Carlos A. Romero-Bañuelos1, José T. Nieto-Navarro2 and Pedro Aguiar-García3 1Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepic, Nayarit 63000, México 2Escuela Nacional de Ingeniería Pesquera, Universidad Autónoma de Nayarit, Bahía de Matanchén, San Blas, Nayarit 63740, México 3Unidad Académica de Medicina. Universidad Autónoma de Nayarit. Tepic, Nayarit 63000, México Author e-mails: [email protected] (JRTV), [email protected] (JTPP), [email protected] (DSPS), [email protected] (CARB), [email protected] (JTNN), [email protected] (PAG) *Corresponding author Citation: Tapia-Varela JR, Ponce-Palafox JT, Palacios-Salgado DS, Romero- Abstract Bañuelos CA, Nieto-Navarro JT, Aguiar- García P (2020) Establishment of the The establishment of the redclaw crayfish (Cherax quadricarinatus) populations was exotic invasive redclaw crayfish Cherax investigated in the coastal plain of San Blas, Nayarit State, Mexico. Two sampling quadricarinatus (Von Martens, 1868) in expeditions were conducted along the agricultural irrigation channels and the the Coastal Plain of San Blas, Nayarit, SE surrounding estuarine systems in the study area in December 2014 and December Gulf of California, Mexico. BioInvasions Records 9(2): 357–366, https://doi.org/10. 2015. A total of 121 specimens were collected during the first sampling. They had 3391/bir.2020.9.2.21 1:1.88 male:female ratio.
    [Show full text]
  • Environmental DNA (Edna)
    fenvs-08-612253 December 1, 2020 Time: 20:27 # 1 ORIGINAL RESEARCH published: 07 December 2020 doi: 10.3389/fenvs.2020.612253 Environmental DNA (eDNA) Monitoring of Noble Crayfish Astacus astacus in Lentic Environments Offers Reliable Presence-Absence Surveillance – But Fails to Predict Population Density Stein I. Johnsen1†, David A. Strand2*†, Johannes C. Rusch2,3 and Trude Vrålstad2 1 Norwegian Institute for Nature Research, Lillehammer, Norway, 2 Norwegian Veterinary Institute, Oslo, Norway, 3 Department of Biosciences, University of Oslo, Oslo, Norway Noble crayfish is the most widespread native freshwater crayfish species in Europe. It is threatened in its entire distribution range and listed on the International Union for Edited by: Concervation Nature- and national red lists. Reliable monitoring data is a prerequisite for Ivana Maguire, University of Zagreb, Croatia implementing conservation measures, and population trends are traditionally obtained Reviewed by: from catch per unit effort (CPUE) data. Recently developed environmental DNA Michael Sweet, (eDNA) tools can potentially improve the effort. In the past decade, eDNA monitoring University of Derby, United Kingdom Chloe Victoria Robinson, has emerged as a promising tool for species surveillance, and some studies have University of Guelph, Canada established that eDNA methods yield adequate presence-absence data for crayfish. *Correspondence: There are also high expectations that eDNA concentrations in the water can predict David A. Strand biomass or relative density. However, eDNA studies for crayfish have not yet been [email protected] able to establish a convincing relationship between eDNA concentrations and crayfish †These authors have contributed equally to this work density. This study compared eDNA and CPUE data obtained the same day and with high sampling effort, and evaluated whether eDNA concentrations can predict Specialty section: relative density of crayfish.
    [Show full text]
  • 10-18 Establishment and Care of a Colony of Parthenogenetic Marbled
    (Online) ISSN2042-633X (Print) ISSN 2042-6321 Invertebrate Rearing 1(1):10-18 Establishment and care of a colony of parthenogenetic marbled crayfish, Marmorkrebs Stephanie A. Jimenez and Zen Faulkes Department of Biology, The University of Texas-Pan American Invertebrate Rearing is an online journal for all people interested in the rearing of invertebrates in captivity, whether for research or for pleasure. It is the belief of the editor that greater communication between professional researchers, amateur scientists and hobbyists has great benefits for all concerned. In order to cater for such a diverse audience the journal publishes short and popular articles and reviews as well as scientific articles. Where possible scientific articles are peer reviewed. Submissions to the journal can be made via the website (http://inverts.info) where you may also sign up for e-mail notification of new issues. Invertebrate Rearing Establishment and care of a colony of parthenogenetic marbled crayfish, Marmorkrebs Article (Peer-reviewed) Stephanie A. Jimenez and Zen Faulkes Department of Biology, The University of Texas-Pan American, 1201 W. University Drive, Edinburg, TX 78539, USA. Email: [email protected] Abstract Marmorkrebs are parthenogenetic marbled crayfish whose origins are unknown. They have potential to be a model organism for biological research because they are genetically uniform, and to be an invasive pest species. Maintaining self-sustaining breeding colonies is a key element of most successful model organisms. We tried to find the best conditions for establishing and maintaining a Marmorkrebs breeding colony for research. Marmorkrebs can be bred in a compact tank system originally designed for zebrafish.
