On Entosthodon Fascicularis and Weissia Armata Comb. Nov. (= W
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Antibacterial Activity of Bryophyte (Funaria Hygrometrica) on Some Throat Isolates
International Journal of Health and Pharmaceutical Research ISSN 2045-4673 Vol. 4 No. 1 2018 www.iiardpub.org Antibacterial Activity of Bryophyte (Funaria hygrometrica) on some throat Isolates Akani, N. P. & Barika P. N. Department of Microbiology, Rivers State University, Nkpolu-Oroworukwo, Port Harcourt P.M.B. 5080 Rivers State, Nigeria E. R. Amakoromo Department of Microbiology, University of Port Harcourt Choba P.M.B 5323 Abstract An investigation was carried out to check the antibacterial activity of the extract of a Bryophyte, Funaria hygrometrica on some throat isolates and compared with the standard antibiotics using standard methods. The genera isolated were Corynebacterium sp., Lactobacillus sp. and Staphylococcus sp. Result showed a significant difference (p≤0.05) in the efficacy of F. hygrometrica extract and the antibiotics on the test organisms. The zones of inhibition in diameter of the test organisms ranged between 12.50±2.08mm (F. hygrometrica extract) and 33.50±0.71mm (Cefotaxamine); 11.75±2.3608mm (F. hygrometrica extract) and 25.50±0.71mm (Cefotaxamine) and 0.00±0.00mm (Tetracycline) and 29.50±0.71mm (Cefotaxamine) for Lactobacillus sp, Staphylococcus sp. and Corynebacterium sp. respectively while the control showed no zone of inhibition (0.00±0.00mm). The test organisms were sensitive to the antibiotics except Corynebacterium being resistant to Tetracycline. The minimal inhibitory concentration of plant extract and antibiotics showed a significant difference (p≤0.05) on the test organisms and ranged between 0.65±0.21 mg/ml (Cefotaxamine) and 4.25±0.35 mg/ml (Penicillin G); 0.04±0.01 mg/ml (Penicillin G) and 2.50±0.00 mg/ml ((F. -
Distribution and Phylogenetic Significance of the 71-Kb Inversion
Annals of Botany 99: 747–753, 2007 doi:10.1093/aob/mcm010, available online at www.aob.oxfordjournals.org Distribution and Phylogenetic Significance of the 71-kb Inversion in the Plastid Genome in Funariidae (Bryophyta) BERNARD GOFFINET1,*, NORMAN J. WICKETT1 , OLAF WERNER2 , ROSA MARIA ROS2 , A. JONATHAN SHAW3 and CYMON J. COX3,† 1Department of Ecology and Evolutionary Biology, 75 North Eagleville Road, University of Connecticut, Storrs, CT 06269-3043, USA, 2Universidad de Murcia, Facultad de Biologı´a, Departamento de Biologı´a Vegetal, Campus de Espinardo, 30100-Murcia, Spain and 3Department of Biology, Duke University, Durham, NC 27708, USA Received: 31 October 2006 Revision requested: 21 November 2006 Accepted: 21 December 2006 Published electronically: 2 March 2007 † Background and Aims The recent assembly of the complete sequence of the plastid genome of the model taxon Physcomitrella patens (Funariaceae, Bryophyta) revealed that a 71-kb fragment, encompassing much of the large single copy region, is inverted. This inversion of 57% of the genome is the largest rearrangement detected in the plastid genomes of plants to date. Although initially considered diagnostic of Physcomitrella patens, the inversion was recently shown to characterize the plastid genome of two species from related genera within Funariaceae, but was lacking in another member of Funariidae. The phylogenetic significance of the inversion has remained ambiguous. † Methods Exemplars of all families included in Funariidae were surveyed. DNA sequences spanning the inversion break ends were amplified, using primers that anneal to genes on either side of the putative end points of the inver- sion. Primer combinations were designed to yield a product for either the inverted or the non-inverted architecture. -
12. FUNARIACEAE Schwägrichen
12. FUNARIACEAE Schwägrichen Terry T. McIntosh Plants minute to medium-sized, gregarious to forming open tufts, light- to yellow-green, annual to biennial. Stems short, erect, simple or with a few branches, central strand present, basal rhizoids few. Leaves usually larger and more crowded distally, often comose, reduced proximally, usually contorted when dry, spreading when wet, broadly elliptic to obovate, usually concave, margins plane to somewhat incurved, entire to serrate, sometimes limbate, apex acute to acuminate, rarely somewhat blunt, costa single, percurrent to excurrent; distal and median cells usually irregular-rhombic to hexagonal or rectangular, smooth and rather thin-walled, often lax, weakly chlorophyllose, proximal cells usually longer, oblong to rectangular, sometimes weakly inflated at proximal angles, differentiated alar cells absent. Specialized asexual reproduction absent. Sexual condition autoicous, sometimes