Implementation of Openehr in Combination with Clinical Terminologies: Experiences from Norway
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fundamentals and Implementation of the Openehr Standard the Open Standard for Future Proof Health Information Systems
Fundamentals and Implementation of the openEHR standard the open standard for future proof health information systems Course objectives The main goal of this course is for students to get to know the openEHR specifications, it's role and purpose on health informatics projects, it's scope and how it can work together with other standards. Including how openEHR contributes to improve health information systems quality, and how it enables interoperability. Students will be instructed in the openEHR Information Model Specifications, in the Archetype Model and Archetype Definition Language (ADL) Specifications, and in Software Tools for modeling and sharing Archetypes and Templates. All these topics will be linked together with general concepts of clinical record structure, information model architectures and interoperability. Why do we need this course? Health information system projects are booming. Some projects had some level of success and are now very lucrative products, but most didn't have the expected impact or even failed after huge investments. This is due multiple factors, including deficient or incomplete technical proposals that do not contemplate or limit the action of the health professional, lack of standardization of health information that limits the ability to share and reuse information, a huge technological dependency created by the software industry, in-house developments or acquisitions of canned systems that are not capable of being adapted to specific needs and evolve with changing requirements of clinical information is a sustainable way. The openEHR standard proposes solutions for some of these problems and challenges, with a completely new paradigm of designing health information systems, that empowers the health care professional making them fundamental actors in developing new health information systems, in a vendor-neutral way. -
Grappling with the Future Use of Big Data for Translational Medicine and Clinical Care S
96 © 2017 IMIA and Schattauer GmbH Grappling with the Future Use of Big Data for Translational Medicine and Clinical Care S. Murphy1, 2, 4, V. Castro2, K. Mandl3, 4 1 Massachusetts General Hospital Laboratory of Computer Science, Boston, MA, USA 2 Partners Healthcare Research Information Science and Computing, Somerville, MA, USA 3 Boston Children’s Hospital Computational Health Informatics Program, Boston, MA, USA 4 Harvard Medical School Department of Biomedical Informatics, Boston, MA, USA Summary is surprisingly disjointed in its ability to Introduction handle imaging, waveform, genomic, and Objectives: Although patients may have a wealth of imaging, If we are to infuse science-based clinical continuous cardiac and cephalic monitoring. genomic, monitoring, and personal device data, it has yet to be practice into healthcare, we will need Much of these data fall under the label of fully integrated into clinical care. better technology platforms than the cur- “Big Data” [5]. Methods: We identify three reasons for the lack of integration. rent Electronic Medical Record Systems One defining aspect of “Big Data” is that The first is that “Big Data” is poorly managed by most Electronic (EMRS), which are not built to support the data tends to be organized in a funda- Medical Record Systems (EMRS). The data is mostly available scientific innovation. In different countries, mentally different way that cannot fit easily on “cloud-native” platforms that are outside the scope of most the functionality and overall goals of EMRS and directly into hierarchical and relational EMRs, and even checking if such data is available on a patient can vary, but in the United States (US) the databases. -
Implement an International Interoperable PHR by FHIR—A Taiwan Innovative Application
sustainability Article Implement an International Interoperable PHR by FHIR—A Taiwan Innovative Application Yen-Liang Lee 1,2, Hsiu-An Lee 3,4,5,*, Chien-Yeh Hsu 4,5,6,*, Hsin-Hua Kung 4,5 and Hung-Wen Chiu 1,* 1 Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 110, Taiwan; [email protected] 2 Internet of Things Laboratory, Chunghwa Telecom Laboratories, TaoYuan 326402, Taiwan 3 Department of Computer Science and Information Engineering, Tamkang University, New Taipei 251301, Taiwan 4 Standards and Interoperability Lab, Smart Healthcare Center of Excellence, Taipei 112303, Taiwan; [email protected] 5 Department of Information Management, National Taipei University of Nursing and Health Sciences, Taipei 112303, Taiwan 6 Master Program in Global Health and Development, Taipei Medical University, Taipei 110, Taiwan * Correspondence: [email protected] (H.-A.L.); [email protected] (C.-Y.H.); [email protected] (H.-W.C.) Abstract: Personal health records (PHRs) have lots of benefits for things such as health surveil- lance, epidemiological surveillance, self-control, links to various services, public health and health management, and international surveillance. The implementation of an international standard for interoperability is essential to accessing personal health records. In Taiwan, the nationwide exchange platform for electronic medical records (EMRs) has been in use for many years. The Health Level Seven International (HL7) Clinical Document Architecture (CDA) was used as the standard of the EMRs. However, the complication of implementing CDA became a barrier for many hospitals to real- ize the standard EMRs. In this study, we implemented a Fast Healthcare Interoperability Resources (FHIR)-based PHR transformation process including a user interface module to review the contents of PHRs. -
