Fishing in the Gulf of Mexico: Towards Greater Biomass in Exploitation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Final Master Document Draft EFH EIS Gulf
Final Environmental Impact Statement for the Generic Essential Fish Habitat Amendment to the following fishery management plans of the Gulf of Mexico (GOM): SHRIMP FISHERY OF THE GULF OF MEXICO RED DRUM FISHERY OF THE GULF OF MEXICO REEF FISH FISHERY OF THE GULF OF MEXICO STONE CRAB FISHERY OF THE GULF OF MEXICO CORAL AND CORAL REEF FISHERY OF THE GULF OF MEXICO SPINY LOBSTER FISHERY OF THE GULF OF MEXICO AND SOUTH ATLANTIC COASTAL MIGRATORY PELAGIC RESOURCES OF THE GULF OF MEXICO AND SOUTH ATLANTIC VOLUME 1: TEXT March 2004 Gulf of Mexico Fishery Management Council The Commons at Rivergate 3018 U.S. Highway 301 North, Suite 1000 Tampa, Florida 33619-2266 Tel: 813-228-2815 (toll-free 888-833-1844), FAX: 813-225-7015 E-mail: [email protected] This is a publication of the Gulf of Mexico Fishery Management Council pursuant to National Oceanic and Atmospheric Administration Award No. NA17FC1052. COVER SHEET Environmental Impact Statement for the Generic Essential Fish Habitat Amendment to the fishery management plans of the Gulf of Mexico Draft () Final (X) Type of Action: Administrative (x) Legislative ( ) Area of Potential Impact: Areas of tidally influenced waters and substrates of the Gulf of Mexico and its estuaries in Texas, Louisiana, Mississippi, Alabama, and Florida extending out to the limit of the U.S. Exclusive Economic Zone (EEZ) Agency: HQ Contact: Region Contacts: U.S. Department of Commerce Steve Kokkinakis David Dale NOAA Fisheries NOAA-Strategic Planning (N/SP) (727)570-5317 Southeast Region Building SSMC3, Rm. 15532 David Keys 9721 Executive Center Dr. -
Xiphopenaeus Kroyeri
unuftp.is Final Project 2018 Sustainable Management of Guyana’s Seabob (Xiphopenaeus kroyeri.) Trawl Fishery Seion Adika Richardson Ministry of Agriculture, Fisheries Department Co-operative Republic of Guyana [email protected] Supervisors: Dr. Pamela J. Woods Dr. Ingibjörg G. Jónsdóttir Marine and Freshwater Research Institute Iceland [email protected] [email protected] ABSTRACT Seabob (Xiphopenaeus kroyeri) is the most exploited shrimp species in Guyana and the largest seafood export. This species is mostly caught by seabob trawlers, sometimes with large quantities of bycatch. The goal of this paper is to promote the long-term sustainability of marine stocks impacted by this fishery, by analysing 1) shrimp stock status, 2) the current state of knowledge regarding bycatch impacts, and 3) spatial fishing patterns of seabob trawlers. To address the first, the paper discusses a stock assessment on Guyana`s seabob stock using the Stochastic Surplus Production Model in Continuous-Time (SPiCT). The model output suggests that the stock is currently in an overfished state, i.e., that the predicted Absolute Stock Biomass (Bt) for 2018 is four times smaller than the Biomass which yields Maximum Sustainable Yield at equilibrium (BMSY) and the current fishing mortality (Ft) is six times above the required to achieve Fishing Mortality which results in Maximum Sustainable Yield at equilibrium (FMSY). These results indicate a more overfished state than was generated by the previous stock assessment which concluded that the stock was fully exploited but not overfished (Medley, 2013).To address the second goal, the study linked catch and effort data with spatial Vessel Monitoring System (VMS) data to analyse the mixture of target and non-target species within the seabob fishery. -
Shrimp Fishing in Mexico
235 Shrimp fishing in Mexico Based on the work of D. Aguilar and J. Grande-Vidal AN OVERVIEW Mexico has coastlines of 8 475 km along the Pacific and 3 294 km along the Atlantic Oceans. Shrimp fishing in Mexico takes place in the Pacific, Gulf of Mexico and Caribbean, both by artisanal and industrial fleets. A large number of small fishing vessels use many types of gear to catch shrimp. The larger offshore shrimp vessels, numbering about 2 212, trawl using either two nets (Pacific side) or four nets (Atlantic). In 2003, shrimp production in Mexico of 123 905 tonnes came from three sources: 21.26 percent from artisanal fisheries, 28.41 percent from industrial