polygamous, rarely synoicous or paroicous. Perigonia terminal on short basal branches, bud-like, paraphyses yellowish and club-shaped. Perichaetia terminal, paraphyses usually absent and filiform when present, perichaetial leaves often somewhat enlarged. Seta terminal, solitary, short to elongate, erect to somewhat curved, smooth or rarely papillose. Capsule stegocarpous or cleistocarpous, immersed to exserted, globose or pyriform to cupulate, sometimes flaring, symmetric and nearly smooth to asymmetric and striate when dry, usually with a neck; exothecial cells thick- to thin-walled; stomata restricted to neck, consisting of a slit in a rounded guard cell, superficial or immersed, annulus present or absent, revoluble, revoluble in fragments, or not; operculum present or absent, flat, conic- rounded, to rostrate; peristome double, single, rudimentary, or absent, exostome teeth 16, erect to incurved, papillose-striolate or striate, trabeculate on adaxial surface, endostome segments 16 and opposite the exostome teeth, cilia absent, represented only by the exostome when single. -
GC-MS Aspect of Moss Funaria Hygrometrica Hedw
Int. Res. J. of Science & Engineering, Volume 8 (3) 2020 SJIF Impact Factor 6.70 ISSN: 2322-0015 RESEARCH ARTICLE OPEN ACCESS GC-MS aspect of moss Funaria hygrometrica Hedw. Wankhede TB Department of Botany, Shri Shivaji Science College, Amravati, MS, India Email: [email protected] Manuscript Details Abstract Received :12.05.2020 The moss Funaria hygrometrica Hedw. occurs cosmopolitan Accepted : 19.06.2020 occurring worldwide in distribution. Plants grown on moist Published :30.06.2020 rocks, cemented old walls, bridges, and bricks and even on soil surface. Plants found in loose to compact tufts, in large Available online on https://www.irjse.in patches and green to yellowish green in colour. Thallus is ISSN: 2322-0015 simple and branched having slender stem which is erect and 5 to 10 mm high. Lower leaves found small, costa poorly Editor: Dr. Arvind Chavhan developed and upper leaves large crowed at apex and upper Cite this article as: cells sub-hexagonal, elongated, long and wide. Seta found Wankhede TB. GC-MS aspect of moss Funaria erect two to three cm long, terminal and reddish on maturity. hygrometrica Hedw, Int. Res. Journal of Science & Capsule horizontal to pendulous, curved, pyriform, oblique, Engineering, 2020, Volume 8(3): 121-124. and globose at back. Operculum large convex, mouth wide and bear two rows of teeth. The plant Funaria itself have ecological significance especially nutrient recycling and its role in establishment of community in ecosystem. It possesses characteristic smell and habitat of micro flora due to unique phytochemicals present in it. Hence preliminary phytochemical analysis confirms the presence of alkaloids, flavonoids, glycosides and terpenoids as an important phyto constituent. -
Pyramidula Tetragona (Brid.) Brid
Lindbergia 35: 33–39, 2012 ISSN 0105-0761 Accepted 11 May 2012 Pyramidula tetragona (Brid.) Brid. rediscovered in Fennoscandia and new to Norway Torbjørn Høitomt, Leif Appelgren, Niklas Lönnell, Kåre Arnstein Lye and Kristian Hassel T. Høitomt ([email protected]), Stiftelsen BioFokus, Gaustadalléen 24, NO-0149 Oslo, Norway. – L. Appelgren, Ambio miljørådgivn- ing AS, Godesetdalen 10, NO-4034 Stavanger, Norway. – N. Lönnell, PO Box 25195, SE-750 25 Uppsala, Sweden. – K. A. Lye, Dept of Ecology and Natural Resource Management, Norwegian Univ. of Life Sciences, PO Box 5003, NO-1432 Ås, Norway. – K. Hassel, NTNU Museum of Natural History and Archaeology, NO-7491 Trondheim, Norway. The threatened moss Pyramidula tetragona is rediscovered in Fennoscandia and found for the first time in Norway. The species has recently been classified as regionally extinct both in Sweden and Finland, and it is thus highly sur- prising that we can present four new localities from southeast Norway. All localities are or have been influenced by agriculture through grazing or cereal crop production. The distribution of Pyramidula tetragona Brid. (Brid.) is duction may take place by small red rhizoidal tubers. In confined to the Western Palearctic and Nearctic ecozones. Sweden the species is found mainly from April to May and It seems to avoid the northernmost areas, and in Sweden it from October to November (Lönnell 2002), and a similar has not been recorded north of Limes norrlandicus (about pattern is also reported from Hungary (Papp et al. 2000). 60°N in Uppland), and the distribution is southern to It thus seems that under favourable conditions P. -
Polyploidization Within the Funariaceae—A Key Principle Behind Speciation, Sporophyte Reduction and the High Variance of Spore Diameters?