Biomedical Research in a Digital Health Framework
Cano et al. Journal of Translational Medicine 2014, 12(Suppl 2):S10 http://www.translational-medicine.com/content/12/S2/S10 RESEARCH Open Access Biomedical research in a Digital Health Framework Isaac Cano1*, Magí Lluch-Ariet2, David Gomez-Cabrero3, Dieter Maier4, Susana Kalko1, Marta Cascante1,5, Jesper Tegnér3, Felip Miralles2, Diego Herrera5,6, Josep Roca1,7, Synergy-COPD consortium Abstract This article describes a Digital Health Framework (DHF), benefitting from the lessons learnt during the three-year life span of the FP7 Synergy-COPD project. The DHF aims to embrace the emerging requirements - data and tools - of applying systems medicine into healthcare with a three-tier strategy articulating formal healthcare, informal care and biomedical research. Accordingly, it has been constructed based on three key building blocks, namely, novel integrated care services with the support of information and communication technologies, a personal health folder (PHF) and a biomedical research environment (DHF-research). Details on the functional requirements and necessary components of the DHF-research are extensively presented. Finally, the specifics of the building blocks strategy for deployment of the DHF, as well as the steps toward adoption are analyzed. The proposed architectural solutions and implementation steps constitute a pivotal strategy to foster and enable 4P medicine (Predictive, Preventive, Personalized and Participatory) in practice and should provide a head start to any community and institution currently considering to implement -
5 EVENTS in ONE: Head Real World Evidence and Big Data Solutions Novartis, Switzerland
FIFTH ANNUAL - LIFE SCIENCE R&D DATA INTELLIGENCE LEADERS FORUM Basel, Switzerland January 23-24th, 2018 Optional Workshop 22nd, January Hear keynote presentations from the experts: Etzard Stolte Global Head Knowledge Management Roche, Switzerland Abhimanyu Verma 5 EVENTS IN ONE: Head Real World Evidence and Big Data Solutions Novartis, Switzerland Day 1: Torsten Niederdraenk Head of Technology Center Strategic Developments in R&D Big Siemens Healthcare, Germany Data Catherine Brownstein Scientific Director Day 2 (am): Stream 1 Manton Center for Orphan Disease Research Boston Children’s Hospital, USA Discovery & Omics Data Excellence Navin Ramachandran Radiology Consultant Day 2 (am): Stream 2 University College London Hospitals NHS Foundation Trust, Healthcare specialist in distributed ledgers and IoT Clinical & Patient Level Data IOTA Foundation, UK Excellence Marie-Claire Peakman Executive Director, Head Hit Discovery & Lead Profiling, Medicine Design Day 2 (pm): Stream A Pfizer, USA R&D IT & Bioinformatics Alex Zhavoronkov Co-founder, Insilico Medicine, CSO Day 2 (pm): Stream B The Biogerontology Research Foundation, UK Ivana Schnur Digital Health Collaborations Co-founder, CMO Sense.ly, USA Pre-Event Workshop: Jan 22nd Paul Wicks Artificial Intelligence for Drug Vice President of Innovation PatientsLikeMe, UK Discovery: Workshop for Senior Jazz Panchoo Global Strategy Head, VP, Digital Platforms Executives Ascensia Diabetes Care, Switzerland This Event is Certified for Continuing Professional Development with more than 30 presentations -
The Strategy for Telemedicine in Lublin Province
JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol. 15/2010, ISSN 1642-6037 telemedicine, remote consultations, health records standardisation Rafal STEGIERSKI 1, Pawel MIKOLAJCZAK 1, Karol KUCZYNSKI 1, Waldemar SUSZYNSKI 1, Maciej SICZEK 2 THE STRATEGY FOR TELEMEDICINE IN LUBLIN PROVINCE Main role of this article is presentation, in a very short way, most important results of over two years of work board of experts from two universities, two clinical hospitals, city hall and also medical software and hardware suppliers. As a main purpose of strategy improvement of health care level in region was set. This aim will be achieved by telemedical infrastructure development, creation and implementation of procedures and instant training of staff. Strategy is focused on three main aspects. First one groups medical projects, second infrastructure project and third one is regional centre of coordination. In medical area proposed changes are mainly focused on telemedical support for emergency services, remote medical consultations and complex home monitoring of patients. Main solution for infrastructure assumes creation of integrated information system for hospitals and emergency units. I this part of the strategy selection of the proper standards for data storing and exchange. Probably one of the best choices is OpenEHR. Last part is centre of cooperation which consists of coordination centre of telemedical services, telemedical projects management unit, and training facility. 1. INTRODUCTION Lublin Telemedical network has a chance to be a modern system of cooperation of patients, medical staff and administration departments of hospitals and medical centres which could break as geographical as social limits in access to modern medical services. This state could be obtained via simplification of medical information flow and standardisation of data storage and exchange in medical information systems. -
