A. The Bochner

This chapter is a slight modification of Chap. A in [FK01]. Let X, be a , B(X) the Borel σ-field of X and (Ω, F,µ) a space with finite measure µ.

A.1. Definition of the Bochner integral

Step 1: As first step we want to define the integral for simple functions which are defined as follows. Set n E → ∈ ∈F   ∈ N := f :Ω X f = xk1Ak ,xk X, Ak , 1 k n, n k=1 and define a semi-norm E on the E by

f E := f dµ, f ∈E. To get that E, E is a we consider equivalence classes with respect to E . For simplicity we will not change the notations. ∈E n For f , f = k=1 xk1Ak , Ak’s pairwise disjoint (such a representation n is called normal and always exists, because f = k=1 xk1Ak , where f(Ω) = {x1,...,xk}, xi = xj,andAk := {f = xk}) and we now define the Bochner integral to be

n f dµ := xkµ(Ak). k=1

(Exercise: This definition is independent of representations, and hence linear.) In this way we get a mapping E → int : , E X, f → f dµ which is linear and uniformly continuous since f dµ  f dµ for all f ∈E. Therefore we can extend the mapping int to the abstract completion of E with respect to E which we denote by E.

105 106 A. The Bochner Integral

Step 2: We give an explicit representation of E.

Definition A.1.1. A function f :Ω→ X is called strongly measurable if it is F/B(X)-measurable and f(Ω) ⊂ X is separable.

Definition A.1.2. Let 1  p<∞. Then we define

Lp(Ω, F,µ; X):=Lp(µ; X) := f :Ω→ X f is strongly measurable with respect to F,and f p dµ<∞ and the semi-norm

1 p p p f Lp := f dµ ,f∈L (Ω, F,µ; X).

p The space of all equivalence classes in L (Ω, F,µ; X) with respect to Lp is denoted by Lp(Ω, F,µ; X):=Lp(µ; X).

Claim: L1(Ω, F,µ; X)=E. 1 Step 2.a: L (Ω, F,µ; X), L1 is complete. The proof is just a modification of the proof of the Fischer–Riesz theorem by the help of the following proposition.

Proposition A.1.3. Let (Ω, F) be a measurable space and let X be a Banach space. Then:

(i) the set of F/B(X)-measurable functions from Ω to X is closed under the formation of pointwise limits, and

(ii) the set of strongly measurable functions from Ω to X is closed under the formation of pointwise limits.

Proof. Simple exercise or see [Coh80, Proposition E.1, p. 350].

1 Step 2.b: E is a dense subset of L (Ω, F,µ; X) with respect to L1 . This can be shown by the help of the following lemma.

Lemma A.1.4. Let E be a space with metric d and let f :Ω→ E be strongly measurable. Then there exists a sequence fn, n ∈ N,ofsimpleE- valued functions (i.e. fn is F/B(E)-measurable and takes only a finite number of values) such that for arbitrary ω ∈ Ω the sequence d fn(ω),f(ω) , n ∈ N, is monotonely decreasing to zero. A.2. Properties of the Bochner integral 107

Proof. [DPZ92, Lemma 1.1, p. 16] Let {ek | k ∈ N} be a countable dense subset of f(Ω). For m ∈ N define dm(ω) := min d f(ω),ek k  m = dist(f(ω), {ek,k  m}) , km(ω) := min k  m dm(ω)=d f(ω),ek ,

fm(ω):=ekm(ω).

Obviously fm, m ∈ N, are simple functions since they are F/B(E)-measurable (exercise) and

fm(Ω) ⊂{e1,e2,...,em}.

Moreover, by the density of {ek | k ∈ N}, the sequence dm(ω), m ∈ N,is monotonically decreasing to zero for arbitrary ω ∈ Ω. Since d fm(ω),f(ω) = dm(ω) the assertion follows.

Let now f ∈ L1(µ; X). By the Lemma A.1.4 above we get the existence of a sequence of simple functions fn, n ∈ N, such that fn(ω) − f(ω) ↓ 0 for all ω ∈ Ωasn →∞.

n→∞ Hence fn −−−−→ f in L1 by Lebesgue’s dominated convergence theorem.

A.2. Properties of the Bochner integral

Proposition A.2.1 (Bochner inequality). Let f ∈ L1(Ω, F,µ; X).Then f dµ  f dµ.

Proof. We know the assertion is true for f ∈E, i.e. int : E→X is linear, continuous with int f  f E for all f ∈E, so the same is true for its unique continuous extension int : E = L1(µ; X) → X, i.e. for all f ∈ L1(X, µ) f dµ = intf  f E = f dµ.

Proposition A.2.2. Let f ∈ L1(Ω, F,µ; X).Then L ◦ f dµ = L f dµ holds for all L ∈ L(X, Y ),whereY is another Banach space.

Proof. Simple exercise or see [Coh80, Proposition E.11, p. 356]. 108 A. The Bochner Integral

Proposition A.2.3 (Fundamental theorem of ). Let −∞ 0. Since f is continuous − ∈ on [a, b] there exists δ>0 such that f (u) f (t) X <εfor all u [a, b] with |u − t| <δ. Then we obtain that t+h 1 1 F (t + h) − F (t) − f (t) = f (u) − f (t) du h X h t X t+h  1 − f (u) f (t) X du<ε h t if t + h ∈ [a, b]and|h| <δ. Claim 2: If F˜ ∈ C1 [a, b]; X is a further function with F˜ = F = f then there exists a constant c ∈ X such that F − F˜ = c. ∈ ∗ R − ˜ For all L X = L(X, ) we define gL := L(F F ). Then gL =0and ∗ therefore gL is constant. Since X separates the points of X by the Hahn– Banach theorem (see [Alt92, Satz 4.2, p. 114]) this implies that F − F˜ itself is constant. B. Nuclear and Hilbert–Schmidt Operators

This chapter is identical to Chap. B in [FK01]. Let U,  , U and H,  ,  be two separable Hilbert spaces. The space of all bounded linear operators from U to H is denoted by L(U, H); for simplicity we write L(U) instead of L(U, U). If we speak of the adjoint operator of L ∈ L(U, H) we write L∗ ∈ L(H, U). An element L ∈ L(U) is called symmetric if Lu, vU = u, LvU for all u, v ∈ U. In addition, L ∈ L(U) is called nonnegative if Lu, u  0 for all u ∈ U. Definition B.0.1 (). An element T ∈ L(U, H) is said to be a nuclear operator if there exists a sequence (aj)j∈N in H and a sequence (bj)j∈N in U such that ∞ Tx = ajbj,xU for all x ∈ U j=1 and aj · bj U < ∞. j∈N

The space of all nuclear operators from U to H is denoted by L1(U, H). If U = H, T ∈ L1(U, H) is nonnegative and symmetric, then T is called .

Proposition B.0.2. The space L1(U, H) endowed with the norm ∞ ·   ∈ T L1(U,H) := inf aj bj U Tx = aj bj,x U ,x U j∈N j=1 is a Banach space. Proof. [MV92, Corollar 16.25, p. 154].

Definition B.0.3. Let T ∈ L(U) and let ek, k ∈ N, be an orthonormal basis of U. Then we define tr T := Tek,ekU k∈N if the series is convergent.

109 110 B. Nuclear and Hilbert–Schmidt Operators

One has to notice that this definition could depend on the choice of the orthonormal basis. But there is the following result concerning nuclear oper- ators.

Remark B.0.4. If T ∈ L1(U) then tr T is well-defined independently of the choice of the orthonormal basis ek, k ∈ N. Moreover we have that | |  tr T T L1(U).

Proof. Let (aj)j∈N and (bj)j∈N be sequences in U such that Tx = ajbj,xU j∈N for all x ∈ U and aj U · bj U < ∞. j∈N Then we get for any orthonormal basis ek, k ∈ N,ofU that Tek,ekU = ek,ajU ·ek,bj U j∈N and therefore Tek,ekU  ek,ajU ·ek,bj U k∈N j∈N k∈N 1 1 2 2 2 2  ek,aj U · ek,bjU j∈N k∈N k∈N = aj U · bj U < ∞. j∈N

This implies that we can exchange the summation to get that Tek,ekU = ek,ajU ·ek,bj U = aj ,bjU , k∈N j∈N k∈N j∈N and the assertion follows.

Definition B.0.5 (Hilbert–Schmidt operator). A bounded linear opera- tor T : U → H is called Hilbert–Schmidt if 2 Tek < ∞ k∈N where ek, k ∈ N, is an orthonormal basis of U. The space of all Hilbert–Schmidt operators from U to H is denoted by L2(U, H). B. Nuclear and Hilbert–Schmidt Operators 111

Remark B.0.6. (i) The definition of Hilbert–Schmidt operator and the number T 2 := Te 2 L2(U,H) k k∈N

does not depend on the choice of the orthonormal basis ek, k ∈ N,andwe ∗ have that T L2(U,H) = T L2(H,U). For simplicity we also write T L2

instead of T L2(U,H).  (ii) T L(U,H) T L2(U,H).

(iii) Let G be another and S1 ∈ L(H, G),S2 ∈ L(G, U),T ∈ L2(U, H).ThenS1T ∈ L2(U, G) and TS2 ∈ L2(G, H) and

 S1T L2(U,G) S1 L(H,G) T L2(U,H),

 TS2 L2(G,H) T L(U,H) S2 L2(G,U).

Proof. (i) If ek, k ∈ N, is an orthonormal basis of U and fk, k ∈ N,isan orthonormal basis of H we obtain by the Parseval identity that 2  2 ∗ 2 Tek = Tek,fj = T fj U k∈N k∈N j∈N j∈N

and therefore the assertion follows.

(ii) Let x ∈ U and fk, k ∈ N, be an orthonormal basis of H. Then we get that Tx 2 = Tx,f 2  x 2 T ∗f 2 = T 2 · x 2 . k U k U L2(U,H) U k∈N k∈N

(iii) Let ek,k∈ N be an orthonormal basis of U. Then S Te 2  S 2 T 2 . 1 k G 1 L(H,G) L2(U,H) k∈N

∗ ∗ ∗ Furthermore, since (TS2) = S2 T , it follows that by the above and (i) that TS2 ∈ L2(G, H)and

∗ TS2 L2(G,H) = (TS2) L2(H,G) ∗ ∗ = S2 T L2(H,G)  · S2 L(G,U) T L2(U,H). 112 B. Nuclear and Hilbert–Schmidt Operators

Proposition B.0.7. Let S, T ∈ L2(U, H) and let ek, k ∈ N, be an orthonor- mal basis of U. If we define     T,S L2 := Sek,Tek k∈N   we obtain that L2(U, H), , L2 is a separable Hilbert space. If fk, k ∈ N, is an orthonormal basis of H we get that fj ⊗ek := fjek, ·U , j, k ∈ N, is an orthonormal basis of L2(U, H). Proof. We have to prove the completeness and the separability.

1. L2(U, H) is complete:

Let Tn, n ∈ N, be a in L2(U, H). Then it is clear that it is also a Cauchy sequence in L(U, H). Because of the completeness of L(U, H) there exists an element T ∈ L(U, H) such that Tn − T L(U,H) −→ 0as n →∞. But by the lemma of Fatou we also have for any orthonormal basis ek, k ∈ N,ofU that − 2 − − Tn T L2 = (Tn T )ek, (Tn T )ek k∈N 2 = lim inf (Tn − Tm)ek m→∞ k∈N  − 2 − 2 lim inf (Tn Tm)ek = lim inf Tn Tm L <ε m→∞ m→∞ 2 k∈N for all n ∈ N big enough. Therefore the assertion follows.

