Lebegue-Bochner Spaces and Evolution Triples
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sobolev Spaces, Theory and Applications
Sobolev spaces, theory and applications Piotr Haj lasz1 Introduction These are the notes that I prepared for the participants of the Summer School in Mathematics in Jyv¨askyl¨a,August, 1998. I thank Pekka Koskela for his kind invitation. This is the second summer course that I delivere in Finland. Last August I delivered a similar course entitled Sobolev spaces and calculus of variations in Helsinki. The subject was similar, so it was not posible to avoid overlapping. However, the overlapping is little. I estimate it as 25%. While preparing the notes I used partially the notes that I prepared for the previous course. Moreover Lectures 9 and 10 are based on the text of my joint work with Pekka Koskela [33]. The notes probably will not cover all the material presented during the course and at the some time not all the material written here will be presented during the School. This is however, not so bad: if some of the results presented on lectures will go beyond the notes, then there will be some reasons to listen the course and at the same time if some of the results will be explained in more details in notes, then it might be worth to look at them. The notes were prepared in hurry and so there are many bugs and they are not complete. Some of the sections and theorems are unfinished. At the end of the notes I enclosed some references together with comments. This section was also prepared in hurry and so probably many of the authors who contributed to the subject were not mentioned. -
Notes on Partial Differential Equations John K. Hunter
Notes on Partial Differential Equations John K. Hunter Department of Mathematics, University of California at Davis Contents Chapter 1. Preliminaries 1 1.1. Euclidean space 1 1.2. Spaces of continuous functions 1 1.3. H¨olderspaces 2 1.4. Lp spaces 3 1.5. Compactness 6 1.6. Averages 7 1.7. Convolutions 7 1.8. Derivatives and multi-index notation 8 1.9. Mollifiers 10 1.10. Boundaries of open sets 12 1.11. Change of variables 16 1.12. Divergence theorem 16 Chapter 2. Laplace's equation 19 2.1. Mean value theorem 20 2.2. Derivative estimates and analyticity 23 2.3. Maximum principle 26 2.4. Harnack's inequality 31 2.5. Green's identities 32 2.6. Fundamental solution 33 2.7. The Newtonian potential 34 2.8. Singular integral operators 43 Chapter 3. Sobolev spaces 47 3.1. Weak derivatives 47 3.2. Examples 47 3.3. Distributions 50 3.4. Properties of weak derivatives 53 3.5. Sobolev spaces 56 3.6. Approximation of Sobolev functions 57 3.7. Sobolev embedding: p < n 57 3.8. Sobolev embedding: p > n 66 3.9. Boundary values of Sobolev functions 69 3.10. Compactness results 71 3.11. Sobolev functions on Ω ⊂ Rn 73 3.A. Lipschitz functions 75 3.B. Absolutely continuous functions 76 3.C. Functions of bounded variation 78 3.D. Borel measures on R 80 v vi CONTENTS 3.E. Radon measures on R 82 3.F. Lebesgue-Stieltjes measures 83 3.G. Integration 84 3.H. Summary 86 Chapter 4. -
Arxiv:1910.08491V3 [Math.ST] 3 Nov 2020
Weakly stationary stochastic processes valued in a separable Hilbert space: Gramian-Cram´er representations and applications Amaury Durand ∗† Fran¸cois Roueff ∗ September 14, 2021 Abstract The spectral theory for weakly stationary processes valued in a separable Hilbert space has known renewed interest in the past decade. However, the recent literature on this topic is often based on restrictive assumptions or lacks important insights. In this paper, we follow earlier approaches which fully exploit the normal Hilbert module property of the space of Hilbert- valued random variables. This approach clarifies and completes the isomorphic relationship between the modular spectral domain to the modular time domain provided by the Gramian- Cram´er representation. We also discuss the general Bochner theorem and provide useful results on the composition and inversion of lag-invariant linear filters. Finally, we derive the Cram´er-Karhunen-Lo`eve decomposition and harmonic functional principal component analysis without relying on simplifying assumptions. 