A New Wave in Health Informatics : a Brief Overview
International Journal of Pure and Applied Mathematics Volume 118 No. 18 2018, 4555-4560 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu Special Issue ijpam.eu A New Wave In Health Informatics : A Brief Overview 1M J Yogesh And 2J Karthikeyan 1Research Scholar, School of Information Technology,VIT University,Vellore E-mail: [email protected] 2School of Information Technology,VIT University, Vellore E-mail: [email protected] ABSTRACT The term Health Informatics has become a famous word in recent years because of its increasing usage day by day which has opened up many opportunities in healthcare industries and the medical field at large. Nowadays all kinds of data are being analysed for insights. In this paper, we discuss a brief overview of health informatics and usage of Electronic Health Records (EHRs) and research ideas to get meaningful information from medical data. A new wave has begun to make use of health informatics in providing quality treatment and the required help for doctors which makes their and patient's lives much more meaningful. Keywords—Health informatics; Neuro-informatics; Clinical informatics; EHRs 1.INTRODUCTION The basic goal of Health Informatics is to take in real world medical data (tissue, molecule, patient, population) to help advance our understanding of medicine and medical practice. Health Informatics is a combination of information science and computer science within the realm of healthcare. “There are numerous current areas of research within the field of Health Informatics, including Image Informatics (e.g. Neu- roinformatics), Clinical Informatics, Public Health Informatics, and also Translational BioInformatics (TBI). -
Introducing Openehr
Introducing openEHR © 2003-2007 The openEHR Foundation The openEHR Foundation is an independent, non-profit community, facilitating the sharing of health records by consumers and clinicians via open-source, standards-based implementations. Founding David Ingram, Professor of Health Informatics, Chairman CHIME, University College London Founding Dr P Schloeffel, Dr S Heard, Dr D Kalra, D Lloyd, T Beale Members email: [email protected] web: http://www.openEHR.org Overview of openEHR Introducing openEHR Rev 1.1 Overview of openEHR The Foundation The openEHR Foundation is a not-for-profit company, limited by guarantee. Its founding sharehold- ers are University College London, UK and Ocean Informatics Pty Ltd, Australia. It is regulated under the UK Companies Acts 1985 and 1989. The aims and management of the Foundation, exer- cised through its Board of Directors, are described on the openEHR website. The Board is responsi- ble for the governance of the Foundation, including strategic direction, financial management, legal regulation, and intellectual property (IP) management. The Board determines the roles, structures, and procedures of the Foundation and ensures that these function correctly. The major work of techni- cal and clinical oversight and supervision of openEHR product developments is delegated to the Architectural Review Board (ARB) and Clinical Review Board (CRB). Aims The openEHR Foundation is dedicated to the development of an open, interoperable health comput- ing platform, of which a major component is clinically effective and interoperable electronic health care records (EHRs). It does this by researching clinical requirements, and creating specifications and implementations. The specifications take the form of modular information models, service models and clinical information models. -
Enabling Agents to Retrieve Openehr- Based Health Data Through Implementing HL7 Communication with Departmental Information Systems
5th ed Enabling agents to retrieve openEHR- based health data through implementing HL7 communication with departmental information systems Paulo Roberto da Silva Ferreira OCT|2012 5th ed Enabling agents to retrieve openEHR- based health data through implementing HL7 communication with departmental information systems Paulo Roberto da Silva Ferreira Ricardo João Cruz Correia Pedro Manuel Vieira Marques OCT|2012 “Standardized access to knowledge systems and bibliographic systems must support scripting and data-entry mechanisms to ensure that a data system can properly and accurately provide a response.” “User queries will need to identify the patient and either request or transmit data elements to other components of the distribution environment.” “Vendors may interpret the use of a data field differently, depending on their perspective or orientation.” W. E. Hammond and J. J. Cimino in (Garber, et al., 2006) Acknowledgements To my thesis advisor and friend Prof. Dr. Ricardo Cruz Correia, for his guidance during the development of this work, especially his scientific input was very helpful to me in my long learning in these past years. Thank you to believing in my capabilities and mainly to empower them. To Dr. Pedro Manuel Vieira Marques, whose dedication, motivation and perseverance were essential to the achievement of this work. To the Prof. Dr. Luis Filipe Coelho Antunes, for his always innovative vision as director of the Master in Medical Informatics. To my master colegues Bruno Santos, Alexandre Santos, Carlos Vicente, Liliana Leite and Fernando Almeida. To the CIDES, Faculty of Medicine, University of Porto, the Centre for Research in Information Systems and Technologies Health (CINTESIS) and project PTDC/EIA-EIA/105352/2008 "SAHIB - Enhancing multi- institutional health data availability through multi-agent Systems", funded by the Foundation for Science and Technology, for providing the means and resources needed for this work. -
