Inhibition of Mtorc1 Leads to MAPK Pathway Activation Through a PI3K-Dependent Feedback Loop in Human Cancer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling
G C A T T A C G G C A T genes Review Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling Aoife A. Nolan 1, Nourhan K. Aboud 1, Walter Kolch 1,2,* and David Matallanas 1,* 1 Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; [email protected] (A.A.N.); [email protected] (N.K.A.) 2 Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland * Correspondence: [email protected] (W.K.); [email protected] (D.M.) Abstract: Oncogenic RAS (Rat sarcoma) mutations drive more than half of human cancers, and RAS inhibition is the holy grail of oncology. Thirty years of relentless efforts and harsh disappointments have taught us about the intricacies of oncogenic RAS signalling that allow us to now get a pharma- cological grip on this elusive protein. The inhibition of effector pathways, such as the RAF-MEK-ERK pathway, has largely proven disappointing. Thus far, most of these efforts were aimed at blocking the activation of ERK. Here, we discuss RAF-dependent pathways that are regulated through RAF functions independent of catalytic activity and their potential role as targets to block oncogenic RAS signalling. We focus on the now well documented roles of RAF kinase-independent functions in apoptosis, cell cycle progression and cell migration. Keywords: RAF kinase-independent; RAS; MST2; ASK; PLK; RHO-α; apoptosis; cell cycle; cancer therapy Citation: Nolan, A.A.; Aboud, N.K.; Kolch, W.; Matallanas, D. Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling. -
RAF Protein-Serine/Threonine Kinases: Structure and Regulation
Biochemical and Biophysical Research Communications 399 (2010) 313–317 Contents lists available at ScienceDirect Biochemical and Biophysical Research Communications journal homepage: www.elsevier.com/locate/ybbrc Mini Review RAF protein-serine/threonine kinases: Structure and regulation Robert Roskoski Jr. * Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 116, Box 19, Horse Shoe, NC 28742, USA article info abstract Article history: A-RAF, B-RAF, and C-RAF are a family of three protein-serine/threonine kinases that participate in the Received 12 July 2010 RAS-RAF-MEK-ERK signal transduction cascade. This cascade participates in the regulation of a large vari- Available online 30 July 2010 ety of processes including apoptosis, cell cycle progression, differentiation, proliferation, and transforma- tion to the cancerous state. RAS mutations occur in 15–30% of all human cancers, and B-RAF mutations Keywords: occur in 30–60% of melanomas, 30–50% of thyroid cancers, and 5–20% of colorectal cancers. Activation 14-3-3 of the RAF kinases requires their interaction with RAS-GTP along with dephosphorylation and also phos- ERK phorylation by SRC family protein-tyrosine kinases and other protein-serine/threonine kinases. The for- GDC-0879 mation of unique side-to-side RAF dimers is required for full kinase activity. RAF kinase inhibitors are MEK Melanoma effective in blocking MEK1/2 and ERK1/2 activation in cells containing the oncogenic B-RAF Val600Glu PLX4032 activating mutation. RAF kinase inhibitors lead to the paradoxical increase in RAF kinase activity in cells PLX4720 containing wild-type B-RAF and wild-type or activated mutant RAS. -
Mutation-Specific RAS Oncogenicity Explains NRAS Codon 61 Selection in Melanoma
Published OnlineFirst September 24, 2014; DOI: 10.1158/2159-8290.CD-14-0729 reseArch Article Mutation-Specific RAS Oncogenicity Explains NRAS Codon 61 Selection in Melanoma Christin E. Burd1,2, Wenjin Liu3,4, Minh V. Huynh5, Meriam A. Waqas1, James E. Gillahan1,2, Kelly S. Clark3,4, Kailing Fu3,4, Brit L. Martin1, William R. Jeck3,4,. George P Souroullas3,4, David B. Darr3,4, Daniel C. Zedek6, Michael J. Miley7, Bruce C. Baguley8, Sharon L. Campbell4,5, and Norman E. Sharpless3,4 Abstrt Ac NRAS mutation at codons 12, 13, or 61 is associated with transformation; yet, in melanoma, such alterations are nearly exclusive to codon 61. Here, we compared the melanoma susceptibility of an NrasQ61R knock-in allele to similarly designed KrasG12D and NrasG12D alleles. With concomitant p16INK4a inactivation, KrasG12D or NrasQ61R expression efficiently promoted melanoma in vivo, whereas NrasG12D did not. In addition, NrasQ61R mutation potently cooperated with Lkb1/Stk11 loss to induce highly metastatic