1 Introduction Functional data analysis has become an active field of research in the recent decades due to technological advances which makes it possible to store longitudinal data at very high frequency (see e.g. [22, 31]), or complex data e.g. in medical imaging [18, Chapter 9], [15], linguistics [28] or biophysics [27]. In these frameworks, the data is seen as valued in an infinite dimensional separable Hilbert space thus isomorphic to, and often taken to be, the function space L2(0, 1) of Lebesgue-square-integrable functions on [0, 1]. In this setting, a 2 functional time series refers to a bi-sequences (Xt)t∈Z of L (0, 1)-valued random variables and the assumption of finite second moment means that each random variable Xt belongs to the L2 Bochner space L2(Ω, F, L2(0, 1), P) of measurable mappings V : Ω → L2(0, 1) such that E 2 kV kL2(0,1) < ∞ , where k·kL2(0,1) here denotes the norm endowing the Hilbert space L2h(0, 1). -
A. the Bochner Integral
A. The Bochner Integral This chapter is a slight modification of Chap. A in [FK01]. Let X, be a Banach space, B(X) the Borel σ-field of X and (Ω, F,µ) a measure space with finite measure µ. A.1. Definition of the Bochner integral Step 1: As first step we want to define the integral for simple functions which are defined as follows. Set n E → ∈ ∈F ∈ N := f :Ω X f = xk1Ak ,xk X, Ak , 1 k n, n k=1 and define a semi-norm E on the vector space E by f E := f dµ, f ∈E. To get that E, E is a normed vector space we consider equivalence classes with respect to E . For simplicity we will not change the notations. ∈E n For f , f = k=1 xk1Ak , Ak’s pairwise disjoint (such a representation n is called normal and always exists, because f = k=1 xk1Ak , where f(Ω) = {x1,...,xk}, xi = xj,andAk := {f = xk}) and we now define the Bochner integral to be n f dµ := xkµ(Ak). k=1 (Exercise: This definition is independent of representations, and hence linear.) In this way we get a mapping E → int : , E X, f → f dµ which is linear and uniformly continuous since f dµ f dµ for all f ∈E. Therefore we can extend the mapping int to the abstract completion of E with respect to E which we denote by E. 105 106 A. The Bochner Integral Step 2: We give an explicit representation of E. Definition A.1.1. -
Measure Integral Inclusions with Fast Oscillating Data 1
Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 107, pp. 1{13. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu MEASURE INTEGRAL INCLUSIONS WITH FAST OSCILLATING DATA BIANCA-RENATA SATCO Abstract. We prove the existence of regulated or bounded variation solu- tions, via a nonlinear alternative of Leray-Schauder type, for the measure integral inclusion Z t x(t) 2 F (s; x(s)) du(s); 0 under the assumptions of regularity, respectively bounded variation, on the function u. Our approach is based on the properties of Kurzweil-Stieltjes integral that, unlike the classical integrals, can be used for fast oscillating multifunctions on the right hand side and the results allow one to study (by taking the function u of a particular form) continuous or discrete problems, as well as impulsive or retarded problems. 1. Introduction Motivated by problems occurring in fields such as mechanics, electrical engineer- ing, automatic control and biology (see [2,20,30]), an increasing attention has been given to measure-driven differential equations in the theory of differential equations: equations of the form dx(t) = g(t; x(t))dµ(t); where µ is a positive regular Borel measure. An equal interest has been shown to the related integral problems and, more recently, for practical reasons (arising, e.g., from the theory of optimal control), to the set-valued associated problems. Such studies cover some classical cases like usual differential inclusions (when µ is abso- lutely continuous with respect to the Lebesgue measure), difference inclusions (for discrete measure µ) or impulsive problems (when the measure µ is a combination of the two types of measures). -