fisheries and 50.33 percent from aquaculture activities. Shrimp is the most important fishery commodity produced in Mexico in terms of value, exports and employment. Catches of Mexican Pacific shrimp appear to have reached their maximum. There is general recognition that overcapacity is a problem in the various shrimp fleets. DEVELOPMENT AND STRUCTURE Although trawling for shrimp started in the late 1920s, shrimp has been captured in inshore areas since pre-Columbian times. Magallón-Barajas (1987) describes the lagoon shrimp fishery, developed in the pre-Hispanic era by natives of the southeastern Gulf of California, which used barriers built with mangrove sticks across the channels and mouths of estuaries and lagoons. The National Fisheries Institute (INP, 2000) and Magallón-Barajas (1987) reviewed the history of shrimp fishing on the Pacific coast of Mexico. It began in 1921 at Guaymas with two United States boats. -
Associate Professor Russell B. Millar
Associate Professor Russell B. Millar Books: Millar, R. B. 2011. Maximum likelihood estimation and inference: with examples in R, SAS and ADMB. Wiley, London. 357 p. Publications in peer-reviewed journals: 1. Brooks, M. E., Melli, V., Savina, E., Santos, J., Millar, R. B., O’Neill, F. G., Veiga-Malta, T., Krag, L. A., and Feekings, J. P. Submitted. Introducing selfisher: open source software for statistical analyses of fishing gear selectivity. Submitted to ICES Journal of Marine Science. 2. Millar, R. B. Submitted. Under revision. A simple canonical method for fitting nonlinear environmental gradients to community data. Under revision with Ecology. 3. Millar, R. B., and Manoharan, S. In press. Repeat individualized assessment using isomorphic questions: A novel approach to increase peer discussion and learning. International Journal of Educational Technology in Higher Education 4. Pouladi, M., Paighambari, S. Y., Millar, R. B., and Babanezhad, M. 2021. Estimation of gillnet mesh size for Narrow-barred Spanish mackerel (Scomberomorus commerson Lacépède, 1800) using girth measurements, Northwest Persian Gulf. Iranian Journal of Fisheries Sciences. 179– 194. doi: 10.22092/ijfs.2021.351065.0 5. Pouladi, M., Paighambari, S. Y., Broadhurst, M. K., Millar, R. B., and Eighani, M. 2021. Effects of season and mesh size on the selection of narrow-barred Spanish mackerel, Scomberomous commerson in the Persian Gulf artisanal gillnet fishery. Journal of the Marine Biological Association of the United Kingdom. 1–5. doi.org/10.1017/S002531542000123X 6. Pouladi, M., Paighambari, S. Y., Millar, R. B., and Babanezhad, M. 2020. Length-weight relationships and condition factor of five marine fish species from Bushehr Province, Persian Gulf, Iran. -
Marine Stewardship Council Pre-Assessment
10051 5th Street N., Suite 105 St. Petersburg, Florida 33702-2211 Tel: (727) 563-9070 Fax: (727) 563-0207 Em ail: MRAG.Americas@m ragam ericas.com President: Andrew A. Rosenberg, Ph.D. Pre-Assessment of the Louisiana Shrimp Fishery Prepared for Louisiana Department of Wildlife and Fisheries Prepared by MRAG Americas, Inc. Robert J. Trumble January 2016 Table of Contents 1. Introduction .................................................................................................................... 2 1.1. Aims/scope of pre-assessment ............................................................................ 2 1.2 Constraints to the pre-assessment of the fishery ................................................. 3 1.3. Unit(s) of Assessment ......................................................................................... 3 1.4 Total Allowable Catch (TAC) and Catch Data ...................................................... 3 2. Description of the fishery ................................................................................................ 4 2.1. Scope of the fishery in relation to the MSC programme ....................................... 4 2.2. Overview of the fishery ........................................................................................ 4 2.3. Principle One: Target species background .......................................................... 4 2.4. Principle Two: Ecosystem background ................................................................ 5 2.5. Principle Three: Management system background -