2. L2(U, H) is separable:

If we define fj ⊗ ek := fjek, ·U , j, k ∈ N, then it is clear that fj ⊗ ek ∈ L2(U, H) for all j, k ∈ N and for arbitrary T ∈ L2(U, H) we get that  ⊗    ·    fj ek,T L2 = ek,en U fj,Ten = fj,Tek . n∈N

Therefore it is obvious that fj ⊗ ek, j, k ∈ N, is an orthonormal system.  ⊗  ∈ N In addition, T =0if fj ek,T L2 = 0 for all j, k , and therefore span(fj ⊗ ek | j, k ∈ N) is a dense subspace of L2(U, H). Proposition B.0.8. Let G,  , G be a further separable Hilbert space. If T ∈ L2(U, H) and S ∈ L2(H, G) then ST ∈ L1(U, G) and  · ST L1(U,G) S L2 T L2 .

Proof. Let fk, k ∈ N, be an orthonormal basis of H. Then we have that STx = Tx,fkSfk,x∈ U k∈N B. Nuclear and Hilbert–Schmidt Operators 113 and therefore  ∗ · ST L1(U,G) T fk U Sfk G k∈N 1 1  ∗ 2 2 · 2 2 · T fk U Sfk G = S L2 T L2 . k∈N k∈N ∈ N ∈ Remark B.0.9. Let ek, k , be an orthonormal basis of U.IfT L(U)   ∞ ∈ is symmetric, nonnegative with k∈N Tek,ek U < then T L1(U). Proof. The result is obvious by the previous proposition and the fact that 1 1 1 there exists T 2 ∈ L(U) nonnegative and symmetric such that T = T 2 T 2 (see 1 Proposition 2.3.4). Then T 2 ∈ L2(U). ∗ Proposition B.0.10. Let L ∈ L(H) and B ∈ L2(U, H).Then LBB ∈ ∗ L1(H), B LB ∈ L1(U) and we have that

tr LBB∗ =trB∗LB.

Proof. We know by Remark B.0.6 (iii) and Proposition B.0.8 that LBB∗ ∈ ∗ L1(H)andB LB ∈ L1(U). Let ek, k ∈ N, be an orthonormal basis of U and let fk, k ∈ N, be an orthonormal basis of H. Then the Parseval identity implies that fk,Ben·fk,LBen k∈N n∈N 1 1 2 2 2 2  fk,Ben · fk,LBen n∈N k∈N k∈N ·  · 2 = Ben LBen L L(H) B L2 . n∈N

Therefore, it is allowed to interchange the sums to obtain that ∗ ∗ ∗ ∗ ∗ tr LBB = LBB fk,fk = B fk,B L fkU k∈N k∈N ∗ ∗ ∗ = B fk,enU ·B L fk,enU = fk,Ben·fk,LBen k∈N n∈N n∈N k∈N ∗ ∗ = Ben,LBen = en,B LBenU =trB LB. n∈N n∈N C. Pseudo Inverse of Linear Operators

This chapter is a slight modification of Chapter C in [FK01]. Let U,  , U and H,  ,  be two Hilbert spaces. Definition C.0.1 (Pseudo inverse). Let T ∈ L(U, H) and Ker(T ):={x ∈ U | Tx =0}. The pseudo inverse of T is defined as −1 −1 ⊥ ⊥ T := T |Ker(T )⊥ : T Ker(T ) = T (U) → Ker(T ) .

(Note that T is one-to-one on Ker(T )⊥.) Remark C.0.2. (i) There is an equivalent way of defining the pseudo in- verse of a linear operator T ∈ L(U, H).Forx ∈ T (U) one sets T −1x ∈ U to be the solution of minimal norm of the equation Ty = x, y ∈ U. (ii) If T ∈ L(U, H) then T −1 : T (U) → Ker(T )⊥ is linear and bijective. Proposition C.0.3. Let T ∈ L(U) and T −1 the pseudo inverse of T . (i) If we define an inner product on T (U) by

−1 −1 x, yT (U) := T x, T yU for all x, y ∈ T (U), then T (U),  , T (U) is a Hilbert space. ⊥ (ii) Let ek, k ∈ N, be an orthonormal basis of (Ker T ) .ThenTek, k ∈ N, is an orthonormal basis of T (U),  , T (U) . Proof. T : (Ker T )⊥ → T (U) is bijective and an isometry if (Ker T )⊥ is equipped with  , U and T (U) with  , T (U). Now we want to present a result about the images of linear operators. To this end we need the following lemma. ∈ ∈ Lemma C.0.4. Let T L(U, H). Then the set T Bc(0) (= Tu u U, u U  c ), c  0, is convex and closed. Proof. Since T is linear it is obvious that the set is convex. Since a convex subset of a Hilbert space is closed (with respect to the norm) if and only if it is weakly closed, it suffices to show that T Bc(0) is weakly closed. Since T : U → H is linear and continuous (with respect to the norms

115 116 C. Pseudo Inverse of Linear Operators on U, H respectively) it is also obviously continuous with respect to the weak on U, H respectively. But by the Banach–Alaoglou theorem (see e.g. [RS72, Theorem IV.21, p. 115]) closed balls in a Hilbert space are weakly compact. Hence Bc(0) is weakly compact, and so is its continuous image, i.e. T Bc(0) is weakly compact, therefore weakly closed. Proposition C.0.5. Let U1,  , 1 and U2,  , 2 be two Hilbert spaces. In addition, we take T1 ∈ L(U1,H) and T2 ∈ L(U2,H). Then the following statements hold.

∗ ∗ (i) If there exists a constant c  0 such that T x 1  c T x 2 for all 1 2 x ∈ H then T1u u ∈ U1, u 1  1 ⊂ T2v v ∈ U2, v 2  c .In particular, this implies that Im T1 ⊂ Im T2. ∗ ∗ ∈ −1 (ii) If T1 x 1 = T2 x 2 for all x H then Im T1 =ImT2 and T1 x 1 = −1 ∈ T2 x 2 for all x Im T1. Proof. [DPZ92, Proposition B.1, p. 407]

(i) Assume that there exists u0 ∈ U1 such that u0 1  1andT1u0 ∈/ T2v v ∈ U2, v 2  c . By Lemma C.0.4 we know that the set T2v v ∈ U2, v 2  c is closed and convex. Therefore, we get by the separation theorem (see [Alt92, 5.11 Trennungssatz, p. 166]) there exists x ∈ H, x = 0, such that

1 < x, T1u0 and x, T2v  1 for all v ∈ U2 with v 2  c. ∗ ∗  ∗   Thus T1 x 1 > 1andc T2 x 2 =sup T2 x, v 2 1, a contradiction. v2c

(ii) By (i) we know that Im T1 =ImT2. It remains to verify that −1 −1 ∈ T1 x 1 = T2 x 2 for all x Im T1. −1 −1 If x = 0 then T1 0 1 =0= T2 0 2. ⊥ ⊥ If x ∈ Im T1 \{0} then there exist u1 ∈ (Ker T1) and u2 ∈ (Ker T2) such that x = T1u1 = T2u2. We have to show that u1 1 = u2 2.

Assume that u1 1 > u2 2 > 0. Then (i) implies that x u2 = T2 u2 2 u2 2 ∈ T2v v ∈ U2, v 2  1 = T1u u ∈ U1, u 1  1 .

But x u1 u1 = T1 and > 1, u2 2 u2 2 u2 2 1 C. Pseudo Inverse of Linear Operators 117

u1 therefore, there existsu ˜1 ∈ U1, u˜1 1  1, so that foru ˜2 := ∈ u22 ⊥ (Ker T1) we have x T1u˜1 = = T1u˜2 , i.e.u ˜1 − u˜2 ∈ Ker T1. u2 2 Therefore,

 −    − 2 0= u˜1 u˜2, u˜2 1 = u˜1, u˜2 1 u˜2 1  − 2 − u˜1 1 u˜2 1 u˜2 1 = 1 u˜2 1 u˜2 1.

This is a contradiction.

Corollary C.0.6. Let T ∈ L(U, H) and set Q := TT∗ ∈ L(H).Thenwe have 1 − 1 −1 Im Q 2 =ImT and Q 2 x = T x U for all x ∈ Im T ,

− 1 1 where Q 2 is the pseudo inverse of Q 2 .

1 Proof. Since by Lemma 2.3.4 Q 2 is symmetric we have for all x ∈ H that 2 1 ∗ 1 2 ∗ ∗ 2 2     2 Q x = Q x = Qx, x = TT x, x = T x U .

Therefore the assertion follows by Proposition C.0.5. D. Some Tools from Real Martingale Theory

We need the following Burkholder–Davis inequality for real-valued continuous local martingales.

Proposition D.0.1. Let (Nt)t∈[0,T ] be a real-valued continuous local mar- tingale on a probability space (Ω,E,P) with respect to a normal filtration (Ft)t∈[0,T ]. Then for all stopping times τ( T )

| |   1/2 E(sup Nt ) 3E( N τ ). t∈[0,τ]

Proof. See e.g. [KS88, Theorem 3.28].

Corollary D.0.2. Let ε, δ ∈]0, ∞[. Then for N as in Proposition D.0.1

| |   3  1/2 ∧  1/2 P (sup Nt ε) E( N T δ)+P ( N T >δ). t∈[0,T ] ε

Proof. Let {  | 1/2 }∧ τ := inf t 0 N t >δ T.

Then τ( T )isanFt-stopping time. Hence by Proposition D.0.1

P sup |Nt|  ε t∈[0,T ]

=P sup |Nt|  ε, τ = T + P sup |Nt|  ε, τ < T t∈[0,T ] t∈[0,T ] 3  1/2 | |   1/2 E( N τ )+P sup Nt ε, N T >δ ε t∈[0,T ] 3  E(N1/2 ∧ δ)+P (N1/2 >δ). ε T T

119 E. Weak and Strong Solutions: the Yamada-Watanabe Theorem

Let (Ω, F,P) be a complete probability space with normal filtration Ft,t∈ [0, ∞[. Below we shall call ((Ω, F,P,(Ft)) a stochastic basis.Letd, d1 ∈ N and let M(d × d1, R) denote the set of all real d × d1-matrices equipped with the norm (3.1.2). Let W d := C([0, ∞[ → Rd) (E.0.1) and d { ∈ d| } W0 := w W w(0) = 0 . (E.0.2) W d is equipped with metric ∞ −k d (w1,w2):= 2 ( max |w1(t) − w2(t)|∧1),w1,w2 ∈ W , (E.0.3) 0tk k=1 which makes it a . Its Borel σ-algebra is denoted by B(W d). d Let Bt(W ) denote the σ-Algebra generated by all maps πs, 0  s  t, d d,d1 where πs(w):=w(s),w∈ W .LetA denote the set of all B([0, ∞[) ⊗ d d B(W )/B(M(d × d1, R))-measurable maps α :[0, ∞[ ×W → M(d × d1, R) such that for each t ∈ [0, ∞[ the map

d W w → α(t, w) ∈ M(d × d1, R)

d is Bt(W )/B(M(d × d1, R))-measurable.