Lecture Notes for MATH 592A
Lecture Notes for MATH 592A Vladislav Panferov February 25, 2008 1. Introduction As a motivation for developing the theory let’s consider the following boundary-value problem, u′′ + u = f(x) x Ω=(0, 1) − ∈ u(0) = 0, u(1) = 0, where f is a given (smooth) function. We know that the solution is unique, sat- isfies the stability estimate following from the maximum principle, and it can be expressed explicitly through Green’s function. However, there is another way “to say something about the solution”, quite independent of what we’ve done before. Let’s multuply the differential equation by u and integrate by parts. We get x=1 1 1 u′ u + (u′ 2 + u2) dx = f u dx. − x=0 0 0 h i Z Z The boundary terms vanish because of the boundary conditions. We introduce the following notations 1 1 u 2 = u2 dx (thenorm), and (f,u)= f udx (the inner product). k k Z0 Z0 Then the integral identity above can be written in the short form as u′ 2 + u 2 =(f,u). k k k k Now we notice the following inequality (f,u) 6 f u . (Cauchy-Schwarz) | | k kk k This may be familiar from linear algebra. For a quick proof notice that f + λu 2 = f 2 +2λ(f,u)+ λ2 u 2 0 k k k k k k ≥ 1 for any λ. This expression is a quadratic function in λ which has a minimum for λ = (f,u)/ u 2. Using this value of λ and rearranging the terms we get − k k (f,u)2 6 f 2 u 2. -
Introduction to Sobolev Spaces
Introduction to Sobolev Spaces Lecture Notes MM692 2018-2 Joa Weber UNICAMP December 23, 2018 Contents 1 Introduction1 1.1 Notation and conventions......................2 2 Lp-spaces5 2.1 Borel and Lebesgue measure space on Rn .............5 2.2 Definition...............................8 2.3 Basic properties............................ 11 3 Convolution 13 3.1 Convolution of functions....................... 13 3.2 Convolution of equivalence classes................. 15 3.3 Local Mollification.......................... 16 3.3.1 Locally integrable functions................. 16 3.3.2 Continuous functions..................... 17 3.4 Applications.............................. 18 4 Sobolev spaces 19 4.1 Weak derivatives of locally integrable functions.......... 19 1 4.1.1 The mother of all Sobolev spaces Lloc ........... 19 4.1.2 Examples........................... 20 4.1.3 ACL characterization.................... 21 4.1.4 Weak and partial derivatives................ 22 4.1.5 Approximation characterization............... 23 4.1.6 Bounded weakly differentiable means Lipschitz...... 24 4.1.7 Leibniz or product rule................... 24 4.1.8 Chain rule and change of coordinates............ 25 4.1.9 Equivalence classes of locally integrable functions..... 27 4.2 Definition and basic properties................... 27 4.2.1 The Sobolev spaces W k;p .................. 27 4.2.2 Difference quotient characterization of W 1;p ........ 29 k;p 4.2.3 The compact support Sobolev spaces W0 ........ 30 k;p 4.2.4 The local Sobolev spaces Wloc ............... 30 4.2.5 How the spaces relate.................... 31 4.2.6 Basic properties { products and coordinate change.... 31 i ii CONTENTS 5 Approximation and extension 33 5.1 Approximation............................ 33 5.1.1 Local approximation { any domain............. 33 5.1.2 Global approximation on bounded domains....... -
Advanced Partial Differential Equations Prof. Dr. Thomas