disease. Functional comparisons of NrasQ61R and NrasG12D revealed little difference in the ability of these proteins to engage PI3K or RAF. Instead, NrasQ61R showed enhanced nucleotide binding, decreased intrinsic GTPase activity, and increased stability when compared with NrasG12D. This work identifies a faithful model of human NRAS-mutant melanoma, and suggests that the increased melanomagenecity of NrasQ61R over NrasG12D is due to heightened abundance of the active, GTP-bound form rather than differences in the engagement of downstream effector pathways. SIGNIFICANCE: This work explains the curious predominance in human melanoma of mutations of codon 61 of NRAS over other oncogenic NRAS mutations. -
Role of Cyclin-Dependent Kinase 1 in Translational Regulation in the M-Phase
cells Review Role of Cyclin-Dependent Kinase 1 in Translational Regulation in the M-Phase Jaroslav Kalous *, Denisa Jansová and Andrej Šušor Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 27721 Libechov, Czech Republic; [email protected] (D.J.); [email protected] (A.Š.) * Correspondence: [email protected] Received: 28 April 2020; Accepted: 24 June 2020; Published: 27 June 2020 Abstract: Cyclin dependent kinase 1 (CDK1) has been primarily identified as a key cell cycle regulator in both mitosis and meiosis. Recently, an extramitotic function of CDK1 emerged when evidence was found that CDK1 is involved in many cellular events that are essential for cell proliferation and survival. In this review we summarize the involvement of CDK1 in the initiation and elongation steps of protein synthesis in the cell. During its activation, CDK1 influences the initiation of protein synthesis, promotes the activity of specific translational initiation factors and affects the functioning of a subset of elongation factors. Our review provides insights into gene expression regulation during the transcriptionally silent M-phase and describes quantitative and qualitative translational changes based on the extramitotic role of the cell cycle master regulator CDK1 to optimize temporal synthesis of proteins to sustain the division-related processes: mitosis and cytokinesis. Keywords: CDK1; 4E-BP1; mTOR; mRNA; translation; M-phase 1. Introduction 1.1. Cyclin Dependent Kinase 1 (CDK1) Is a Subunit of the M Phase-Promoting Factor (MPF) CDK1, a serine/threonine kinase, is a catalytic subunit of the M phase-promoting factor (MPF) complex which is essential for cell cycle control during the G1-S and G2-M phase transitions of eukaryotic cells. -
Analysis of 3-Phosphoinositide-Dependent Kinase-1 Signaling and Function in ES Cells
EXPERIMENTAL CELL RESEARCH 314 (2008) 2299– 2312 available at www.sciencedirect.com www.elsevier.com/locate/yexcr Research Article Analysis of 3-phosphoinositide-dependent kinase-1 signaling and function in ES cells Tanja Tamgüneya,b, Chao Zhangc, Dorothea Fiedlerc, Kevan Shokatc, David Stokoea,⁎ aUCSF Cancer Research Institute, USA bMolecular Medicine Program, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany cDepartment of Cellular and Molecular Pharmacology, University of California, San Francisco, 2340 Sutter Street, San Francisco, CA 94115, USA ARTICLE INFORMATION ABSTRACT Article Chronology: 3-Phosphoinositide-dependent kinase-1 (PDK1) phosphorylates and activates several Received 5 February 2008 kinases in the cAMP-dependent, cGMP-dependent and protein kinase C (AGC) family. Revised version received Many putative PDK1 substrates have been identified, but have not been analyzed following 15 April 2008 transient and specific inhibition of PDK1 activity. Here, we demonstrate that a previously Accepted 16 April 2008 characterized PDK1 inhibitor, BX-795, shows biological effects that are not consistent with Available online 23 April 2008 PDK1 inhibition. Therefore, we describe the creation and characterization of a PDK1 mutant, L159G, which can bind inhibitor analogues containing bulky groups that hinder access to the − − Keywords: ATP binding pocket of wild type (WT) kinases. When expressed in PDK1 / ES cells, PDK1 PDK1 L159G restored phosphorylation of PDK1 targets known to be hypophosphorylated in these PKB/Akt cells. Screening of multiple inhibitor analogues showed that 1-NM-PP1 and 3,4-DMB-PP1 − − PI3K optimally inhibited the phosphorylation of PDK1 targets in PDK1 / ES cells expressing PDK1 Chemical genetics L159G but not WT PDK1. These compounds confirmed previously assumed PDK1 substrates, AGC kinases but revealed distinct dephosphorylation kinetics. -