E.1. The main result

Fix σ ∈Ad,d1 and b ∈Ad,1 and consider the following stochastic differential equation: dX(t)=b(t, X)dt + σ(t, X)dW (t),t∈ [0, ∞[. (E.1.1)

d Definition E.1.1. An R -valued continuous, (Ft)-adapted process X(t), t ∈ [0, ∞[, on some stochastic basis (Ω, F,P,(Ft)) is called a (weak) solution to (E.1.1), if

121 122 E. Weak and Strong Solutions: Yamada–Watanabe Theorem

(i) t |b(s, X)| ds<∞ P -a.e. for all t ∈ [0, ∞[. 0

(ii) t σ(s, X) 2 ds<∞ P -a.e. for all t ∈ [0, ∞[. 0

d1 (iii) There exists an R -valued standard (Ft)- W (t),t ∈ [0, ∞[, on (Ω, F,P) such that P -a.e. t t X(t)=X(0)+ b(s, X)ds+ σ(s, X)dW (s),t∈ [0, ∞[. (E.1.2) 0 0

Remark E.1.2. (i) Clearly, by the measurability assumption on elements in Ad,d1 it follows that if X is a solution, then [0,t] × Ω (s, ω) → σ(s, X(ω)) is B([0,t])⊗F/B(M(d×d1, R))-measurable and σ(t, X) is Ft- measurable for t ∈ [0, ∞[. Likewise for b(·,X).The(Ft)-adaptedness for σ(·,X) and b(·,X) follows since the (Ft)-adaptiveness of X is equivalent d to the Ft/Bt(W ) measurability of X. (ii) Below we shall briefly say (X, W) in Definition E.1.1 is a (weak) solution to (E.1.1) not always mentioning explicitly the stochastic basis, that comes with it.

Definition E.1.3. We say that (weak) uniqueness holds for (E.1.1) if when- ever X and X are two (weak) solutions (with stochastic bases F F F F (Ω, ,P,( t)), (Ω , ,P , ( t)) and associated Wiener processes W (t), W (t),t∈ [0, ∞[) such that

P ◦ X(0)−1 = P ◦ X(0)−1,

(as measures on (Rd, B(Rd))), then

P ◦ X−1 = P ◦ (X)−1

(as measures on (W d, B(W d))).

Definition E.1.4. We say that pathwise uniqueness holds for (E.1.1), if whenever X and X are two (weak) solutions on the same stochastic basis (Ω, F,P,(Ft)) and with the same (Ft)-Wiener process W (t),t∈ [0, ∞[on (Ω, F,P) such that X(0) = X(0) P -a.e., then P -a.e.

X(t)=X(t),t∈ [0, ∞[.

To define strong solutions we need to introduce the following class Eˆ of maps: E.1. The main result 123

Eˆ Rd × d1 → d Let denote the set of all maps F : W0 W such that for every prob- µ⊗P W Rd B Rd B Rd ⊗B d1 B d ability measure µ on ( , ( )) there exists a ( ) (W0 ) / (W )- Rd × d1 → d ∈ Rd measurable map Fµ : W0 W such that for µ-a.e. x

W ∈ d1 F (x, w)=Fµ(x, w)forP -a.e. w W0 .

µ⊗P W B Rd ⊗B d1 B Rd ⊗B d1 Here ( ) (W0 ) denotes the completion of ( ) (W0 ) with respect to µ ⊗ P W ,andP W denotes classical Wiener measure on d1 B d1 (W0 , (W0 )). Let F ∈ Eˆ. For an F/B(Rd)-measurable map ξ :Ω→ Rd on some prob- ability space (Ω, F,P)andanRd1 -valued, standard Wiener process W (t), t ∈ [0, ∞[, on (Ω, F,P) independent of ξ,weset

F (ξ,W):=FP ◦ξ−1 (ξ,W).

Definition E.1.5. A (weak) solution X to (E.1.1) on (Ω, F,P,(Ft)) and associated Wiener process W (t),t∈ [0, ∞[, is called a strong solution if there P W ∈ Eˆ ∈ Rd → B d1 B d exists F such that for x ,w F (x, w)is t(W0 ) / t(W )- measurable for every t ∈ [0, ∞[and

X = F (X(0),W) P -a.e.,

P W B d1 W B d1 where t(W0 ) denotes the completion with respect to P in (W0 ). Definition E.1.6. Equation (E.1.1) is said to have a unique strong solution, if there exists F ∈ Eˆ satisfying the adaptiveness condition in Definition E.1.5 and such that:

d1 1. For every R -valued standard (Ft)-Wiener process W (t),t∈ [0, ∞[, on d a stochastic basis (Ω, F,P,(Ft)) and any F0/B(R )-measurable ξ :Ω→ Rd the continuous process

X := F (ξ,W)

satisfies (i), (ii) and (E.1.2) in Definition E.1.1, i.e. (F (ξ,W),W)isa (weak) solution to (E.1.1), and X(0) = ξ P-a.e.. 2. For any (weak) solution (X, W) to (E.1.1) we have

X = F (X(0),W) P -a.e..

Remark E.1.7. Since X(0) in the above definition is P -independent of W , thus P ◦ (X(0),W)−1 = µ ⊗ P W , we have that the existence of a unique strong solution for (E.1.1) implies that also (weak) uniqueness holds. 124 E. Weak and Strong Solutions: Yamada–Watanabe Theorem

Now we can formulate the main result of this section.

Theorem E.1.8. Let σ ∈Ad,d1 and b ∈Ad,1. Then equation (E.1.1) has a unique strong solution if and only if both of the following properties hold: (i) For every probability measure µ on (Rd, B(Rd)) there exists a (weak) solution (X, W) of (E.1.1) such that µ is the distribution of X(0). (ii) Pathwise uniqueness holds for (E.1.1). Proof. Suppose (E.1.1) has a unique strong solution. Then (ii) obviously holds. To show (i) one only has to take the classical Wiener space µ⊗P W d1 B d1 W Rd × d1 B Rd ⊗B d1 ⊗ W (W0 , (W0 ),P ) and consider ( W0 , ( ) (W0 ) ,µ P ) with filtration B Rd ⊗B d1 N  σ( ( ) t+ε(W0 ), ),t 0, ε>0 µ⊗P W N ⊗ W B Rd ⊗B d1 where denotes all µ P -zero sets in ( ) (W0 ) .Let Rd × d1 → Rd Rd × d1 → d1 ξ : W0 and W : W0 W0 be the canonical projec- tions. Then X := F (ξ,W) is the desired weak solution in (i).

Now let us suppose that (i) and (ii) hold. The proof that then there exists a unique strong solution for (E.1.1) is quite technical. We structure it through a series of lemmas. Lemma E.1.9. Let (Ω, F) be a measurable space such that {ω}∈F for all ω ∈ Ω and such that D := {(ω, ω)|ω ∈ Ω}∈F⊗F (which is e.g. the case if Ω is a Polish space and F its Borel σ-algebra). Let P1,P2 be probability measures on (Ω, F) such that P1 ⊗ P2(D)=1.Then ∈ P1 = P2 = δω0 for some ω0 Ω. Proof. Let f :Ω→ [0, ∞[beF-measurable. Then

f(ω1)P1(dω1)= f(ω1)P1(dω1)P2(dω2)

= 1D(ω1,ω2)f(ω1)P1(dω1)P2(dω2)

= 1D(ω1,ω2)f(ω2)P1(dω1)P2(dω2)= f(ω2)P2(dω2), so P1 = P2. Furthermore,

1= 1D(ω1,ω2)P1(dω1)P2(dω2)= P1({ω2})P2(dω2),

{ } ∈ ∈ hence 1 = P1( ω2 )forP2-a.e. ω2 Ω. Therefore, P1 = δω0 for some ω0 Ω. E.1. The main result 125

Fix a probability measure µ on (Rd, B(Rd)) and let (X, W) with stochastic basis (Ω, F,P,(Ft)) be a (weak) solution to (E.1.1) with initial distribution µ. Rd× d× d1 B Rd ⊗B d ⊗B d1 Define a probability measure Pµ on ( W W0 , ( ) (W ) (W0 )), by −1 Pµ := P ◦ (X(0),X,W) .

∈ Rd ∈ d1 Lemma E.1.10. There exists a family Kµ((x, w),dw1),x ,w W0 ,of probability measures on (W d, B(W d)) having the following properties:

(i) For every A ∈B(W d) the map

Rd × d1 → W0 (x, w) Kµ((x, w),A)

B Rd ⊗B d1 is ( ) (W0 )-measurable.

B Rd ⊗B d ⊗B d1 Rd × d × (ii) For every ( ) (W ) (W0 )-measurable map f : W d1 → ∞ W0 [0, [ we have

f(x, w1,w)Pµ(dx dw1 dw) W = f(x, w1,w)Kµ((x, w),dw1)P (dw)µ(dx). Rd d1 d W0 W

d d (iii) If t ∈ [0, ∞[ and f : W → [0, ∞[ is Bt(W )-measurable, then Rd × d1 → W0 (x, w) f(w1)Kµ((x, w),dw1)

µ⊗P W µ⊗P W B Rd ⊗B d1 B Rd ⊗B d1 is ( ) t(W0 ) -measurable, where ( ) t(W0 ) de- ⊗ W B Rd ⊗B d1 notes the completion with respect to µ P in ( ) (W0 ).

Rd × d × d1 → Rd × d1 Proof. Let Π : W W0 W0 be the canonical projection. Since X(0) is F0-measurable, hence P -independent of W , it follows that

−1 −1 W Pµ ◦ Π = P ◦ (X(0),W) = µ ⊗ P .

Hence by the existence result on regular conditional distributions (cf. e.g. [IW81, Corollary to Theorem 3.3 on p. 15]), the existence of the family ∈ Rd ∈ d1 Kµ((x, w), dw1),x ,w W0 , satisfying (i) and (ii) follows. d To prove (iii) it suffices to show that for t ∈ [0, ∞[ and for all A0 ∈B(R ), ∈B d ∈B d1 A1 t(W ), A t(W0 )and { − ∈ − ∈ } A := πr1 πt B1,...,πrk πt Bk ,

d1 t  r1 <...

W 1A∩A (w)Kµ((x, w),A1)P (dw)µ(dx) A W d1 0 0 d  · |B Rd ⊗B 1 W = 1A∩A (w)Eµ⊗P W (Kµ( ,A1) ( ) t(W0 ))P (dw)µ(dx), d1 A0 W0 (E.1.3)

∩ ∈B d1 B d1 since the system of all A A ,A t(W0 ),A as above generates (W0 ). But by part (ii) above, the left-hand side of (E.1.3) is equal to

 1A0 (x)1A∩A (w)1A1 (w1)Pµ(dx dw1 dw)

 = 1A0 (X(0))1A1 (X)1A(W )1A (W )dP (E.1.4)

 |F = 1A0 (X(0))1A1 (X)1A(W )EP (1A (W ) t)dP.