Advanced Partial Differential Equations Prof. Dr. Thomas Sørensen summer term 2015 Marcel Schaub July 2, 2015 1 Contents 0 Recall PDE 1 & Motivation 3 0.1 Recall PDE 1 . .3 1 Weak derivatives and Sobolev spaces 7 1.1 Sobolev spaces . .8 1.2 Approximation by smooth functions . 11 1.3 Extension of Sobolev functions . 13 1.4 Traces . 15 1.5 Sobolev inequalities . 17 2 Linear 2nd order elliptic PDE 25 2.1 Linear 2nd order elliptic partial differential operators . 25 2.2 Weak solutions . 26 2.3 Existence via Lax-Milgram . 28 2.4 Inhomogeneous bounday value problems . 35 2.5 The space H−1(U) ................................ 36 2.6 Regularity of weak solutions . 39 A Tutorials 58 A.1 Tutorial 1: Review of Integration . 58 A.2 Tutorial 2 . 59 A.3 Tutorial 3: Norms . 61 A.4 Tutorial 4 . 62 A.5 Tutorial 6 (Sheet 7) . 65 A.6 Tutorial 7 . 65 A.7 Tutorial 9 . 67 A.8 Tutorium 11 . 67 B Solutions of the problem sheets 70 B.1 Solution to Sheet 1 . 70 B.2 Solution to Sheet 2 . 71 B.3 Solution to Problem Sheet 3 . 73 B.4 Solution to Problem Sheet 4 . 76 B.5 Solution to Exercise Sheet 5 . 77 B.6 Solution to Exercise Sheet 7 . 81 B.7 Solution to problem sheet 8 . 84 B.8 Solution to Exercise Sheet 9 . 87 2 0 Recall PDE 1 & Motivation 0.1 Recall PDE 1 We mainly studied linear 2nd order equations – specifically, elliptic, parabolic and hyper- bolic equations. Concretely: • The Laplace equation ∆u = 0 (elliptic) • The Poisson equation −∆u = f (elliptic) • The Heat equation ut − ∆u = 0, ut − ∆u = f (parabolic) • The Wave equation utt − ∆u = 0, utt − ∆u = f (hyperbolic) We studied (“main motivation; goal”) well-posedness (à la Hadamard) 1. -
The Failure of Fatou's Theorem on Poisson Integrals of Pettis Integrable Functions* Francisco J
journal of functional analysis 160, 2841 (1998) article no. FU983338 The Failure of Fatou's Theorem on Poisson Integrals of Pettis Integrable Functions* Francisco J. Freniche, Juan Carlos Garcia-Vazquez, and Luis Rodriguez-Piazza Departamento de Analisis Matematico, Facultad de Matematicas, Universidad de Sevilla, Apdo. 1160, Sevilla 41080, Spain E-mail: frenicheÄcica.es, garciaÄcica.es, piazzaÄcica.es Received May 22, 1997; accepted May 21, 1998 In this paper we prove that for every infinite-dimensional Banach space X and every 1p<+ there exists a strongly measurable X-valued p-Pettis integrable function on the unit circle T such that the X-valued harmonic function defined as its Poisson integral does not converge radially at any point of T, not even in the weak topology. We also show that this function does not admit a conjugate func- tion. An application to spaces of vector valued harmonic functions is given. In the case that X does not have finite cotype we can construct the function with the addi- tional property of being analytic, in the sense that its Fourier coefficients of negative frequency are null. In the general case we are able to give a countably additive vector measure, analytic in the same sense. 1998 Academic Press INTRODUCTION Let + be a finite Borel measure on the unit circle T. The classical Fatou's theorem states that the Poisson integral of + converges radially on every point t at which + is differentiable with respect to the normalized Lebesgue measure *. In particular, because of Lebesgue's differentiation theorem, if F is integrable on T, then its Poisson integral converges almost everywhere. -
Delta Functions and Distributions
When functions have no value(s): Delta functions and distributions Steven G. Johnson, MIT course 18.303 notes Created October 2010, updated March 8, 2017. Abstract x = 0. That is, one would like the function δ(x) = 0 for all x 6= 0, but with R δ(x)dx = 1 for any in- These notes give a brief introduction to the mo- tegration region that includes x = 0; this concept tivations, concepts, and properties of distributions, is called a “Dirac delta function” or simply a “delta which generalize the notion of functions f(x) to al- function.” δ(x) is usually the simplest right-hand- low derivatives of discontinuities, “delta” functions, side for which to solve differential equations, yielding and other nice things. This generalization is in- a Green’s function. It is also the simplest way to creasingly important the more you work with linear consider physical effects that are concentrated within PDEs, as we do in 18.303. For example, Green’s func- very small volumes or times, for which you don’t ac- tions are extremely cumbersome if one does not al- tually want to worry about the microscopic details low delta functions. Moreover, solving PDEs with in this volume—for example, think of the concepts of functions that are not classically differentiable is of a “point charge,” a “point mass,” a force plucking a great practical importance (e.g. a plucked string with string at “one point,” a “kick” that “suddenly” imparts a triangle shape is not twice differentiable, making some momentum to an object, and so on. -