First Record of Xiphopenaeus Kroyeri Heller, 1862 (Decapoda, Penaeidae) in the Southeastern Mediterranean, Egypt
BioInvasions Records (2019) Volume 8, Issue 2: 392–399 CORRECTED PROOF Research Article First record of Xiphopenaeus kroyeri Heller, 1862 (Decapoda, Penaeidae) in the Southeastern Mediterranean, Egypt Amal Ragae Khafage* and Somaya Mahfouz Taha National Institute of Oceanography and Fisheries, 101 Kasr Al-Ainy St., Cairo, Egypt *Corresponding author E-mail: [email protected] Citation: Khafage AR, Taha SM (2019) First record of Xiphopenaeus kroyeri Abstract Heller, 1862 (Decapoda, Penaeidae) in the Southeastern Mediterranean, Egypt. Four hundred and forty seven specimens of a non-indigenous shrimp species were BioInvasions Records 8(2): 392–399, caught by local fishermen between the years 2016–2019, from Ma’deya shores, https://doi.org/10.3391/bir.2019.8.2.20 Abu Qir Bay, Alexandria, Egypt. These specimens were the Western Atlantic Received: 31 January 2018 Xiphopenaeus kroyeri Heller, 1862, making this the first record for the introduction Accepted: 27 February 2019 and establishment of a Western Atlantic shrimp species in Egyptian waters. Its Published: 18 April 2019 route of introduction is hypothesized to be through ballast water from ship tanks. Due to the high population densities it achieves in this non-native location, it is Handling editor: Kęstutis Arbačiauskas now considered a component of the Egyptian shrimp commercial catch. Thematic editor: Amy Fowler Copyright: © Khafage and Taha Key words: shrimp, seabob, Levantine Basin This is an open access article distributed under terms of the Creative Commons Attribution License -
NMFS 2010 Essential Fish Habitat, TN186
Essential Fish Habitat: A Marine Fish Habitat Conservation Mandate For Federal Agencies Gulf of Mexico Region National Marine Fisheries Service Habitat Conservation Division Southeast Regional Office 263 13th Avenue S. St. Petersburg, FL 33701 727/824-5317 REV. 09/2010 1 Executive Summary The 1996 amendments to the Magnuson-Stevens Fishery Conservation and Management Act (Magnuson-Stevens Act) set forth a new mandate for NOAA’s National Marine Fisheries Service (NMFS), regional fishery management councils (FMC), and other federal agencies to identify and protect important marine and anadromous fish habitat. The essential fish habitat (EFH) provisions of the Magnuson-Stevens Act support one of the nation’s overall marine resource management goals - maintaining sustainable fisheries. Essential to achieving this goal is the maintenance of suitable marine fishery habitat quality and quantity. The FMCs, with assistance from NMFS, have delineated EFH for federally managed species. As new fishery management plans (FMPs) are developed, EFH for newly managed species will be defined as well. Federal action agencies which fund, permit, or carry out activities that may adversely affect EFH are required to consult with NMFS regarding the potential impacts of their actions on EFH and respond in writing to NMFS or FMC recommendations. In addition, NMFS and the FMCs may comment on and make recommendations to any state agency on their activities that may affect EFH. Measures recommended by NMFS or an FMC to protect EFH are advisory, not proscriptive. On December 19, 1997, interim final rules, which specified procedures for implementation of the EFH provisions of the Magnuson-Stevens Act, were published in the Federal Register. -
Balanus Trigonus
Nauplius ORIGINAL ARTICLE THE JOURNAL OF THE Settlement of the barnacle Balanus trigonus BRAZILIAN CRUSTACEAN SOCIETY Darwin, 1854, on Panulirus gracilis Streets, 1871, in western Mexico e-ISSN 2358-2936 www.scielo.br/nau 1 orcid.org/0000-0001-9187-6080 www.crustacea.org.br Michel E. Hendrickx Evlin Ramírez-Félix2 orcid.org/0000-0002-5136-5283 1 Unidad académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México. A.P. 811, Mazatlán, Sinaloa, 82000, Mexico 2 Oficina de INAPESCA Mazatlán, Instituto Nacional de Pesca y Acuacultura. Sábalo- Cerritos s/n., Col. Estero El Yugo, Mazatlán, 82112, Sinaloa, Mexico. ZOOBANK http://zoobank.org/urn:lsid:zoobank.org:pub:74B93F4F-0E5E-4D69- A7F5-5F423DA3762E ABSTRACT