Bry. Div. Evo. 043 (1): 164–179 ISSN 2381-9677 (print edition) DIVERSITY & https://www.mapress.com/j/bde BRYOPHYTEEVOLUTION Copyright © 2021 Magnolia Press Article ISSN 2381-9685 (online edition) https://doi.org/10.11646/bde.43.1.13 Polyploidization within the Funariaceae—a key principle behind speciation, sporophyte reduction and the high variance of spore diameters? ANNA K. OSTENDORF1,2,#, NICO VAN GESSEL2,#, YARON MALKOWSKY1,3, MARKO S. SABOVLJEVIC4, STEFAN A. RENSING5,6,7, ANITA ROTH-NEBELSICK1 & RALF RESKI2,7,8,* 1State Museum of Natural History, Rosenstein 1, 70191 Stuttgart, Germany �[email protected]; �[email protected]; https://orcid.org/0000-0002-9401-5128 2Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany �[email protected]; https://orcid.org/0000-0002-0606-246X 3Nees Institute for Biodiversity of Plants, University of Bonn, Meckenheimer Allee 170, 53115 Bonn, Germany �[email protected]; 4Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia �[email protected]; https://orcid.org/0000-0001-5809-0406 5Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany �[email protected]; https://orcid.org/0000-0002-0225-873X 6SYNMIKRO Center for Synthetic Microbiology, University of Marburg, Karl-von-Frisch-Straße 16, 35043 Marburg, Germany 7Signalling Research Centres BIOSS and CIBSS, University -
Fungi, Bryophytes Before I Worked on This Project, I Had No Idea How to Apply GIS to Basic Ecological Concepts
Galbreath Wildlands Preserve Galbreath Special Status Species Assessment - Fungi, Bryophytes Before I worked on this project, I had no idea how to apply GIS to basic ecological concepts. – Christoph Schopfer, Geography Major Project Summary A team of students and Center staff mapped potential habitat for 110 special status plants and animals on the Galbreath Wildlands Preserve. We identified special status species with potential to occur in the Galbreath Preserve using existing agency databases and publications. These included fungi, bryophytes, plants, invertebrates, amphibians, reptiles, birds and mammals. For each species, we collected biological information, undertook GIS-based habitat suitability analysis, and assessed the likelihood of occurrence within preserve boundaries. The project created professional experience for Biology and Geography undergraduates and graduate students who worked on an interdisciplinary team to develop assessment techniques and methods. See Methods (PDF) and Species List (PDF) for additional information. Project Lead: Claudia Luke Dates: 2010-2011 Funding: Robert and Sue Johnson Family Students: Neal Ramus (Business), Emily Harvey (Biology), Kandis Gilmore (Biology), Linden Schneider (Biology), Christoph Schopfer (Geography), James Sherwood (Geography) Fungi, Bryophytes These results are part of a larger assessment of all special status species with potential to occur at the Galbreath Wildlands Preserve. Assessments were conducted as planning exercise and do not constitute evidence of occurrence. SSU Center -
Afoninia, a New Moss Genus of Funariaceae from Transbaikalia
Arctoa (2015) 24: 14-20 doi: 10.15298/arctoa.24.02 AFONINIA, A NEW MOSS GENUS OF FUNARIACEAE FROM TRANSBAIKALIA (EAST SIBERIA, RUSSIA) AFONINIA – НОВЫЙ РОД ИЗ СЕМЕЙСТВА FUNARIACEAE ИЗ ЗАБАЙКАЛЬЯ (ВОСТОЧНАЯ СИБИРЬ, РОССИЯ) MICHAEL S. IGNATOV1, ELENA A. IGNATOVA2, IRINA V. C ZERNYADJEVA3, BERNARD GOFFINET4, OXANA I. KUZNETSOVA1 & VLADIMIR E. FEDOSOV2 МИХАИЛ С. ИГНАТОВ1, ЕЛЕНА А. ИГНАТОВА2, ИРИНА В. ЧЕРНЯДЬЕВА3, БЕРНАР ГОФФИНЕ4, ОКСАНА И. КУЗНЕЦОВА1, ВЛАДИМИР Э. ФЕДОСОВ2 Abstract Afoninia dahurica from the Transbaikal region of the East Siberia in Russia is described as a new species accommodated in a new genus of Funariaceae, based on molecular phylogenetic evidence from nrITS, trnL-F and psbA-trnH, that highlights the combination of strongly reduced double peristome with a well developed annulus of inflated revoluble cells. The exostome teeth are tapered to the base and attached to basal membrane with a plate that is less than one third of the cell of the endostome to which it adheres. The plant is known from few nearby localities in a xeric area of Dahuria, growing on soil near cliffs. Резюме Afoninia dahurica, новый род и вид из Funariaceae, описан из Забайкалья по результатам молекулярно-филогенетического анализа (nrITS, trnL-F and psbA-trnH) и на основании уникальной комбинации морфологических признаков (сильно редуцированного двойного перистома и отворачивающегося колечка, образованного вздутыми клетками). Для этого вида характерны суживающиеся книзу зубцы экзостома, которые в месте прикрепления к базальной мембране эндостома в три раза уже тех клеток, к которым они крепятся. Вид известен из немногочисленных местонахождений в засушливых районах Забайкалья; он растет на почве в основании скал. KEYWORDS: Afoninia, Funariaceae, bryophytes, nrITS, trnL-F, psbA-trnH, taxonomy, phylogeny, Transbaikalia INTRODUCTION Funaria s. -