Set Valued Integrability in Non Separable Fr\'Echet Spaces And
SET VALUED INTEGRABILITY IN NON SEPARABLE FRECHET´ SPACES AND APPLICATIONS L. DI PIAZZA, V. MARRAFFA AND B. SATCO Abstract. We focus on measurability and integrability for set valued func- tions in non-necessarily separable Fr´echet spaces. We prove some properties concerning the equivalence between different classes of measurable multi- functions. We also provide useful characterizations of Pettis set-valued in- tegrability in the announced framework. Finally, we indicate applications to Volterra integral inclusions. 1. Introduction Due to tremendous interest in applications (e.g. control theory, optimization or mathematical economics), a wide theory was developed for the set-valued inte- grability in separable Banach spaces ([9], [32] and reference inside, [17], [18], [20], [39], [40], [50], [53]). Besides, as seen in [6], a similar theory for non-separable case is necessary; several authors studied the set-valued integrability without separability assumptions in Banach spaces (see [3], [4, 7], [19] and [42]). On the other side, it is well known that evolution partial differential equations in finite- or infinite-dimensional case can be treated as ordinary differential equa- tions in infinite dimensional non-normable locally convex spaces. Also, the study of various differential problems on infinite intervals or that of infinite systems of differential equations naturally lead to the framework of Fr´echet spaces (as in [21], [43], [27] or [11], to cite only a few). Therefore, the study of ordinary dif- ferential equations (and inclusions) in general locally convex spaces has serious motivations. But the way in this direction is paved with difficulties; indeed, even in the single- valued case, as described in [37, Theorem 1], the classical Peano Theorem fails in all infinite-dimensional Fr´echet spaces. -
Bochner Integrals and Vector Measures
Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 1993 Bochner Integrals and Vector Measures Ivaylo D. Dinov Michigan Technological University Copyright 1993 Ivaylo D. Dinov Recommended Citation Dinov, Ivaylo D., "Bochner Integrals and Vector Measures", Open Access Master's Report, Michigan Technological University, 1993. https://doi.org/10.37099/mtu.dc.etdr/919 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Mathematics Commons “BOCHNER INTEGRALS AND VECTOR MEASURES” Project for the Degree of M.S. MICHIGAN TECH UNIVERSITY IVAYLO D. DINOV BOCHNER INTEGRALS RND VECTOR MEASURES By IVAYLO D. DINOV A REPORT (PROJECT) Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN MATHEMATICS Spring 1993 MICHIGAN TECHNOLOGICRL UNIUERSITV HOUGHTON, MICHIGAN U.S.R. 4 9 9 3 1 -1 2 9 5 . Received J. ROBERT VAN PELT LIBRARY APR 2 0 1993 MICHIGAN TECHNOLOGICAL UNIVERSITY I HOUGHTON, MICHIGAN GRADUATE SCHOOL MICHIGAN TECH This Project, “Bochner Integrals and Vector Measures”, is hereby approved in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN MATHEMATICS. DEPARTMENT OF MATHEMATICAL SCIENCES MICHIGAN TECHNOLOGICAL UNIVERSITY Project A d v is o r Kenneth L. Kuttler Head of Department— Dr.Alphonse Baartmans 2o April 1992 Date •vaylo D. Dinov “Bochner Integrals and Vector Measures” 1400 TOWNSEND DRIVE. HOUGHTON Ml 49931-1295 flskngiyledgtiients I wish to express my appreciation to my advisor, Dr. Kenneth L. Kuttler, for his help, guidance and direction in the preparation of this report. The corrections and the revisions that he suggested made the project look complete and easy to read.