But 1A (W )isP -independent of Ft, since W is an (Ft)-Wiener process on (Ω, F,P), so EP (1A (W )|Ft)=EP (1A (W )). Hence the right-hand side of (E.1.4) is equal to W P (A ) 1A0 (x)1A(w)1A1 (w1)Pµ(dx dw1 dw) W W = P (A ) Kµ((x, w),A1)P (dw)µ(dx) A0 A W · |B Rd ⊗B d1 = P (A ) Eµ⊗P W (Kµ( ,A1) ( ) t(W0 ))((x, w)) A0 A P W(dw)µ(dx) d  · |B Rd ⊗B 1 = 1A∩A (w)Eµ⊗P W (Kµ( ,A1) ( ) t(W0 ))((x, w)) d1 A0 W0 P W(dw)µ(dx),

W B d1 since A is P -independent of t(W0 ). d For x ∈ R define a measure Qx on

Rd × d × d × d1 B Rd ⊗B d ⊗B d ⊗B d1 ( W W W0 , ( ) (W ) (W ) (W0 )) by

Qx(A):= 1A(z,w1,w2,w) d d1 d d R W0 W W W Kµ((z,w),dw1)Kµ((z,w),dw2)P (dw)δx(dz). E.1. The main result 127

Define the stochastic basis

˜ Rd × d × d × d1 Ω:= W W W0

Qx F˜x B Rd ⊗B d ⊗B d ⊗B d1 := ( ) (W ) (W ) (W0 ) F˜x B Rd ⊗B d ⊗B d ⊗B d1 N t := σ( ( ) t+ε(W ) t+ε(W ) t+ε(W0 ), x), ε>0 where x Nx := {N ∈ F˜ |Qx(N)=0}, and define maps

d Π0 : Ω˜ → R , (x, w1,w2,w) → x, d d Πi : Ω˜ → W , (x, w1,w2,w) → wi ∈ W ,i=1, 2,

˜ → d1 → ∈ d1 Π3 : Ω W0 , (x, w1,w2,w) w W0 .

Then, obviously, ◦ −1 Qx Π0 = δx (E.1.5) and ◦ −1 W ◦ −1 Qx Π3 = P (= P W ). (E.1.6)

d Lemma E.1.11. There exists N0 ∈B(R ) with µ(N0)=0such that for all ∈ c F˜x ˜ F˜x x N0 we have that Π3 is an ( t )-Wiener process on (Ω, ,Qx) taking values in Rd1 .

F˜x ∈ Rd Proof. By definition Π3 is ( t )-adapted for every x . Furthermore, for  ∈ Rd ∈B Rd ∈B d ∈B d1 0 s

d1 Rd W0 where we used Lemma E.1.10(iii) in the last step. Now the assertion follows by (E.1.6), a monotone class argument and the same reasoning as in the proof of Proposition 2.1.13. 128 E. Weak and Strong Solutions: Yamada–Watanabe Theorem

d Lemma E.1.12. There exists N1 ∈B(R ), N0 ⊂ N1,withµ(N1)=0such ∈ c that for all x N1 , (Π1, Π3) and (Π2, Π3) with stochastic basis ˜ F˜x F˜x (Ω, ,Qx, ( t )) are (weak) solutions of (E.1.1) such that

Π1(0) = Π2(0) = xQx-a.e., therefore, Π1 =Π2 Qx-a.e.

x Proof. For i =1, 2 consider the set Ai ∈ F˜ defined by t t Ai := Πi(t) − Πi(0) = b(s, Πi)ds + σ(s, Πi)dΠ3(s) 0 0

for all t ∈ [0, ∞[ ∩{Πi(0) = Π0}.

∈BRd ⊗B d ⊗B d1 Define A ( ) (W ) (W0 ) analogously with Πi replaced by the Rd × d × d1 canonical projection from W W0 onto the second and Π0, Π3 by the canonical projection onto the first and third coordinate respectively. Then by Lemma E.1.10 (ii) for i =1, 2

1Ai (x, w1,w2,w) Rd d1 d d W0 W W W (E.1.7) Kµ((x, w),dw1)Kµ((x, w),dw2)P (dw)µ(dx)

= Pµ(A)=P ({(X(0),X,W) ∈ A})=1.

Since all measures in the left-hand side of (E.1.7) are probability measures, it follows that for µ-a.e. x ∈ Rd

1=Qx(Ai)=Qx(Ai,x), where for i =1, 2 t t Ai,x := Πi(t) − x = b(s, Πi)ds + σ(s, Πi)dΠ3(s), ∀t ∈ [0, ∞[ !. 0 0 Hence the first assertion follows. The second then follows by the pathwise uniqueness assumption in condition (ii) of the theorem.

µ⊗P W B Rd ⊗B d1 B d Lemma E.1.13. There exists a ( ) (W0 ) / (W )-measurable map Rd × d1 → d Fµ : W0 W such that · Kµ((x, w), )=δFµ(x,w) d (= Dirac measure on B(W ) with mass in Fµ(x, w)) E.1. The main result 129

⊗ W ∈ Rd × d1 for µ P -a.e. (x, w) W0 . Furthermore, Fµ is µ⊗P W B Rd ⊗B d1 B d ∈ ∞ ( ) t(W0 ) / t(W )-measurable for all t [0, [,where µ⊗P W B Rd ⊗B d1 ⊗ W ( ) t(W0 ) denotes the completion with respect to µ P in B Rd ⊗B d1 ( ) t(W0 ). ∈ c Proof. By Lemma E.1.12 for all x N1 ,wehave

1=Qx({Π1 =Π2}) W = 1D(w1,w2)Kµ((x, w),dw1)Kµ((x, w),dw2)P (dw), d1 d d W0 W W

d d d where D := {(w1,w1) ∈ W × W |w1 ∈ W }. Hence by Lemma E.1.9 there ∈B Rd ⊗B d1 ⊗ W ∈ c exists N ( ) (W0 ) such that µ P (N) = 0 and for all (x, w) N d there exists Fµ(x, w) ∈ W such that

Kµ((x, w),dw1)=δFµ(x,w)(dw1).

d Set Fµ(x, w):=0,if(x, w) ∈ N.LetA ∈B(W ). Then

c {Fµ ∈ A} =({Fµ ∈ A}∩N) ∪ ({Kµ(·,A)=1}∩N ) and the measurability properties of Fµ follow from Lemma E.1.10.

Having defined the mapping Fµ let us check the conditions of Definition E.1.5 and Definition E.1.6. We start with condition 2.

Lemma E.1.14. We have

X = Fµ(X(0),W) P -a.e..

Proof. By Lemmas E.1.10 and E.1.13 we have

P ({X = Fµ(X(0),W)}) W = 1{w1=Fµ(x,w)}(x, w1,w)δFµ(x,w)(dw1)P (dw)µ(dx)

Rd d1 W d W0 =1.

Rd1 F Now let us check condition 1. Let W be another -valued standard ( t)- F F → Rd Wiener process on a stochastic basis (Ω , ,P, ( t)) and ξ :Ω an F B Rd ◦ −1 0/ ( )-measurable map and µ := P ξ .LetFµ be as above and set X := Fµ(ξ,W ). 130 E. Weak and Strong Solutions: Yamada–Watanabe Theorem

Lemma E.1.15. (X,W) is a (weak) solution to (E.1.1) with X(0) = ξ P -a.s.. Proof. We have P ({ξ = X (0)})=P ({ξ = Fµ(ξ,W )(0)})

⊗ W { ∈ Rd × d1 | } = µ P ( (x, w) W0 x = Fµ(x, w) )

= P ({X(0) = Fµ(X(0),W)(0)})=1, where we used Lemma E.1.14 in the last step. To see that (X,W) is a (weak) solution we consider the set A ∈B(Rd) ⊗ B d ⊗B d1 (W ) (W0 ) defined in the proof of Lemma E.1.12. We have to show that P ({(X(0),X,W) ∈ A})=1. But since X(0) = ξ is P -independent of W ,wehave 1A(X (0),Fµ(X (0),W ),W )dP W = 1A(x, Fµ(x, w),w)P (dw)µ(dx) Rd W d1 0 W = 1A(x, w1,w)δFµ(x,w)(dw1)P (dw)µ(dx) Rd W d1 W d 0

= 1A(x, w1,w)Pµ(dx dw1 dw)

=P ({(X(0),X,W) ∈ A})=1, where we used E.1.10 and E.1.11 in the second to last step. To complete the proof we still have to construct F ∈ Eˆ and to check the adaptiveness conditions on the corresponding mappings Fµ. Below we shall apply what we have obtained above now also to δx replacing µ.So,foreach ∈ Rd x we have a function Fδx . Now define

∈ Rd ∈ d1 F (x, w):=Fδx (x, w),x ,w W0 . (E.1.8) The proof of Theorem E.1.8 is then completed by the following lemma. d d Lemma E.1.16. Let µ be a probability measure on (R , B(R )) and Fµ : Rd × d1 → d ∈ Rd W0 W as constructed in Lemma E.1.13. Then for µ-a.e. x W F (x, ·)=Fµ(x, ·) P − a.e..

P W · B d1 B d ∈ Rd Furthermore, F (x, ) is t(W0 ) / t(W )-measurable for all x , P W ∈ ∞ B d1 B d1 t [0, [,where t(W0 ) denotes the completion of t(W0 ) with respect W d1 to P in B(W0 ). E.1. The main result 131

Proof. Let ¯ Rd × d × d1 Ω:= W W0 F¯ B Rd ⊗B d ⊗B d1 := ( ) (W ) (W0 ) d and fix x ∈ R . Define a measure Q¯x on (Ω¯, F¯)by W Q¯x(A):= 1A(z,w1,w)Kµ((z,w),dw1)P (dw)δx(dz) Rd d1 d W0 W ¯ F¯x ¯ F¯x with Kµ as in Lemma E.1.10. Consider the stochastic basis (Ω, , Qx, ( t )) where Q¯x F¯x := B(Rd) ⊗B(W d) ⊗B(W d1 ) , 0 F¯x B Rd ⊗B d ⊗B d1 N¯ t := σ( ( ) t+ε(W ) t+ε(W0 ), x), ε>0 x where N¯x := {N ∈ F¯ |Q¯x(N)=0}. As in the proof of Lemma E.1.12 one ¯ F¯x ¯ F¯x shows that (Π, Π3)on(Ω, , Qx, ( t )) is a (weak) solution to (E.1.1) with Π(0) = x Q¯x-a.e. Here

Rd × d × d1 → Rd → Π0 : W W0 , (x, w1,w) x,

Rd × d × d1 → d → Π: W W0 W , (x, w1,w) w1,

Rd × d × d1 → d1 → Π3 : W W0 W0 , (x, w1,w) w. ¯ F¯x ¯ F¯x By Lemma E.1.15 (Fδx (x, Π3), Π3) on the stochastic basis (Ω, , Qx, ( t )) is a (weak) solution to (E.1.1) with

Fδx (x, Π3)(0) = x. Hence by our pathwise uniqueness assumption (ii), it follows that ¯ Fδx (x, Π3)=Π Qx-a.s.. (E.1.9)

∈B Rd ⊗B d ⊗B d1 Hence for all A ( ) (W ) (W0 ) by Lemma E.1.13 and (E.1.9) W 1A(x, w1,w)δFµ(x,w)(dw1)P (dw)µ(dx) Rd W d W d1 0

= Q¯x(A)µ(dx) Rd ¯ = 1A(Π0,Fδx (x, Π3), Π3)dQxµ(dx) Rd ¯ Ω W = 1A(x, Fδ (x, w),w)P (dw)µ(dx) d x Rd W ! 0 = 1 (x, w ,w)δ (dw )P W(dw)µ(dx), A 1 Fδx (x,w) 1 Rd d1 d W0 W 132 E. Weak and Strong Solutions: Yamada–Watanabe Theorem which implies the assertion. d d Let x ∈ R ,t∈ [0, ∞[,A∈Bt(W ), and define ¯ Fδx := 1{ }× d1 Fδx . x W0 Then ¯ ⊗ W − Fδx = Fδx δx P a.e., hence W δx⊗P { ¯ ∈ }∈B Rd ⊗B d1 Fδx A ( ) t(W0 ) . (E.1.10) But { ¯ ∈ } { }×{ · ∈ }∪ Rd\{ } ×{ ∈ } Fδx A = x Fδx (x, ) A ( x ) 0 A , so by (E.1.10) it follows that