A large number of specimens (2765) of the acorn barnacle Balanus trigonus Darwin, 1854, were observed on the spiny lobster Panulirus gracilis Streets, 1871, in western Mexico, including recently settled cypris (1019 individuals or 37%) and encrusted specimens (1746) of different sizes: <1.99 mm, 88%; 1.99 to 2.82 mm, 8%; >2.82 mm, 4%). Cypris settled predominantly on the carapace (67%), mostly on the gastric area (40%), on the left or right orbital areas (35%), on the head appendages, and on the pereiopods 1–3. Encrusting individuals were mostly small (84%); medium-sized specimens accounted for 11% and large for 5%. On the cephalothorax, most were observed in branchial (661) and orbital areas (240). Only 40–41 individuals were found on gastric and cardiac areas. Some individuals (246), mostly small (95%), were observed on the dorsal portion of somites. -
Presence of Pacific White Shrimp Litopenaeus Vannamei (Boone, 1931) in the Southern Gulf of Mexico
Aquatic Invasions (2011) Volume 6, Supplement 1: S139–S142 doi: 10.3391/ai.2011.6.S1.031 Open Access © 2011 The Author(s). Journal compilation © 2011 REABIC Aquatic Invasions Records Presence of Pacific white shrimp Litopenaeus vannamei (Boone, 1931) in the Southern Gulf of Mexico Armando T. Wakida-Kusunoki1*, Luis Enrique Amador-del Angel2, Patricia Carrillo Alejandro1 and Cecilia Quiroga Brahms1 1Instituto Nacional de Pesca, Ave. Héroes del 21 de Abril s/n. Col Playa Norte, Ciudad del Carmen Campeche, México 2Universidad Autónoma del Carmen, Centro de Investigación de Ciencias Ambientales (CICA), Ave. Laguna de Términos s/n Col. Renovación 2da Sección, C.P. 24155, Ciudad del Carmen, Campeche, México E-mail: [email protected] (ATWK), [email protected] (LEAA), [email protected] (PCA), [email protected] (CQB) *Corresponding author Received: 12 July 2011 / Accepted: 12 October 2011 / Published online: 27 October 2011 Abstract This is the first report of the presence of Pacific white shrimp Litopenaeus vannamei in the Southern Gulf of Mexico coast. Seven specimens were collected in the Carmen-Pajonal-Machona lagoons near La Azucena and Sanchez Magallanes in Tabasco, Mexico, during a shrimp monitoring program survey conducted in this area. Further sampling and monitoring are required to find evidence that confirms the establishment of a population of Pacific white shrimp L. vannamei in Southern Gulf of Mexico. Key words: Litopenaeus vannamei, Pacific white shrimp, invasive species, Tabasco, Mexico Introduction covering 319.6 ha (Diario Oficial de la Federacion 2011). Almost all of these farms are Litopenaeus vannamei (Boone, 1931) is native to located in the Southern part of the Machona the Eastern Pacific coast from the Gulf of Lagoon. -
Trophic Ecology of Atlantic Seabob Shrimp Xiphopenaeus Kroyeri: Intertidal Benthic Microalgae Support the Subtidal Food Web Off Suriname
Estuarine, Coastal and Shelf Science 182 (2016) 146e157 Contents lists available at ScienceDirect Estuarine, Coastal and Shelf Science journal homepage: www.elsevier.com/locate/ecss Trophic ecology of Atlantic seabob shrimp Xiphopenaeus kroyeri: Intertidal benthic microalgae support the subtidal food web off Suriname * Tomas Willems a, b, , Annelies De Backer a, Thomas Kerkhove a, b, Nyasha Nanseera Dakriet c, Marleen De Troch b, Magda Vincx b, Kris Hostens a a Institute for Agricultural and Fisheries Research (ILVO), Animal Sciences, Bio-Environmental Research group, Ankerstraat 1, B-8400, Oostende, Belgium b Ghent University, Department of Biology, Marine Biology, Krijgslaan 281 - S8, B-9000, Gent, Belgium c Anton De Kom University of Suriname, Faculty of Science and Technology, Leysweg 86, Postbus, 9212, Paramaribo, Suriname article info abstract Article history: A combination of stomach content analyses and dual stable isotope analyses was used to reveal the Received 21 October 2015 trophic ecology of Atlantic seabob shrimp Xiphopenaeus kroyeri off the coast of Suriname. This coastal Received in revised form penaeid shrimp species has a rather omnivorous diet, feeding opportunistically on both animal prey and 2 July 2016 primary food sources. The species is a predator of hyperbenthic crustaceans, including copepods, am- Accepted 22 September 2016 phipods and the luciferid shrimp Lucifer faxoni, which are mainly preyed upon during daytime, when Available online 23 September 2016 these prey typically reside near the seabed. Benthic microalgae (BM) from intertidal mudflats and offshore sedimentary organic matter (SOM) were important primary food sources. Due to their depleted Keywords: 13 Xiphopenaeus kroyeri C values, coastal sedimentary and suspended organic matter, and carbon from riverine and mangrove- Trophic ecology derived detritus were not incorporated by X. -