    [Show full text]
  • How the Red Swamp Crayfish Took Over the World Running Title Invasion
    1 Title 2 One century away from home: how the red swamp crayfish took over the world 3 Running Title 4 Invasion history of Procambarus clarkii 5 Authors 6 Francisco J. Oficialdegui1*, Marta I. Sánchez1,2,3, Miguel Clavero1 7 8 Affiliations 9 1. Estación Biológica de Doñana (EBD-CSIC). Avenida Américo Vespucio 26, 10 Isla de la Cartuja. 41092. Seville, Spain 11 2. Instituto Universitario de Investigación Marina (INMAR) Campus de Excelencia 12 Internacional/Global del Mar (CEI·MAR) Universidad de Cádiz. Puerto Real, 13 Cadiz (Spain). 14 3. Present address: Departamento de Biología Vegetal y Ecología, Facultad de 15 Biología, Universidad de Sevilla, Apartado 1095, 41080, Seville, Spain 16 17 Contact: [email protected] Francisco J. Oficialdegui. Department of Wetland 18 Ecology. Estación Biológica de Doñana (EBD-CSIC). C/Américo Vespucio 26. Isla de 19 la Cartuja. 41092. Seville (Spain). Phone: 954466700. ORCID: 0000-0001-6223-736X 20 21 Marta I. Sánchez. [email protected] ORCID: 0000-0002-8349-5410 22 Miguel Clavero. [email protected] ORCID: 0000-0002-5186-0153 23 24 Keywords: Alien species; GBIF; Global translocations; Historical distributions; 25 iNaturalist; Invasive species; Pathways of introduction; Procambarus clarkii; 26 1 27 ABSTRACT 28 The red swamp crayfish (Procambarus clarkii) (hereafter RSC), native to the southern 29 United States and north-eastern Mexico, is currently the most widely distributed 30 crayfish globally as well as one of the invasive species with most devastating impacts 31 on freshwater ecosystems. Reconstructing the introduction routes of invasive species 32 and identifying the motivations that have led to those movements, is necessary to 33 accurately reduce the likelihood of further introductions.
    [Show full text]
  • Freshwater Crayfish Cherax Quadricarinatus
    DISEASES OF AQUATIC ORGANISMS Vol. 41: 115-122,2000 Published June 19 Dis Aquat Org l Infectivity, transmission and 16s rRNA sequencing of a rickettsia, Coxiella cheraxi sp. nov., from the freshwater crayfish Cherax quadricarinatus C. K. Tan, L. Owens* Department of Microbiology and Immunology. James Cook University, Townsville 4811, Australia ABSTRACT: A rickettsia-like organism isolated from infected, farm-reared Cherax quadricarinatus was cultured in the yolk sac of developing chicken eggs, but could not be cultured in 3 continuous cell lines, bluegill fry (BF-2),fathead minnow (FHM),and Spodoptera frugiperda (Sf-9).The organism was confirmed by fulfilling Koch's postulates as the aetiological agent of mortalities amongst C, quadricar- inatus. When C. quadricarinatus was inoculated with the organism, mortality was 100% at 28°C and 80% at an ambient temperature of 24°C. Horizontal transmission with food and via the waterborne route was demonstrated, but mortalities were lower at 30 and 10% respectively over a 4 wk period. The 16s rRNA sequence of 1325 base pairs of the Gram-negative, obligate intracellular organism was 95.6% homologous to Coxiella burnetii. Of 18 species compared to this rickettsia, the next most closely related bacterium was Legionella pneumophila at 86.7 %. The suggested classification of this organism is Order Rickettsiales, family Rickettsiaceae, tribe Rickettsieae, within the genus Coxiella. We suggest it should be named Coxiella cheraxi sp. nov. KEY WORDS: Cherax quadricarinatus . Crayfish . Rickettsia Coxiella cheraxj INTRODUCTION Owens & McElnea 2000), bacteria (Ketterer et al. 1992, Owens et al. 1992, Eaves & Ketterer 1994, Webster The Australian redclaw crayfish Cherax quadncari- 1995) and ectoparasites (Herbert 1987, 1988) have natus is a tropical freshwater crayfish native to river been reported in Australia, and the presence of Cherax systems and waterways of northern Australia and bacilliform virus (Groff et al.