P W { · ∈ }∈B d1 Fδx (x, ) A t(W0 ) . F. Strong, Mild and Weak Solutions

This chapter is a short version of Chapter 2 in [FK01]. We only state the results and refer to [FK01], [DPZ92] for the proofs. As in previous chapters let (U, U ) and (H, ) be separable Hilbert spaces. We take Q = I and fix a cylindrical Q-Wiener process W (t), t  0, in U on a probability space (Ω, F,P) with a normal filtration Ft, t  0. Moreover, we fix T>0 and consider the following type of stochastic differential equations in H: dX(t)=[CX(t)+F (X(t))] dt + B(X(t)) dW (t),t∈ [0,T], (F.0.1) X(0) = ξ, where:

• C : D(C) → H is the infinitesimal generator of a C0-semigroup S(t), t  0, of linear operators on H, • F : H → H is B(H)/B(H)-measurable, • B : H → L(U, H),

• ξ is a H-valued, F0-measurable random variable. Definition F.0.1 (mild solution). An H-valued predictable process X(t), t ∈ [0,T], is called a mild solution of problem (F.0.1) if t X(t)=S(t)ξ + S(t − s)F (X(s)) ds 0 (F.0.2) t + S(t − s)B(X(s)) dW (s) P -a.s. 0 for each t ∈ [0,T]. In particular, the appearing have to be well- defined. Definition F.0.2 (analytically strong solutions). A D(C)-valued pre- dictable process X(t), t ∈ [0,T], (i.e. (s, ω) → X(s, ω)isPT /B(H)- measurable) is called an analytically strong solution of problem (F.0.1) if t t X(t)=ξ + CX(s)+F (X(s)) ds + B(X(s)) dW (s) P -a.s. (F.0.3) 0 0

133 134 F. Strong, Mild and Weak Solutions for each t ∈ [0,T]. In particular, the integrals on the right-hand side have to be well-defined, that is, CX(t), F (X(t)), t ∈ [0,T], are P -a.s. Bochner integrable and B(X) ∈NW .

Definition F.0.3 (analytically weak solution). An H-valued predictable process X(t), t ∈ [0,T], is called an analytically weak solution of problem (F.0.1) if t X(t),ζ = ξ,ζ + X(s),C∗ζ + F (X(s)),ζ ds 0 (F.0.4) t + ζ,B(X(s))dW (s) P -a.s. 0 for each t ∈ [0,T]andζ ∈ D(C∗). Here (C∗,D(C∗)) is the adjoint of (C, D(C)) on H. In particular, as in Definitions F.0.2 and F.0.1, the appearing integrals have to be well-defined.

Proposition F.0.4 (analytically weak versus analytically strong so- lutions).

(i) Every analytically strong solution of problem (F.0.1) is also an analyti- cally weak solution.

(ii) Let X(t), t ∈ [0,T], be an analytically weak solution of problem (F.0.1) with values in D(C) such that B(X(t)) takes values in L2(U, H) for all t ∈ [0,T]. Besides we assume that T P CX(t) dt < ∞ =1 0 T P F (X(t)) dt < ∞ =1 0 T 2 ∞ P B(X(t)) L2 dt < =1. 0

Then the process is also an analytically strong solution.

Proposition F.0.5 (analytically weak versus mild solutions).

(i) Let X(t), t ∈ [0,T], be an analytically weak solution of problem (F.0.1) such that B(X(t)) takes values in L2(U, H) for all t ∈ [0,T]. Besides F. Strong, Mild and Weak Solutions 135

we assume that T P X(t) dt < ∞ =1 0 T P F (X(t)) dt < ∞ =1 0 T 2 ∞ P B(X(t)) L2 dt < =1. 0 Then the process is also a mild solution. (ii) Let X(t), t ∈ [0,T], be a mild solution of problem (F.0.1) such that the mappings t (t, ω) → S(t − s)F (X(s, ω)) ds 0 t (t, ω) → S(t − s)B(X(s)) dW (s)(ω) 0 have predictable versions. In addition, we require that T P ( F (X(t)) dt < ∞)=1 0 T t E( S(t − s)B(X(s)),C∗ζ 2 ds) dt < ∞ L2(U,R) 0 0 for all ζ ∈ D(C∗). Then the process is also an analytically weak solution. Remark F.0.6. The precise relation of mild and analytically weak solutions with the variational solutions from Definition 4.2.1 is obviously more difficult to describe in general. We shall concentrate just on the following quite typical special case: Consider the situation of Subsection 4.2, but with A and B independent of t and ω. Assume that there exist a self-adjoint operator (C, D(C)) on H such that −C  const. > 0 and F : H → H B(H)/B(H)-measurable such that A(x)=C(x)+F (x),x∈ V, and 1 V := D((−C) 2 ),

1 equipped with the graph norm of (−C) 2 . Then it is easy to see that C extends to a continuous linear operator form V to V ∗, again denoted by C such that for x ∈ V , y ∈ D(C)     V ∗ Cx,y V = x, Cy . (F.0.5) 136 F. Strong, Mild and Weak Solutions

Now let X be a (variational) solution in the sense of Definition 4.2.1, then it follows immediately from (F.0.5) that X is an analytically weak solution in the sense of Definition F.0.3. Bibliography

[Alt92] H. W. Alt, Lineare Funktionalanalysis, Springer-Verlag, 1992.

[AR91] S. Albeverio and M. R¨ockner, Stochastic differential equa- tions in infinite dimensions: solutions via Dirichlet forms, Probab. Theory Related Fields 89 (1991), no. 3, 347–386. MR MR1113223 (92k:60123)

[Aro86] D. G. Aronson, The porous medium equation, Nonlinear dif- fusion problems (Montecatini Terme, 1985), Lecture Notes in Math., vol. 1224, Springer, Berlin, 1986, pp. 1–46. MR MR877986 (88a:35130)

[Bau01] H. Bauer, Measure and integration theory, de Gruyter Studies in Mathematics, vol. 26, Walter de Gruyter & Co., Berlin, 2001.

[Coh80] D. L. Cohn, Measure theory,Birkh¨auser, 1980.

[Doo53] J. L. Doob, Stochastic processes, John Wiley & Sons Inc., New York, 1953. MR MR0058896 (15,445b)

[DP04] G. Da Prato, Kolmogorov equations for stochastic PDEs, Advanced Courses in Mathematics – CRM Barcelona, Birkhaeuser, Basel, 2004.

[DPRLRW06] G. Da Prato, M. R¨ockner, B. L. Rozowskii and F. Y. Wang, Strong solutions of stochastic generalized porous media equa- tions: existence, uniqueness, and ergodicity, Comm. Partial Differential Equations 31 (2006), nos 1–3, 277–291. MR MR2209754

[DPZ92] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge University Press, 1992.

[DPZ96] , Ergodicity for infinite-dimensional systems, London Mathematical Society Lecture Note Series, vol. 229, Cambridge University Press, 1996.

137 138 Bibliography

[FK01] K. Frieler and C. Knoche, Solutions of stochastic differential equations in infinite dimensional Hilbert spaces and their de- pendence on initial data, Diploma Thesis, Bielefeld University, BiBoS-Preprint E02-04-083, 2001. [GK81] I. Gy¨ongy and N. V. Krylov, On stochastic equations with re- spect to semimartingales. I, Stochastics 4 (1980/81), no. 1, 1– 21. MR MR587426 (82j:60104) [GK82] , On stochastics equations with respect to semimartin- gales. II. Itˆo formula in Banach spaces, Stochastics 6 (1981/82), nos 3–4, 153–173. MR MR665398 (84m:60070a) [GT83] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, second ed., Grundlehren der Math- ematischen Wissenschaften [Fundamental Principles of Math- ematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR MR737190 (86c:35035) [Gy¨o82] I. Gy¨ongy, On stochastic equations with respect to semimartin- gales. III, Stochastics 7 (1982), no. 4, 231–254. MR MR674448 (84m:60070b) [IW81] N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes, North-Holland Mathematical Library, vol. 24, North-Holland Publishing Co., Amsterdam, 1981. [KR79] N. V. Krylov and B. L. Rozowski˘ı, Stochastic evolution equa- tions, Current problems in mathematics, Vol. 14 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. In- formatsii, Moscow, 1979, pp. 71–147, 256. MR MR570795 (81m:60116) [Kry99] N. V. Krylov, On Kolmogorov’s equations for finite- dimensional diffusions, Stochastic PDE’s and Kolmogorov equations in infinite dimensions (Cetraro, 1998), Lecture Notes in Math., vol. 1715, Springer, Berlin, 1999, pp. 1–63. MR MR1731794 (2000k:60155) [KS88] I. Karatzas and S. E. Shreve, and , Graduate Texts in Mathematics, vol. 113, Springer- Verlag, New York, 1988. MR MR917065 (89c:60096) [MV92] R. Meise and D. Vogt, Einf¨uhrung in die Funktionalanalysis, Vieweg Verlag, 1992. [Ond04] M. Ondrej´at, Uniqueness for stochastic evolution equations in Banach spaces, Dissertationes Math. (Rozprawy Mat.) 426 (2004), 1–63. Bibliography 139

[Par72] E. Pardoux, Sur des ´equations aux d´eriv´ees partielles stochas- tiques monotones, C. R. Acad. Sci. Paris S´er. A-B 275 (1972), A101–A103. MR MR0312572 (47 #1129)

[Par75] , Equations´ aux d´eriv´ees partielles stochastiques de type monotone,S´eminaire sur les Equations´ aux D´eriv´ees Partielles (1974–1975), III, Exp. No. 2, Coll`ege de France, Paris, 1975, p. 10. MR MR0651582 (58 #31406)

[Roz90] B. Rozowskii, Stochastic evolution systems, Mathematics and its Applications, no. 35, Kluwer Academic Publishers Group, Dordrecht, 1990.

[RRW06] J. Ren, M. R¨ockner and F. Y. Wang, Stochastic porous media and fast diffusion equations, Preprint, 33 pages, 2006.

[RS72] M. Reed and B. Simon, Methods of modern mathematical physics, Academic Press, 1972.

[Wal86] J. B. Walsh, An introduction to stochastic partial differential equations, Ecole´ d’´et´e de probabilit´es de Saint-Flour, XIV— 1984, Lecture Notes in Math., vol. 1180, Springer, Berlin, 1986, pp. 265–439. MR MR876085 (88a:60114)

[WW90] H. Weizs¨acker and G. Winkler, Stochastic integrals: an intro- duction, Vieweg, 1990.

[Zab98] J. Zabczyk, Parabolic equations on Hilbert spaces, Stochas- tic PDEs and Kolmogorov Equations in Infinite Dimensions (Giuseppe Da Prato, ed.), Lecture Notes in Mathematics, Springer Verlag, 1998, pp. 117–213.