1. Find Growing on Top of the Leafy Generation
Welcome to the PhyscoHunt, a Citizen Science initiative integrated in a project that explores genome duplication in plant evolution. The goblet moss (Physcomitrium pyriforme) is our model organism. If you want to contribute to our research: FIND, REPORT, and SEND samples. Here is all you need to know: You will identify this moss by its pear or goblet-shaped capsules 1. Find growing on top of the leafy generation. A hand lens will be helpful. Young capsules Ripe capsules Calyptra a delicate pointed hood that covers each young capsule Capsule Symmetrical, green and pear-shaped when young, turning brown and goblet-shaped when they ripen, open, and release spores Actual size Stalk ¼ to ¾ inches (0.5 to 2 cm) Leafy generation small tuft of leaves low on the ground Where? The goblet moss grows in a variety of habitats, often next to populated areas. Pay attention to disturbed moist soil in roadsides, gardens, lawns, floodplains, riverbanks, abandoned croplands, or pastures. We welcome your finds from anywhere in North America and Europe. Physcomitrium pyriforme “Goblet moss” or “bladder moss” When? This moss has a short life cycle and is only noticeable during part of the year, mostly during spring but sometimes also in the fall, so keep your eyes open for suitable habitats in both seasons. In order to report your findings, we need the location (with 2. Report coordinates, if possible), date, and a picture to confirm the ID. When taking pictures consider appropriate light, focus and zoom The preferred way to do this is through the iNaturalist app ID your observations as “goblet moss”, “bladder Getting started with iNaturalist PhyscoHunt project moss”, or Physcomitrium https://www.inaturalist.org/pages/getting+started https://www.inaturalist.org/projects/physcohunt and they will be added to the PhyscoHunt project Alternatively, you can report them via email (see contact below) To take your contribution one step further you can send your 3. -
BIODIVERSITY REPORT | 2014 Conserving Biodiversity Globally, Through Local Government
THE CITY OF CALGARY BIODIVERSITY REPORT | 2014 Conserving biodiversity globally, through local government calgary.ca | contact 311 Onward/ to come from communicator The aim of the Local Action for Biodiversity (LAB) Programme is to assist local authorities in implementing the three objectives of the Convention on Biological Diversity (CBD). These are: 1) The conservation of biological diversity; 2) The sustainable use of the components of biological diversity; 3) The fair and equitable sharing of the benefits arising out of the utilization of genetic resources. LAB is a global partnership between ICLEI – Local Governments for Sustainability and IUCN (the International Union for Conservation of Nature). ICLEI is an international association of local governments and national and regional local government organisations that have made a commitment to sustainable development. ICLEI is the largest international association of local governments as determined by budget, personnel or scale of operations with well over 1,000 cities, towns, counties, and their associations worldwide comprise a growing membership. IUCN is the world's oldest and largest global environmental network – a democratic membership union with more than 1,000 government and NGO member organizations, and almost 11,000 volunteer scientists in more than 160 countries. LAB assists and interacts with local authorities in a variety of ways. Technical support is provided in the form of ongoing communication as well as guidelines and review of relevant documentation, presentations etc. and through access to IUCN’s extensive network of scientists. As participants in LAB, local authorities are provided various networking opportunities to share their challenges and successes. Profiling is also achieved at various international forums where the efforts of participating local authorities are exhibited and reported on. -