    [Show full text]
  • Chinese Mitten Crab (Eriocheir Sinensis) in San Francisco Bay
    Distribution, Ecology and Potential Impacts of the Chinese Mitten Crab (Eriocheir sinensis) in San Francisco Bay Deborah A Rudnick Kathleen M. Halat Vincent H. Resh Department of Environmental Science, Policy and Management University of California, Berkeley TECHNICAL COMPLETION REPORT Project Number: UCAL-WRC-W-881 University of California Water Resources Center Contribution #206 ISBN 1-887192-12-3 June 2000 The University of California prohibits discrimination against or harassment of any person employed by or seeking employment with the University on the basis of race, color, national origin, religion, sex, physical or mental disability, medical condition (cancer- related), ancestry, marital status, age, sexual orientation, citizenship or status as a Vietnam-era veteran or special disabled veteran. The University of California is an affirmative action/equal opportunity employer. The University undertakes affirmative action to assure equal employment opportunity for underutilized minorities and women, for persons with disabilities, and for Vietnam-era veterans and special disabled veterans. University policy is intended to be consistent with the provisions of applicable State and Federal law. Inquiries regarding this policy may be addressed to the Affirmative Action Director, University of California, Agriculture and Natural Resources, 300 Lakeside Drive, 6th Floor, Oakland, CA 94612-3560, (510) 987-0097. This publication is a continuation in the Water Resources Center Contribution series. It is published and distributed by the UNIVERSITY
    [Show full text]
  • THE DISTRIBUTION of NATIVE and INTRODUCED SPECIES of CRAYFISH in AUSTRIA MANFRED POCKL (Dr M. Pockl, Department of Limnology, In
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aquatic Commons 4 MANFRED POCKL THE DISTRIBUTION OF NATIVE AND INTRODUCED SPECIES OF CRAYFISH IN AUSTRIA MANFRED POCKL (Dr M. Pockl, Department of Limnology, Institute of Zoology, University of Vienna, and State Government of Lower Austria, Experts for the Conservation of Nature, Landhausplatz 1, A-3109 St Pölten, Austria.) Introduction Crayfish are the largest invertebrates found in European freshwaters north of the Mediterannean region, where river-crabs (Potamon) also occur. Some crayfish attain body lengths greater than 25 cm and exceed 350 g in weight. These decapod crustaceans are omnivores, feeding on a wide variety of small invertebrates, fish, algae and higher aquatic plants, including some riparian vegetation. They also scavenge on dead and dying plants and animals. However, their quantitative role in the trophic economy of streams and lakes is not well understood, especially in relation to population biomass and potential competition with fish. Like the latter, however, crayfish have long been prized by man as a source of food, and in parts of Europe some species have been exploited commercially for many centuries. The most notable of these is the fishery based on the red-clawed or noble crayfish Astacus astacus, which was decimated by the lethal plague fungus Aphanomyces astaci in the late 19th and early 20th centuries. Importations of relatively large species from North America, which are resistant to the fungus but can act as carriers, has led to concerns for the continued existence and conservation of native European species, several of which are now listed as endangered species.
    [Show full text]
  • Top 10 Species Groups in Global Aquaculture 2018
    Top 10 species groups in global aquaculture 2018 FAO Fisheries and Aquaculture Department reduce to 10,5pt so until note in p.2 his factsheet presents the top 10 species groups in global aquaculture 2018 (Table 1) and Tfeatures one of the fastest growing species groups: crayfishes (Table 2). The ranking of all 63 species groups in global aquaculture 2018 is illustrated on the back cover. More information about the top 10 species groups at regional and national level can be found in a more comprehensive factsheet as Supplementary Materials.1 The comprehensive factsheet also elaborates on the species grouping methodology used in the ranking exercise. Top 10 species groups in world aquaculture 2018 In 2018, 438 ASFIS – Aquatic Sciences and Fisheries Information System – species items2 were farmed in 196 countries/territories with 115 million tonnes of world production, an increase of 2.3 million tonnes (2.04 percent) from the 2017 level (Table 1). There has been no significant change on the top 10 list between 2017 and 2018 (Table 1).3 The top four items remained unchanged, while marine shrimps and prawns moved up from #6 to #5 switching positions with oysters. Scallops (#10 in 2017) dropped down to #11 in 2018 because of the 2.3 percent decline in its production quantity. WAPI FACTSHEET WAPI Half of the top 10 species groups grew faster than the average 2.04 percent growth for all species between 2017 and 2018: freshwater fishes nei (#10; 16.58 percent), marine shrimps and prawns (#5; 5.04 percent), oysters (#6; 4.64 percent), carps, barbels and other cyprinids (#1; 3.87 percent) and brown seaweeds (#3; 3.4 percent).
    [Show full text]