[Zei90] E. Zeidler, Nonlinear and its applications. II/B, Springer-Verlag, New York, 1990, Nonlinear monotone operators, Translated from the German by the author and Leo F. Boron. MR MR1033498 (91b:47002) Index

Bochner inequality, 107 maximal inequality, 20 Bochner integral, 105 boundedness, 56 normal filtration, 16 Burkholder-Davis inequality, 119 operator coercivity, 56 Hilbert–Schmidt -, 110 conditional expectation, 17 nonnegative -, 109 covariance operator, 6 nuclear -, 109 symmetric -, 109 demicontinuity, 56 trace class -, 109 elementary process, 22 p-Laplacian, 65 existence predictable process, 28 - of a unique solution in finite predictable σ-field, 27 dimensions, 44 pseudo inverse, 115 fundamental theorem of calculus, quadratic variation of the stochas- 108 tic integral, 37

Gaussian , 62 -law,6 solution -measure,5 analytically strong -, 133 - random variable, 9 analytically weak -, 134 representation and existence - in finite dimensions, 44 of a -, 9 mild -, 133 Gelfand triple, 55 strong -, 123 weak -, 121 hemicontinuity, 56 square root of a linear operator, 25 Hilbert–Schmidt norm, 111 stochastic basis, 121 stochastic differential equation Itˆo isometry, 25 Burgers equation, 3 local weak monotonicity, 44 heat equation, 65 localization lemma, 45 - in finite dimensions, 44 localization procedure, 30 - in infinite dimensions, 55 Navier–Stokes equation, 3 martingale, 19 porous media equation, 3

141 142 Index

reaction diffusion equation, 3, weak monotonicity, 56 67 Wiener process stochastic integral - as a martingale, 21 - w.r.t. a standard Wiener process, standard -, 13 22 representation and existence stochastically integrable process, 30 of a -, 13 strong measurability, 106 - with respect to a filtration, trace, 109 16 uniqueness Yamada–Watanabe pathwise -, 122 Theorem of -, 124 strong -, 123 weak -, 122 Symbols

N(m, Q) with mean m and covariance Q,6 W (t), t ∈ [0,T] standard Wiener process, 13 cylindrical Wiener process, 39 E(X|G) conditional expectation of X given G,18 M2 T (E) space of all continuous E-valued, square inte- grable martingales, 20 E class of all L(U, H)-valued elementary processes, 22 ΩT [0,T] × Ω, 21 dx Lebesgue measure, 21 PT dx|[0,T ] ⊗ P ,21 P T predictable σ-field on ΩT ,27 Φ(s)dW (s) stochastic integral w.r.t. W ,22 Lp(Ω, F,µ; X) set of all with respect to µp-integrable mappings from Ω to X, 106 Lp(Ω, F,µ) Lp(Ω, F,µ; R) p p F L0 L (Ω, 0,P; H) Lp([0,T]; H) Lp([0,T], B([0,T]), dx; H) Lp([0,T], dx) Lp([0,T], B([0,T]), dx; R) 2 2 P 0 T L -norm on L (ΩT , T ,PT ; L2), 25 N 2 2 P 0 W (0,T; H) L (ΩT , T ,PT ; L2), 28 N 2 N 2 W (0,T) W (0,T; H) N 2 N 2 W W (0,T; H) NW (0,T; H) space of all stochastically integrable processes, 30 NW (0,T) NW (0,T; H) L(U, H) space of all bounded and linear operators from U to H, 109 L(U) L(U, U) L1(U, H) space of all nuclear operators from U to H, 109 tr Q trace of Q, 109 L2(U, H) space of all Hilbert–Schmidt operators from U to H, 110

L2 Hilbert–Schmidt norm, 111

143 144 Symbols

A∗ adjoint operator of A ∈ L(U, H) 1 Q 2 square root of Q ∈ L(U), 25 T −1 (pseudo) inverse of T ∈ L(U, H), 115 1 U0 Q 2 (U), 27 0 1 L2 L2(Q 2 (U),H), 27 − 1 − 1 u, v0 Q 2 u, Q 2 vU ,27 { | ∈ } L(U, H)0 TU0 T L(U, H) ,27 M(d × d1, R) set of all real d × d1-matrices, 43 (V,H,V ∗) Gelfand triple, 55 ∞ C0 (Λ) set of all infinitely differentiable real-valued func- tions on Λ with compact support, 62 ∞ 1,p norm on C0 (Λ), 62 1,p ∞ H0 (Λ) Sobolev space, completion of C0 (Λ) w.r.t. 1,p, 62 ∆p p-Laplacian, p  2, 65 W d C([0, ∞[→ Rd), 121 d { ∈ d | } W0 w W w(0) = 0 , 121 d d B(W ), Bt(W ) 121 Ad,d1 121 Eˆ 122 Lecture Notes in Mathematics For information about earlier volumes please contact your bookseller or Springer LNM Online archive: springerlink.com