Heinrich Christian Funck Und Seine Pilzsammlungen (I)
Heinrich Christian Funck und seine Pilzsammlungen (I) von Eduard Hertel Zusammenfassung Mit dem Namen „Heinrich Christian Funck“ verbinden wir in erster Linie Moose. Doch war der Gefreeser Apotheker ein vielseitiger Naturwissenschaftler und auch als Mykologe tätig. In seinen „Cryptogamischen Gewächsen des Fichtelgebirg’s“ (1800–1838) veröffentlichte er neben Farnpflanzen, Moosen und Flechten über 100 meist epiphytisch wachsende Kleinpilze aus dieser Region. In diesem Zusammenhang ist der Briefwechsel zwischen ihm und Henrik Christian Persoon von Bedeutung. Es handelt sich dabei um 29 Dokumente aus der Hand Persoons, die einen Zeitraum von über 15 Jahren abdecken. In ihnen geht es anfangs um Pilze und Flechten, die Funck zur genaueren Bestimmung an Persoon schickt, später zunehmend auch um Moose, Farn– und Blütenpflanzen, welche sich Persoon von Funck erbittet. Leider fehlen (bisher) die Gegenbriefe Funcks. Neben diesem Pflanzentausch vermittelt Persoon für Funcks Exsiccatenwerk und später für das „Taschenherbarium“ französische und italienische Interessenten. Dadurch wächst Funcks Bekanntheitsgrad wesentlich: Machte er sich zunächst in Süd– und Mitteldeutschland als Kryptogamenspezialist einen Namen, so wird er durch diese Kontakte über die engeren Grenzen hinaus bekannt. Die Briefe geben außerdem Einblick in die komplizierten postalischen Verhältnisse dieser Zeit. Der wissenschaftliche Austausch unterlag Beschränkungen, die sich nur zögernd besserten. Versand und Tausch von Pflanzen (resp. Flechten, Pilzen) wurde über Buchhändler abgewickelt, wobei besonders Palm in Erlangen und Barth in Leipzig eine wichtige Rolle spielen. Stichwörter: Bryologie, Mykologie, Kryptogamen; Heinrich Christian Funck; Christian Hendrik Persoon Einleitung Mit „Heinrich Christian Funck“, dem seiner Zeit als Wissenschaftler berühmten Apotheker aus Gefrees, verbinden wir in erster Linie Moose, die er in umfassender Weise vor allem im Fichtelgebirge sammelte und veröffentlichte. -
FUNARIA HYGROMETRICA HEDW. (FUNARIACEAE) from BANGLADESH 1 KHURSHIDA BANU-FATTAH Department of Botany, Ananda Mohan University College, Mymensingh, Bangladesh
Bangladesh J. Bot. 34(2): 121-124, 2005 (December) Short communication FUNARIA HYGROMETRICA HEDW. (FUNARIACEAE) FROM BANGLADESH 1 KHURSHIDA BANU-FATTAH Department of Botany, Ananda Mohan University College, Mymensingh, Bangladesh Key words: Funaria hygrometrica, Acrocarpous moss, Funariaceae, Bangladesh Abstract Funaria hygrometrica Hedw. an Acrocarpous moss of the family Funariaceae under the order Funariales is described and illustrated with a short note and its world-wide distribution. This moss is autoicous, bright green, leaves rosette at the apex on short slender stem. Capsule, strongly asymmetric, often arcuate, pyriform. Peristome teeth epicranoid, spirally arranged. Operculum without apiculus. Calyptra cucullate. Spores spherical, small and smooth. Funaria hygrometrica Hedw. is one of the most known species among Acrocarpous mosses. It is a cosmopolitan species which is present all over the world and usually found in hilly areas thriving best in tropical and temperate zones. While working with mosses of Tangail and Mymensingh districts the author came across with an interesting group of plants collected from damp soil, Ghatail, Tangail. The plants were carefully separated out, and they looked like Physcomitrium (Brid.) Fuernr. species by their gametophytic appearance but the sporophyte was distinctly different. After a thorough and careful examination the plant was identified as Funaria hygrometrica Hedw. of the family Funariaceae under the order Funariales following the description and illustration given by Gangulee (1974) in his monograph. The author expected and always looked for this moss as two other genera of Funariaceae Physcomitrium (Brid.) Fuernr. and Entosthodon Schwaegr. which are very close to Funaria are quite common in Bangladesh. They grow on damp soil and are abundant during winter season (Banu 1991).