Interaction Between the Protein Kinase B-Raf and the A-Subunit of the IIS Proteasome Regulator1
(CANCER RESEARCH 58. 2986-2990, July 15, I998| Advances in Brief Interaction between the Protein Kinase B-Raf and the a-Subunit of the IIS Proteasome Regulator1 Andreas Kalmes,2 Garsten Hagemann,2 Christoph K. Weber, Ludmilla Wixler, Tillman Schuster, and Ulf R. Kapp* InstituÃfürMedizinische Strahlenkunde und Zettforschung (MSZ). University of Würzburg,97078 Würzburg,Germany ¡C.H.. C. K. W.. L. W.. T. S.. U. K. R.], and Department of Surgery, University of Washington, Seattle. Washington 9SI95 ¡A.KJ Abstract using the yeast two-hybrid system. In addition to the already known B-Raf-binding proteins (MEK and several 14-3-3 isoforms), we iso Protein kinases of the Raf family act as signal-transducing elements lated PA28a, the subunit of the 1IS proteasome regulator (11, 12), as downstream of activated cell surface receptors and are involved in the a novel B-Raf-binding partner. regulation of proliferation, differentiation, and cell survival. Whereas the role of c-Raf-1 as a mitogen-activated protein/extracellular signal-regu The 11S regulator is one of two known activators of the 20S lated kinase activator within the mitogenic cascade is well established, less proteasome (13). Both of these activators seem to possess different is known about the mammalian Raf isoforins A-Raf and B-Raf. Here we functions in vivo. The PA700 activator complex (19S regulator) binds report that B-Raf binds to PA28a, one of two subunits of the 1IS regulator to the 20S proteasome core complex to form the active 26S protea of proteasomes. PA28<* was isolated as a B-Raf-binding protein in a yeast some, which mediates the ATP- and ubiquitination-dependent degra two-hybrid screen of a PC 12 cDNA library. -
Dynamic Modelling of the Mtor Signalling Network Reveals Complex
www.nature.com/scientificreports OPEN Dynamic modelling of the mTOR signalling network reveals complex emergent behaviours conferred by Received: 24 August 2017 Accepted: 1 December 2017 DEPTOR Published: xx xx xxxx Thawfeek M. Varusai1,4 & Lan K. Nguyen2,3,4 The mechanistic Target of Rapamycin (mTOR) signalling network is an evolutionarily conserved network that controls key cellular processes, including cell growth and metabolism. Consisting of the major kinase complexes mTOR Complex 1 and 2 (mTORC1/2), the mTOR network harbours complex interactions and feedback loops. The DEP domain-containing mTOR-interacting protein (DEPTOR) was recently identifed as an endogenous inhibitor of both mTORC1 and 2 through direct interactions, and is in turn degraded by mTORC1/2, adding an extra layer of complexity to the mTOR network. Yet, the dynamic properties of the DEPTOR-mTOR network and the roles of DEPTOR in coordinating mTORC1/2 activation dynamics have not been characterised. Using computational modelling, systems analysis and dynamic simulations we show that DEPTOR confers remarkably rich and complex dynamic behaviours to mTOR signalling, including abrupt, bistable switches, oscillations and co-existing bistable/oscillatory responses. Transitions between these distinct modes of behaviour are enabled by modulating DEPTOR expression alone. We characterise the governing conditions for the observed dynamics by elucidating the network in its vast multi-dimensional parameter space, and develop strategies to identify core network design motifs underlying these dynamics. Our fndings provide new systems-level insights into the complexity of mTOR signalling contributed by DEPTOR. Discovered in the early 1990s as an anti-fungal agent produced by the soil bacterium Streptomyces hygroscopicus, rapamycin has continually surprised scientists with its diverse clinical efects including potent immunosuppres- sive and anti-tumorigenic properties1–3. -
Title Mtorc1 Upregulation Via ERK-Dependent Gene Expression Change Confers Intrinsic Resistance to MEK Inhibitors in Oncogenic Kras-Mutant Cancer Cells