Vol. 1715: N. V. Krylov, M. Röckner, J. Zabczyk, Stochas- by Industrial Problems. Martina Franca, 1999. Editors: tic PDE’s and Kolmogorov Equations in Infinite Dimen- V. Capasso, H. Engl, J. Periaux (2000) sions. Cetraro, 1998. Editor: G. Da Prato (1999) Vol. 1740: B. Kawohl, O. Pironneau, L. Tartar, J.-P. Zole- Vol. 1716: J. Coates, R. Greenberg, K. A. Ribet, K. Ru- sio, Optimal Shape Design. Tróia, Portugal 1999. Editors: bin, Arithmetic Theory of Elliptic Curves. Cetraro, 1997. A. Cellina, A. Ornelas (2000) Editor: C. Viola (1999) Vol. 1741: E. Lombardi, Oscillatory Integrals and Phe- Vol. 1717: J. Bertoin, F. Martinelli, Y. Peres, Lectures nomena Beyond all Algebraic Orders (2000) on Probability Theory and Statistics. Saint-Flour, 1997. Vol. 1742: A. Unterberger, Quantization and Non- Editor: P. Bernard (1999) holomorphic Modular Forms (2000) Vol. 1718: A. Eberle, Uniqueness and Non-Uniqueness Vol. 1743: L. Habermann, Riemannian Metrics of Con- of Semigroups Generated by Singular Diffusion Opera- stant Mass and Moduli Spaces of Conformal Structures tors (1999) (2000) Vol. 1719: K. R. Meyer, Periodic Solutions of the N-Body Vol. 1744: M. Kunze, Non-Smooth Dynamical Systems Problem (1999) (2000) Vol. 1720: D. Elworthy, Y. Le Jan, X-M. Li, On the Geo- Vol. 1745: V. D. Milman, G. Schechtman (Eds.), Geomet- metry of Diffusion Operators and Stochastic Flows (1999) ric Aspects of Functional Analysis. Israel Seminar 1999- Vol. 1721: A. Iarrobino, V. Kanev, Power Sums, Goren- 2000 (2000) stein Algebras, and Determinantal Loci (1999) Vol. 1746: A. Degtyarev, I. Itenberg, V. Kharlamov, Real Vol. 1722: R. McCutcheon, Elemental Methods in Ergodic Enriques Surfaces (2000) Ramsey Theory (1999) Vol. 1747: L. W. Christensen, Gorenstein Dimensions Vol. 1723: J. P. Croisille, C. Lebeau, Diffraction by an (2000) Immersed Elastic Wedge (1999) Vol. 1748: M. Ruzicka, Electrorheological Fluids: Model- Vol. 1724: V. N. Kolokoltsov, Semiclassical Analysis for ing and Mathematical Theory (2001) Diffusions and Stochastic Processes (2000) Vol. 1749: M. Fuchs, G. Seregin, Variational Methods Vol. 1725: D. A. Wolf-Gladrow, Lattice-Gas Cellular for Problems from Plasticity Theory and for Generalized Automata and Lattice Boltzmann Models (2000) Newtonian Fluids (2001) Vol. 1726: V. Maric,´ Regular Variation and Differential Vol. 1750: B. Conrad, Grothendieck Duality and Base Equations (2000) Change (2001) Vol. 1727: P. Kravanja M. Van Barel, Computing the Zeros Vol. 1751: N. J. Cutland, Loeb Measures in Practice: of Analytic Functions (2000) Recent Advances (2001) Vol. 1728: K. Gatermann Computer Algebra Methods for Vol. 1752: Y. V. Nesterenko, P. Philippon, Introduction to Equivariant Dynamical Systems (2000) Algebraic Independence Theory (2001) Vol. 1729: J. Azéma, M. Émery, M. Ledoux, M. Yor (Eds.) Séminaire de Probabilités XXXIV (2000) Vol. 1753: A. I. Bobenko, U. Eitner, Painlevé Equations in the Differential Geometry of Surfaces (2001) Vol. 1730: S. Graf, H. Luschgy, Foundations of Quantiza- tion for Probability Distributions (2000) Vol. 1754: W. Bertram, The Geometry of Jordan and Lie Vol. 1731: T. Hsu, Quilts: Central Extensions, Braid Structures (2001) Actions, and Finite Groups (2000) Vol. 1755: J. Azéma, M. Émery, M. Ledoux, M. Yor Vol. 1732: K. Keller, Invariant Factors, Julia Equivalences (Eds.), Séminaire de Probabilités XXXV (2001) and the (Abstract) Mandelbrot Set (2000) Vol. 1756: P. E. Zhidkov, Korteweg de Vries and Nonlin- Vol. 1733: K. Ritter, Average-Case Analysis of Numerical ear Schrödinger Equations: Qualitative Theory (2001) Problems (2000) Vol. 1757: R. R. Phelps, Lectures on Choquet’s Theorem Vol. 1734: M. Espedal, A. Fasano, A. Mikelic,´ Filtration in (2001) Porous Media and Industrial Applications. Cetraro 1998. Vol. 1758: N. Monod, Continuous Bounded Cohomology Editor: A. Fasano. 2000. of Locally Compact Groups (2001) Vol. 1735: D. Yafaev, Scattering Theory: Some Old and Vol. 1759: Y. Abe, K. Kopfermann, Toroidal Groups New Problems (2000) (2001) Vol. 1736: B. O. Turesson, Nonlinear Potential Theory and Vol. 1760: D. Filipovic,´ Consistency Problems for Heath- Weighted Sobolev Spaces (2000) Jarrow-Morton Interest Rate Models (2001) Vol. 1737: S. Wakabayashi, Classical Microlocal Analysis Vol. 1761: C. Adelmann, The Decomposition of Primes in in the Space of Hyperfunctions (2000) Torsion Point Fields (2001) Vol. 1738: M. Émery, A. Nemirovski, D. Voiculescu, Vol. 1762: S. Cerrai, Second Order PDE’s in Finite and Lectures on Probability Theory and Statistics (2000) Infinite Dimension (2001) Vol. 1739: R. Burkard, P. Deuflhard, A. Jameson, J.-L. Vol. 1763: J.-L. Loday, A. Frabetti, F. Chapoton, F. Goi- Lions, G. Strang, Computational Mathematics Driven chot, Dialgebras and Related Operads (2001) Vol. 1764: A. Cannas da Silva, Lectures on Symplectic Vol. 1792: D. D. Ang, R. Gorenflo, V. K. Le, D. D. Trong, Geometry (2001) Moment Theory and Some Inverse Problems in Potential Vol. 1765: T. Kerler, V. V. Lyubashenko, Non-Semisimple Theory and Heat Conduction (2002) Topological Quantum Field Theories for 3-Manifolds with Vol. 1793: J. Cortés Monforte, Geometric, Control and Corners (2001) Numerical Aspects of Nonholonomic Systems (2002) Vol. 1766: H. Hennion, L. Hervé, Limit Theorems for Vol. 1794: N. Pytheas Fogg, Substitution in Dynamics, Markov Chains and Stochastic Properties of Dynamical Arithmetics and Combinatorics. Editors: V. Berthé, S. Fer- Systems by Quasi-Compactness (2001) enczi, C. Mauduit, A. Siegel (2002) Vol. 1767: J. Xiao, Holomorphic Q Classes (2001) Vol. 1795: H. Li, Filtered-Graded Transfer in Using Non- Vol. 1768: M. J. Pflaum, Analytic and Geometric Study of commutative Gröbner Bases (2002) Stratified Spaces (2001) Vol. 1796: J.M. Melenk, hp-Finite Element Methods for Vol. 1769: M. Alberich-Carramiñana, Geometry of the Singular Perturbations (2002) Plane Cremona Maps (2002) Vol. 1797: B. Schmidt, Characters and Cyclotomic Fields Vol. 1770: H. Gluesing-Luerssen, Linear Delay- in Finite Geometry (2002) Differential Systems with Commensurate Delays: An Vol. 1798: W.M. Oliva, Geometric Mechanics (2002) Algebraic Approach (2002) Vol. 1799: H. Pajot, Analytic Capacity, Rectifiability, Vol. 1771: M. Émery, M. Yor (Eds.), Séminaire de Prob- Menger Curvature and the Cauchy Integral (2002) abilités 1967-1980. A Selection in Martingale Theory Vol. 1800: O. Gabber, L. Ramero, Almost Ring Theory (2002) (2003) Vol. 1772: F. Burstall, D. Ferus, K. Leschke, F. Pedit, Vol. 1801: J. Azéma, M. Émery, M. Ledoux, M. Yor U. Pinkall, Conformal Geometry of Surfaces in S4 (2002) (Eds.), Séminaire de Probabilités XXXVI (2003) Vol. 1773: Z. Arad, M. Muzychuk, Standard Integral Vol. 1802: V. Capasso, E. Merzbach, B. G. Ivanoff, Table Algebras Generated by a Non-real Element of Small M. Dozzi, R. Dalang, T. Mountford, Topics in Spatial Degree (2002) Stochastic Processes. Martina Franca, Italy 2001. Editor: Vol. 1774: V. Runde, Lectures on Amenability (2002) E. Merzbach (2003) Vol. 1775: W. H. Meeks, A. Ros, H. Rosenberg, The Vol. 1803: G. Dolzmann, Variational Methods for Crys- Global Theory of Minimal Surfaces in Flat Spaces. talline Microstructure – Analysis and Computation (2003) Martina Franca 1999. Editor: G. P. Pirola (2002) Vol. 1804: I. Cherednik, Ya. Markov, R. Howe, G. Lusztig, Vol. 1776: K. Behrend, C. Gomez, V. Tarasov, G. Tian, Iwahori-Hecke Algebras and their Representation Theory. Quantum Comohology. Cetraro 1997. Editors: P. de Bar- Martina Franca, Italy 1999. Editors: V. Baldoni, D. Bar- tolomeis, B. Dubrovin, C. Reina (2002) basch (2003) Vol. 1805: F. Cao, Geometric Curve Evolution and Image Vol. 1777: E. García-Río, D. N. Kupeli, R. Vázquez- Processing (2003) Lorenzo, Osserman Manifolds in Semi-Riemannian Vol. 1806: H. Broer, I. Hoveijn. G. Lunther, G. Vegter, Geometry (2002) Bifurcations in Hamiltonian Systems. Computing Singu- Vol. 1778: H. Kiechle, Theory of K-Loops (2002) larities by Gröbner Bases (2003) Vol. 1779: I. Chueshov, Monotone Random Systems Vol. 1807: V. D. Milman, G. Schechtman (Eds.), Geomet- (2002) ric Aspects of Functional Analysis. Israel Seminar 2000- Vol. 1780: J. H. Bruinier, Borcherds Products on O(2,1) 2002 (2003) and Chern Classes of Heegner Divisors (2002) Vol. 1808: W. Schindler, Measures with Symmetry Prop- Vol. 1781: E. Bolthausen, E. Perkins, A. van der Vaart, erties (2003) Lectures on Probability Theory and Statistics. Ecole d’ Vol. 1809: O. Steinbach, Stability Estimates for Hybrid Eté de Probabilités de Saint-Flour XXIX-1999. Editor: Coupled Domain Decomposition Methods (2003) P. Bernard (2002) Vol. 1810: J. Wengenroth, Derived Functors in Functional Vol. 1782: C.-H. Chu, A. T.-M. Lau, Harmonic Functions Analysis (2003) on Groups and Fourier Algebras (2002) Vol. 1811: J. Stevens, Deformations of Singularities Vol. 1783: L. Grüne, Asymptotic Behavior of Dynamical (2003) and Control Systems under Perturbation and Discretiza- Vol. 1812: L. Ambrosio, K. Deckelnick, G. Dziuk, tion (2002) M. Mimura, V. A. Solonnikov, H. M. Soner, Mathematical Vol. 1784: L. H. Eliasson, S. B. Kuksin, S. Marmi, J.-C. Aspects of Evolving Interfaces. Madeira, Funchal, Portu- Yoccoz, Dynamical Systems and Small Divisors. Cetraro, gal 2000. Editors: P. Colli, J. F. Rodrigues (2003) Italy 1998. Editors: S. Marmi, J.-C. Yoccoz (2002) Vol. 1813: L. Ambrosio, L. A. Caffarelli, Y. Brenier, Vol. 1785: J. Arias de Reyna, Pointwise Convergence of G. Buttazzo, C. Villani, Optimal Transportation and its Fourier Series (2002) Applications. Martina Franca, Italy 2001. Editors: L. A. Vol. 1786: S. D. Cutkosky, Monomialization of Mor- Caffarelli, S. Salsa (2003) phisms from 3-Folds to Surfaces (2002) Vol. 1814: P. Bank, F. Baudoin, H. Föllmer, L.C.G. Vol. 1787: S. Caenepeel, G. Militaru, S. Zhu, Frobenius Rogers, M. Soner, N. Touzi, Paris-Princeton Lectures on and Separable Functors for Generalized Module Cate- Mathematical Finance 2002 (2003) gories and Nonlinear Equations (2002) Vol. 1815: A. M. Vershik (Ed.), Asymptotic Com- Vol. 1788: A. Vasil’ev, Moduli of Families of Curves for binatorics with Applications to Mathematical Physics. Conformal and Quasiconformal Mappings (2002) St. Petersburg, Russia 2001 (2003) Vol. 1789: Y. Sommerhäuser, Yetter-Drinfel’d Hopf alge- Vol. 1816: S. Albeverio, W. Schachermayer, M. Tala- bras over groups of prime order (2002) grand, Lectures on Probability Theory and Statistics. Vol. 1790: X. Zhan, Matrix Inequalities (2002) Ecole d’Eté de Probabilités de Saint-Flour XXX-2000. Vol. 1791: M. Knebusch, D. Zhang, Manis Valuations Editor: P. Bernard (2003) and Prüfer Extensions I: A new Chapter in Commutative Vol. 1817: E. Koelink, W. Van Assche (Eds.), Orthogonal Algebra (2002) Polynomials and Special Functions. Leuven 2002 (2003) Vol. 1818: M. Bildhauer, Convex Variational Problems Vol. 1843: B. Jefferies, Spectral Properties of Noncom- with Linear, nearly Linear and/or Anisotropic Growth muting Operators (2004) Conditions (2003) Vol. 1844: K.F. Siburg, The Principle of Least Action in Vol. 1819: D. Masser, Yu. V. Nesterenko, H. P. Schlick- Geometry and Dynamics (2004) ewei, W. M. Schmidt, M. Waldschmidt, Diophantine Vol. 1845: Min Ho Lee, Mixed Automorphic Forms, Torus Approximation. Cetraro, Italy 2000. Editors: F. Amoroso, Bundles, and Jacobi Forms (2004) U. Zannier (2003) Vol. 1846: H. Ammari, H. Kang, Reconstruction of Small Vol. 1820: F. Hiai, H. Kosaki, Means of Hilbert Space Inhomogeneities from Boundary Measurements (2004) Operators (2003) Vol. 1847: T.R. Bielecki, T. Björk, M. Jeanblanc, M. Vol. 1821: S. Teufel, Adiabatic Perturbation Theory in Rutkowski, J.A. Scheinkman, W. Xiong, Paris-Princeton Quantum Dynamics (2003) Lectures on Mathematical Finance 2003 (2004) Vol. 1822: S.