Characterization of Small-Scale Fisheries in the Camamu-Almada Basin, Southeast State of Bahia, Brazil Souza, TCM*
Characterization of small-scale fisheries in the Camamu-Almada basin, southeast state of Bahia, Brazil Souza, TCM*. and Petrere-Jr, M.* Departamento de Ecologia, Universidade Estadual Paulista – UNESP, CP 199, CEP 13506-900, Rio Claro, SP, Brazil *e-mail: [email protected], [email protected] Received August 28, 2006 – Accepted February 22, 2007– Distributed November 30, 2008 (With 3 figures) Abstract In the Camamu-Almada basin, marine fishery is exclusively small-scale, with several structural deficiencies such as boats with low or absent navigational technology, lack of credit and low income. Local fishers complain that shrimp and lobster trawling fishing is the main factor responsible for low stock abundance, but they still persist in these activities as these two species command the highest market prices. So they feel that the target species are already over-fished. We suggest that proper management action, alternative ways of income generation and the payment of job insurance would help to mitigate the problem. Keywords: tropical small-scale marine fisheries, tropical marine fishes, southeast state of Bahia, Brazil. Caracterização das pescarias de pequena-escala na bacia de Camamu-Almada no sudeste da Bahia, Brasil Resumo Na bacia Camamu-Almada, as pescarias marinhas são exclusivamente de pequena-escala, com várias deficiências estruturais: com barcos quase sem nenhuma tecnologia de auxílio à navegação, falta de crédito e baixa lucratividade. Os pescadores locais reclamam que a pesca de arrasto dirigida a camarões e lagosta é a principal responsável pela baixa abundância dos estoques preferenciais, mas como eles ainda têm alto preço no mercado, essa estratégia de pesca ainda persiste. -
Assessing the Effects of Freshwater Inflows and Other Key Drivers
AsSEssING THE EFFECTS OF FRESHWATER INFLOWS AND OTHER KEY DRIVERS ON THE POPULATION DYNAMICS OF BLUE CRAB AND WHITE SHRIMP USING A MuLTIvARIATE TIME- SERIES MODELING fRAMEwoRK Principal Investigator Dr. Edward J. Buskey Research Coordinator, Mission-Aransas National Estuarine Research Reserve Professor, Department of Marine Science, The University of Texas at Austin Co-Principal Investigators Dr. Lindsay P. Scheef Research Associate, Mission-Aransas National Estuarine Research Reserve Dr. Jianhong Xue Research Associate, Mission-Aransas National Estuarine Research Reserve PURSUANT To SENATE BILL 1 AS APPROVED BY THE 83RD TEXAS LEGISLATURE, THIS STUDYREPORT WAS FUNDED FOR THE PURPOSE OF STUDYING ENVIRONMENTAL FLO WNEEDS FOR TEXASRIVERS AND ESTUARIESASPARTOF THEADAPTIVE MANAGEMENT PHASE OF THE SENATE BILL 3 PROCESS FOR ENVIRONMENTAL FLOWS ESTABLISHED BY THE 80TH TEXAS LEGISLA TURE. THE VIEWS AND CONCLUSIONS EXPRESSED HEREIN ARE THOSE OF THE AUTHOR(S) AND DO NOT NECESSARILYREFLECT THE VIEWS Of THE TEXAS WA TER DEVELOPMENT BOARD. final Report Sponsor Research Project ID: 1400011712 Sponsored by Texas Water Development Board September 2015 Department of Marine Science The University of Texas at Austin Port Aransas, Texas 78373 I ii ABSTRACT Natural freshwater inflow (FWI) from rivers, streams, and rainfall maintains nutrients, sediments, and salinity regimes within estuaries. These factors, together, produce a healthy and sustainable estuary for juvenile and adult finfish and invertebrates that utilize an estuary for foraging, refuge, and reproduction. Other key drivers, such as droughts and human contributed impacts have negative effects on estuaries. Reduced FWI can affect the population dynamics of commercially and ecologically important species such as blue crab, Callinectes sapidus, and white shrimp, Litopenaeus setiferus.