mTORC1 upregulation via ERK-dependent gene expression Title change confers intrinsic resistance to MEK inhibitors in oncogenic KRas-mutant cancer cells. Komatsu, Naoki; Fujita, Yoshihisa; Matsuda, Michiyuki; Aoki, Author(s) Kazuhiro Citation Oncogene (2015), 34(45): 5607-5616 Issue Date 2015-11-05 URL http://hdl.handle.net/2433/207613 This is the accepted manuscrip of the article is available at http://dx.doi.org/10.1038/onc.2015.16.; The full-text file will be made open to the public on 5 May 2016 in accordance with Right publisher's 'Terms and Conditions for Self-Archiving'.; この論 文は出版社版でありません。引用の際には出版社版をご 確認ご利用ください。; This is not the published version. Please cite only the published version. Type Journal Article Textversion author Kyoto University 1 Title mTORC1 upregulation via ERK-dependent gene expression change confers intrinsic resistance to MEK inhibitors in oncogenic KRas-mutant cancer cells. Authors Naoki Komatsu1, Yoshihisa Fujita2, Michiyuki Matsuda1,2, and Kazuhiro Aoki3 Affiliations 1. Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Japan 2. Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Japan 3. Imaging Platform for Spatio-Temporal Information, Graduate School of Medicine, Kyoto University, Japan To whom correspondence should be addressed Kazuhiro Aoki, Imaging Platform for Spatio-Temporal Information, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Tel.: 81-75-753-9450; Fax: 81-75-753-4698; E-mail: [email protected] Running title (less than 50 letters and spaces): Transcriptional control of mTORC1 activity by ERK 2 Abstract Cancer cells harboring oncogenic BRaf mutants, but not oncogenic KRas mutants, are sensitive to MEK inhibitors (MEKi). -
A Pathway of Targeted Autophagy Is Induced by DNA Damage in Budding Yeast
A pathway of targeted autophagy is induced by DNA damage in budding yeast Vinay V. Eapena,1, David P. Watermana, Amélie Bernardb, Nathan Schiffmannc, Enrich Sayasd,e, Roarke Kamberf, Brenda Lemosa, Gonen Memisoglua, Jessie Anga, Allison Mazellaa, Silvia G. Chuartzmanc, Robbie J. Loewithd,e, Maya Schuldinerc, Vladimir Denicf, Daniel J. Klionskyb, and James E. Habera,2 aDepartment of Biology, Brandeis University, Waltham, MA 02454; bLife Sciences Institute, University of Michigan, Ann Arbor, MI 48109; cDepartment of Molecular Genetics, Weizmann Institute of Sciences, Rehovot, Israel 7610001; dDepartment of Molecular Biology, University of Geneva, CH-1211 Geneva 4, Switzerland; eInstitute of Genetics and Genomics in Geneva, University of Geneva, CH-1211 Geneva 4, Switzerland; and fMolecular and Cell Biology, Harvard University, Cambridge, MA 02138 Contributed by James E. Haber, December 5, 2016 (sent for review August 31, 2016; reviewed by Eric H. Baehrecke and Stephen J. Elledge) Autophagy plays a central role in the DNA damage response (DDR) by conditions. For example, in response to nutrient starvation, cells controlling the levels of various DNA repair and checkpoint proteins; recycle internal reserves of basic metabolites by the degradation however, how the DDR communicates with the autophagy pathway of proteins, or even whole organelles, by their digestion in the remains unknown. Using budding yeast, we demonstrate that global vacuole/lysosome. This process is initiated by the formation of genotoxic damage or even a single unrepaired double-strand break double-membraned cytosolic sequestering vesicles, termed phag- (DSB) initiates a previously undescribed and selective pathway of ophores, which can engulf either random portions of the cyto- autophagy that we term genotoxin-induced targeted autophagy plasm, organelles, or specific proteins (10). -
Targeting Mtor Signaling Overcomes Acquired Resistance to Combined BRAF and MEK Inhibition in BRAF-Mutant Melanoma
www.nature.com/onc Oncogene ARTICLE OPEN Targeting mTOR signaling overcomes acquired resistance to combined BRAF and MEK inhibition in BRAF-mutant melanoma Beike Wang1,11, Wei Zhang1,11, Gao Zhang 2,10,11, Lawrence Kwong3, Hezhe Lu4, Jiufeng Tan2, Norah Sadek2, Min Xiao2, Jie Zhang 5, 6 2 2 2 2 5 7 6 Marilyne Labrie , Sergio Randell , Aurelie Beroard , Eric Sugarman✉ , Vito W. Rebecca✉ , Zhi Wei , Yiling Lu , Gordon B. Mills , Jeffrey Field8, Jessie Villanueva2, Xiaowei Xu9, Meenhard Herlyn 2 and Wei Guo 1 © The Author(s) 2021 Targeting MAPK pathway using a combination of BRAF and MEK inhibitors is an efficient strategy to treat melanoma harboring BRAF-mutation. The development of acquired resistance is inevitable due to the signaling pathway rewiring. Combining western blotting, immunohistochemistry, and reverse phase protein array (RPPA), we aim to understanding the role of the mTORC1 signaling pathway, a center node of intracellular signaling network, in mediating drug resistance of BRAF-mutant melanoma to the combination of BRAF inhibitor (BRAFi) and MEK inhibitor (MEKi) therapy. The mTORC1 signaling pathway is initially suppressed by BRAFi and MEKi combination in melanoma but rebounds overtime after tumors acquire resistance to the combination therapy (CR) as assayed in cultured cells and PDX models. In vitro experiments showed that a subset of CR melanoma cells was sensitive to mTORC1 inhibition. The mTOR inhibitors, rapamycin and NVP-BEZ235, induced cell cycle arrest and apoptosis in CR cell lines. As a proof-of-principle, we demonstrated that rapamycin and NVP-BEZ235 treatment reduced tumor growth in CR xenograft models. Mechanistically, AKT or ERK contributes to the activation of mTORC1 in CR cells, depending on PTEN status of these cells. -