-N. Chow, R. Conti, R. Johnson, J. Mallet- Vol. 1848: M. Abate, J. E. Fornaess, X. Huang, J. P. Rosay, Paret, R. Nussbaum, Dynamical Systems. Cetraro, Italy A. Tumanov, Real Methods in Complex and CR Geom- 2000. Editors: J. W. Macki, P. Zecca (2003) etry, Martina Franca, Italy 2002. Editors: D. Zaitsev, G. Vol. 1823: A. M. Anile, W. Allegretto, C. Ring- Zampieri (2004) hofer, Mathematical Problems in Semiconductor Physics. Vol. 1849: Martin L. Brown, Heegner Modules and Ellip- Cetraro, Italy 1998. Editor: A. M. Anile (2003) tic Curves (2004) Vol. 1824: J. A. Navarro González, J. B. Sancho de Salas, Vol. 1850: V. D. Milman, G. Schechtman (Eds.), Geomet- C ∞ – Differentiable Spaces (2003) ric Aspects of Functional Analysis. Israel Seminar 2002- Vol. 1825: J. H. Bramble, A. Cohen, W. Dahmen, Mul- 2003 (2004) tiscale Problems and Methods in Numerical Simulations, Vol. 1851: O. Catoni, Statistical Learning Theory and Martina Franca, Italy 2001. Editor: C. Canuto (2003) Stochastic Optimization (2004) Vol. 1826: K. Dohmen, Improved Bonferroni Inequal- Vol. 1852: A.S. Kechris, B.D. Miller, Topics in Orbit ities via Abstract Tubes. Inequalities and Identities of Equivalence (2004) Inclusion-Exclusion Type. VIII, 113 p, 2003. Vol. 1853: Ch. Favre, M. Jonsson, The Valuative Tree Vol. 1827: K. M. Pilgrim, Combinations of Complex (2004) Dynamical Systems. IX, 118 p, 2003. Vol. 1854: O. Saeki, of Singular Fibers of Dif- Vol. 1828: D. J. Green, Gröbner Bases and the Computa- ferential Maps (2004) tion of Group Cohomology. XII, 138 p, 2003. Vol. 1855: G. Da Prato, P.C. Kunstmann, I. Lasiecka, A. Lunardi, R. Schnaubelt, L. Weis, Functional Analytic Vol. 1829: E. Altman, B. Gaujal, A. Hordijk, Discrete- Methods for Evolution Equations. Editors: M. Iannelli, Event Control of Stochastic Networks: Multimodularity R. Nagel, S. Piazzera (2004) and Regularity. XIV, 313 p, 2003. Vol. 1856: K. Back, T.R. Bielecki, C. Hipp, S. Peng, Vol. 1830: M. I. Gil’, Operator Functions and Localization W. Schachermayer, Stochastic Methods in Finance, Bres- of Spectra. XIV, 256 p, 2003. sanone/Brixen, Italy, 2003. Editors: M. Fritelli, W. Rung- Vol. 1831: A. Connes, J. Cuntz, E. Guentner, N. Hig- galdier (2004) son, J. E. Kaminker, , Martina Vol. 1857: M. Émery, M. Ledoux, M. Yor (Eds.), Sémi- Franca, Italy 2002. Editors: S. Doplicher, L. Longo (2004) naire de Probabilités XXXVIII (2005) Vol. 1832: J. Azéma, M. Émery, M. Ledoux, M. Yor Vol. 1858: A.S. Cherny, H.-J. Engelbert, Singular Stochas- (Eds.), Séminaire de Probabilités XXXVII (2003) tic Differential Equations (2005) Vol. 1833: D.-Q. Jiang, M. Qian, M.-P. Qian, Mathemati- Vol. 1859: E. Letellier, Fourier Transforms of Invariant cal Theory of Nonequilibrium Steady States. On the Fron- Functions on Finite Reductive Lie Algebras (2005) tier of Probability and Dynamical Systems. IX, 280 p, Vol. 1860: A. Borisyuk, G.B. Ermentrout, A. Friedman, 2004. D. Terman, Tutorials in Mathematical Biosciences I. Vol. 1834: Yo. Yomdin, G. Comte, Tame Geometry with Mathematical Neurosciences (2005) Application in Smooth Analysis. VIII, 186 p, 2004. Vol. 1861: G. Benettin, J. Henrard, S. Kuksin, Hamil- Vol. 1835: O.T. Izhboldin, B. Kahn, N.A. Karpenko, tonian Dynamics – Theory and Applications, Cetraro, A. Vishik, Geometric Methods in the Algebraic Theory Italy, 1999. Editor: A. Giorgilli (2005) of Quadratic Forms. Summer School, Lens, 2000. Editor: Vol. 1862: B. Helffer, F. Nier, Hypoelliptic Estimates and J.-P. Tignol (2004) Spectral Theory for Fokker-Planck Operators and Witten Vol. 1836: C. Nastˇ asescu,ˇ F. Van Oystaeyen, Methods of Laplacians (2005) Graded Rings. XIII, 304 p, 2004. Vol. 1863: H. Führ, Abstract Harmonic Analysis of Con- Vol. 1837: S. Tavaré, O. Zeitouni, Lectures on Probabil- tinuous Wavelet Transforms (2005) ity Theory and Statistics. Ecole d’Eté de Probabilités de Vol. 1864: K. Efstathiou, Metamorphoses of Hamiltonian Saint-Flour XXXI-2001. Editor: J. Picard (2004) Systems with Symmetries (2005) Vol. 1838: A.J. Ganesh, N.W. O’Connell, D.J. Wischik, Vol. 1865: D. Applebaum, B.V. R. Bhat, J. Kustermans, Big Queues. XII, 254 p, 2004. J. M. Lindsay, Quantum Independent Increment Processes Vol. 1839: R. Gohm, Noncommutative Stationary I. From Classical Probability to Quantum Stochastic Cal- Processes. VIII, 170 p, 2004. culus. Editors: M. Schürmann, U. Franz (2005) Vol. 1840: B. Tsirelson, W. Werner, Lectures on Probabil- Vol. 1866: O.E. Barndorff-Nielsen, U. Franz, R. Gohm, ity Theory and Statistics. Ecole d’Eté de Probabilités de B. Kümmerer, S. Thorbjønsen, Quantum Independent Saint-Flour XXXII-2002. Editor: J. Picard (2004) Increment Processes II. Structure of Quantum Lévy Vol. 1841: W. Reichel, Uniqueness Theorems for Vari- Processes, Classical Probability, and Physics. Editors: M. ational Problems by the Method of Transformation Schürmann, U. Franz, (2005) Groups (2004) Vol. 1867: J. Sneyd (Ed.), Tutorials in Mathematical Bio- Vol. 1842: T. Johnsen, A. L. Knutsen, K3 Projective Mod- sciences II. Mathematical Modeling of Calcium Dynamics els in Scrolls (2004) and Signal Transduction. (2005) Vol. 1868: J. Jorgenson, S. Lang, Posn(R) and Eisenstein Vol. 1896: P. Massart, Concentration Inequalities and Series. (2005) Model Selection, Ecole d’Eté de Probabilités de Saint- Vol. 1869: A. Dembo, T. Funaki, Lectures on Probabil- Flour XXXIII-2003. Editor: J. Picard (2007) ity Theory and Statistics. Ecole d’Eté de Probabilités de Vol. 1897: R.A. Doney, Fluctuation Theory for Lévy Saint-Flour XXXIII-2003. Editor: J. Picard (2005) Processes, Ecole d’Eté de Probabilités de Saint-Flour Vol. 1870: V.I. Gurariy, W. Lusky, Geometry of Müntz XXXV-2005. Editor: J. Picard (2007) Spaces and Related Questions. (2005) Vol. 1898: H.R. Beyer, Beyond Partial Differential Equa- Vol. 1871: P. Constantin, G. Gallavotti, A.V. Kazhikhov, tions, On linear and Quasi-Linear Abstract Hyperbolic Y. Meyer, S. Ukai, Mathematical Foundation of Turbu- Evolution Equations (2007) lent Viscous Flows, Martina Franca, Italy, 2003. Editors: Vol. 1899: Séminaire de Probabilités XL. Editors: M. Cannone, T. Miyakawa (2006) C. Donati-Martin, M. Émery, A. Rouault, C. Stricker Vol. 1872: A. Friedman (Ed.), Tutorials in Mathemati- (2007) cal Biosciences III. Cell Cycle, Proliferation, and Cancer Vol. 1900: E. Bolthausen, A. Bovier (Eds.), Spin Glasses (2006) (2007) Vol. 1873: R. Mansuy, M. Yor, Random Times and En- Vol. 1901: O. Wittenberg, Intersections de deux largements of Filtrations in a Brownian Setting (2006) quadriques et pinceaux de courbes de genre 1, Inter- Vol. 1874: M. Yor, M. Émery (Eds.), In Memoriam Paul- sections of Two Quadrics and Pencils of Curves of Genus André Meyer - Séminaire de probabilités XXXIX (2006) 1 (2007) Vol. 1875: J. Pitman, Combinatorial Stochastic Processes. Vol. 1902: A. Isaev, Lectures on the Automorphism Ecole d’Eté de Probabilités de Saint-Flour XXXII-2002. Groups of Kobayashi-Hyperbolic Manifolds (2007) Editor: J. Picard (2006) Vol. 1903: G. Kresin, V. Maz’ya, Sharp Real-Part Theo- Vol. 1876: H. Herrlich, Axiom of Choice (2006) rems (2007) Vol. 1877: J. Steuding, Value Distributions of L-Functions Vol. 1904: P. Giesl, Construction of Global Lyapunov (2007) Functions Using Radial Basis Functions (2007) Vol. 1878: R. Cerf, The Wulff Crystal in Ising and Percol- Vol. 1905: C. Prévoˆt, M. Röckner, A Concise Course on ation Models, Ecole d’Eté de Probabilités de Saint-Flour Stochastic Partial Differential Equations (2007) XXXIV-2004. Editor: Jean Picard (2006) Vol. 1906: T. Schuster, The Method of Approximate Vol. 1879: G. Slade, The Lace Expansion and its Applica- Inverse: Theory and Applications (2007) tions, Ecole d’Eté de Probabilités de Saint-Flour XXXIV- Vol. 1907: M. Rasmussen, Attractivity and Bifurcation for 2004. Editor: Jean Picard (2006) Nonautonomous Dynamical Systems (2007) Vol. 1880: S. Attal, A. Joye, C.-A. Pillet, Open Quantum Vol. 1908: T.J. Lyons, M. Caruana, T. Lévy, Differential Systems I, The Hamiltonian Approach (2006) Equations Driven by Rough Paths, Ecole d’Eté de Proba- Vol. 1881: S. Attal, A. Joye, C.-A. Pillet, Open Quantum bilités de Saint-Flour XXXIV-2004.(2007) Systems II, The Markovian Approach (2006) Vol. 1909: H. Akiyoshi, M. Sakuma, M. Wada, Vol. 1882: S. Attal, A. Joye, C.-A. Pillet, Open Quantum Y. Yamashita, Punctured Torus Groups and 2-Bridge Knot Systems III, Recent Developments (2006) Groups (I) (2007) Vol. 1883: W. Van Assche, F. Marcellàn (Eds.), Orthogo- Vol. 1910: V.D. Milman, G. Schechtman (Eds.), Geo- nal Polynomials and Special Functions, Computation and metric Aspects of Functional Analysis. Israel Seminar Application (2006) 2004-2005 (2007) Vol. 1884: N. Hayashi, E.I. Kaikina, P.I. Naumkin, Vol. 1911: A. Bressan, D. Serre, M. Williams, I.A. Shishmarev, Asymptotics for Dissipative Nonlinear K. Zumbrun, Hyperbolic Systems of Balance Laws. Equations (2006) Lectures given at the C.I.M.E. Summer School held in Vol. 1885: A. Telcs, The Art of Random Walks (2006) Cetraro, Italy, July 14–21, 2003. Editor: P. Marcati (2007) Vol. 1886: S. Takamura, Splitting Deformations of Dege- Vol. 1912: V. Berinde, Iterative Approximation of Fixed nerations of Complex Curves (2006) Points (2007) Vol. 1887: K. Habermann, L. Habermann, Introduction to Symplectic Dirac Operators (2006) Vol. 1888: J. van der Hoeven, Transseries and Real Differ- ential Algebra (2006) Vol. 1889: G. Osipenko, Dynamical Systems, Graphs, and Algorithms (2006) Vol. 1890: M. Bunge, J. Funk, Singular Coverings of Recent Reprints and New Editions Toposes (2006) Vol. 1891: J.B. Friedlander, D.R. Heath-Brown, Vol. 1618: G. Pisier, Similarity Problems and Completely H. Iwaniec, J. Kaczorowski, Analytic Number Theory, Bounded Maps. 1995 – 2nd exp. edition (2001) Cetraro, Italy, 2002. Editors: A. Perelli, C. Viola (2006) Vol. 1629: J.D. Moore, Lectures on Seiberg-Witten Vol. 1892: A. Baddeley, I. Bárány, R. Schneider, W. Weil, Invariants. 1997 – 2nd edition (2001) Stochastic Geometry, Martina Franca, Italy, 2004. Editor: Vol. 1638: P. Vanhaecke, Integrable Systems in the realm W. Weil (2007) of Algebraic Geometry. 1996 – 2nd edition (2001) Vol. 1893: H. Hanßmann, Local and Semi-Local Bifur- Vol. 1702: J. Ma, J. Yong, Forward-Backward Stochas- cations in Hamiltonian Dynamical Systems, Results and tic Differential Equations and their Applications. 1999 – Examples (2007) Corr. 3rd printing (2007) Vol. 1894: C.W. Groetsch, Stable Approximate Evaluation Vol. 830: J.A. Green, Polynomial Representations of of Unbounded Operators (2007) GLn, with an Appendix on Schensted Correspondence Vol. 1895: L. Molnár, Selected Preserver Problems on and Littelmann Paths by K. Erdmann, J.A. Green and Algebraic Structures of Linear Operators and on Function M. Schocker 1980 – 2nd corr. and augmented edition Spaces (2007) (2007)