ON the USE of Openehr in a PORTABLE PHR
ON THE USE OF openEHR IN A PORTABLE PHR Cândido Santos1,2, Tiago Pedrosa1,3, Carlos Costa1 and José Luís Oliveira1 1DETI/IEETA, Universidade de Aveiro, Aveiro, Portugal 2DEE, Instituto Superior de Engenharia de Coimbra (ISEC), Coimbra, Portugal 3IPB, Instituto Politécnico de Bragança, Bragança, Portugal Keywords: Personal health record, Electronic health record, openEHR, Privacy, Security. Abstract: Quality medical acts rely on patient medical information. With paper records, the responsibility of gathering the disparate information and making it available to the caregivers, falls exclusively upon the patient. This still is, to great extent, the case with electronic health documents. The consensus is that the advantages of patient involvement in his own health are numerous. With the advent of recent technologies and their deployment in healthcare, new ways of involving the patient and making him an active part of his own health are possible. Electronic Health Records (EHR) and specially Personal Health Records (PHR) are important tools for patient empowerment but data population and management through non-intuitive structured forms is time consuming, takes a great amount of effort, and can be deterring specially for people that are not very computer-oriented. PHRs can be simple and scalable applications that the patient uses to get started and afterwards evolve towards complexity. In any case, compliance with standards must be accomplished. In this paper we present a PHR simple to use, implemented on a USB Flash pen for mobility, and compliant with the openEHR specification. Our model builds on openEHR and adds security and privacy features, allows patient data management and can work as an information repository. -
Koray Atalag Ph.D. Thesis 2007
ARCHETYPE BASED DOMAIN MODELING FOR HEALTH INFORMATION SYSTEMS A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF INFORMATICS OF THE MIDDLE EAST TECHNICAL UNIVERSITY BY KORAY ATALA Ğ IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE DEPARTMENT OF INFORMATION SYSTEMS JULY 2007 Approval of the Graduate School of Informatics ___________________________ Assoc.Prof.Dr. Nazife Baykal Director I certify that this thesis satisfies all the requirements as a thesis for the degree of Doctor of Philosophy. ___________________________ Assoc.Prof.Dr. Yasemin Yardımcı Head of Department This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Doctor of Philosophy. ___________________________ Prof.Dr. Semih Bilgen Supervisor Examining Committee Members Prof.Dr. Sedat Boyacıo ğlu (MESA Hospital) _____________________ Prof.Dr. Semih Bilgen (METU, EEE) _____________________ Assoc.Prof.Dr. Onur Demirörs (METU, II) _____________________ Assoc.Prof.Dr. Gürden Gür (Güven Hospital) _____________________ Assoc.Prof.Dr. Ü. Erkan Mumcuo ğlu (METU, II) _____________________ I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last Name : Koray Atala ğ Signature : _______________ iii ABSTRACT ARCHETYPE BASED DOMAIN MODELING FOR HEALTH INFORMATION SYSTEMS Atala ğ, Koray Ph.D., Department of Information Systems Supervisor: Prof.Dr. Semih Bilgen July 2007, 163 pages A major problem to be solved in health informatics is high quality, structured and timely data collection. -
Journal of Clinical and Translational Science
Journal of Clinical and Translational Science n-RRMS > a-RRMS since both, as RRMS, capable of repair response, but BASIC SCIENCE/METHODOLOGY a-RRMS triggered this response more recently in response to more recent relapse. In all groups, we expect IL4I-treatment to mitigate inflammation 2079 (aim 2). Finally, we expect that H2O2 production by IL4I1 is a key player in IL4I1 Updates to the documentation system for R function, and that H2O2 will preferentially induce oxidative stress to pro- fl Andrew Middleton Redd in ammatory subsets of PBCMs (aim 3). DISCUSSION/SIGNIFICANCE OF IMPACT: MS is a chronic inflammatory neurodegenerative disease of the The University of Utah School of Medicine, Salt Lake City, UT, USA central nervous system that, with an average age of onset of 34, afflicts over 2.3 million individuals worldwide during many of the most productive years of OBJECTIVES/SPECIFIC AIMS: This research seeks to create a next generation their lives. The pathogenesis of MS, which involves autoimmune destruction of documentation system that exists independent of but is complimentary to the myelin, is poorly understood. Accurate biomarkers, which could predict disease packaging system in R. The new documentation can be manipulated program- progression, are yet to be identified and would provide valuable information to matically as with all R objects. It also implements multiple translators for creating patients and their treating clinicians. Likewise, effective treatments are few and documentation from different sources, including documentation