A-Raf and Raf-1 Work Together to Influence Transient ERK Phosphorylation and Gl/S Cell Cycle Progression
Oncogene (2005) 24, 5207–5217 & 2005 Nature Publishing Group All rights reserved 0950-9232/05 $30.00 www.nature.com/onc A-Raf and Raf-1 work together to influence transient ERK phosphorylation and Gl/S cell cycle progression Kathryn Mercer1, Susan Giblett1, Anthony Oakden2, Jane Brown2, Richard Marais3 and Catrin Pritchard*,1 1Department of Biochemistry, University of Leicester, Adrian Building, University Road, Leicester LEI 7RH, UK; 2Division of Biomedical Services, University of Leicester, University Road, Leicester LEI 7RH, UK; 3Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK The Raf/MEK/ERK (extracellular regulated kinase) Kerkhoff and Rapp, 1997, 1998; Woods et al., 1997; signal transduction pathway controls the ability of cells Marshall, 1999; Squires et al., 2002). This function to respond to proliferative, apoptotic, migratory and is mediated by the ability of ERKs to translocate to the differentiation signals. We have investigated the combined nucleus where they are able to phosphorylate transcrip- contribution of A-Raf and Raf-1 isotypes to signalling tion factors, particularly the AP-1 complex that through this pathway by generating mice with knockout comprises various heterodimers of c-fos (c-fos, FosB, mutations of both A-raf and raf-1 genes. Double knockout Fra-1, Fra-2) and c-jun (c-Jun, JunB, JunD) family (DKO) mice have a more severe phenotype than single null members (Whitmarsh and Davis, 1996; Balmanno mutations of either gene, dying in embryogenesis at E10.5. and Cook, 1999; Cook et al., 1999; Shaulian and The DKO embryos show no changes in apoptosis, but Karin, 2002). -
High-Intensity Raf Signals Convert Mitotic Cell Cycling Into Cellular Growth'
(CANCERRESEARCH58. 1636-1640. April 15. 19981 Advances in Brief High-intensity Raf Signals Convert Mitotic Cell Cycling into Cellular Growth' Eugen Kerkhoff and Ulf R. Rapp2 lnstitutfürmedizinischeStrahlenkundeund Zellforschung(MSZ). Universityof Wurzburg,97078 Wiirzburg, Germany Abstract oncogernc c-Raf-1-estrogen receptor fusion protein (c-Raf-1-BxB ERTM). Activation of the exogenous kinase induces high and sustained The selectionof NIH 3T3 cellsexpressinga hydroxytamoxifen-induci c-Raf signals and inhibits DNA synthesis and mitosis. Despite the ble c-Raf-1-estrogen receptor fusion protein (c-Raf-1-BxB-ER@) in the inhibition of cell cycle progression, cell growth remains unaffected, absence or presence of the inducer results in dramatic differences in the expression levels of the fusion protein. Hydroxytamoxifen-mediated con leading to cells with a DNA content of G1 cells and a cell size of stitutive activation of the Rafsignal favors the selection ofcells expressing G2-M-phase cells. Therefore, high-intensity Raf signals uncouple the low levels of c-R.af-1-BxB-ER@. Cells selected in the absence of hy regulation of cell growth from DNA replication and mitosis. droxytamoxifen express up to 20 tImes higher levels of the inducible Raf kinase. Activation ofthe oncogenic Rafkinase in cells expressing low levels Materials and Methods leads to a weak activation of the Raf/Mek/Erk cascade and the induction of S phase In confluentcells.The activationof cellsexpressinghigh levels Expression Vector. The pBabe-puro-BxB-ER@ vector was constructed by ofthe kinaseleadsto a strongpersIstentsignalandinhibitsDNAsynthesis releasing sequences encoding the c-Raf-l-BxB-ER@ protein from the BJ4- andmitOsisinproliferatingcells.TheinhibitionofDNAsynthesisandcell BxB-ER@ vector (7) by EcoRI digestion (2.2-kb fragment) and inserting them dIvision is presumably due to the elevated expression ofthe cyclin-depend into the unique EcoRI recognition site of the pBabe-puro vector (13).