Phdthesis RF2010
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diptera: Syrphidae)
Eur. J. Entomol. 102: 539–545, 2005 ISSN 1210-5759 Landscape parameters explain the distribution and abundance of Episyrphus balteatus (Diptera: Syrphidae) JEAN-PIERRE SARTHOU1, ANNIE OUIN1, FLORENT ARRIGNON1, GAËL BARREAU2 and BERNARD BOUYJOU1 1Ecole Nationale Supérieure Agronomique de Toulouse, UMR Dynafor, BP 107, F-31326 Auzeville-Tolosane, France; e-mail: [email protected] 212, rue Claude Bizot, F-33170 Gradignan, France Key words. Syrphidae, Episyrphus balteatus, distribution, abundance, seasons, forest edges, landscape Abstract. We studied the importance of forest structure (shape, edge length and orientation) and the crop mosaic (percentage of crops in the total land cover, within 100 and 2000 m from the forests) to the dynamics of an aphidophagous hoverfly Episyrphus bal- teatus. Adults were collected by Malaise traps located within and on the south- and north-facing edges of 54 forests. In winter, E. balteatus was only found on south-facing edges because of the greater insolation and temperature. In summer, it was more abundant on north-facing edges because of the abundant presence of flowers. In spring, more adults were found on long and south-facing edges than on northern edges. The presence of shrubs within 2000 m also positively affected abundance. In autumn, abundance was positively associated with length of the north-facing edge and forest shape. Emergence traps revealed that in southern France, E. bal- teatus may overwinter in the larval or puparial stage in forest edges. Overwintering was earlier reported only in adults. Landscape structure, length of forest edges and probably presence of shrub fallows, influence abundance of Episyrphus balteatus. INTRODUCTION farmed landscape are area, floristic composition and also Because most of the natural enemies of crop pests do the shape of the largest features (Nentwig, 1988; not carry out their complete life cycle in cultivated fields, Molthan, 1990; Thomas et al., 1992). -
Impact of Aphid Colony Size and Associated Induced Plant Vola Tiles on Searching and Oviposition Behaviour of a Predatory Hoverfly
Belgian Journal ofEntomology I 0 (2008) : 17-26 Impact of aphid colony size and associated induced plant vola tiles on searching and oviposition behaviour of a predatory hoverfly Almohamad RAKI, Fran~ois J. VERHEGGEN, Frederic FRANCIS & Eric HAUBRUGE Department of Functional and evolutionary Entomology, Passage des Deportes 2, B-5030 Gembloux (Belgium). Corresponding author: Almohamad Raki, Department of Functional & Evolutionary Entomology, Gembloux Agricultural University, Passage des Deportes 2, B-5030 Gembloux (Belgium), Phone: +32(0)81.622346, Fax: +32(0)81.622312, e-mail: [email protected] Abstract Volatile chemicals emitted by aphids or aphid-infested plants act as kairomonal substances for several aphid natural enemies, and are therefore considered as indirect defence for the infested plants. In the present study, the foraging and oviposition behaviour of the aphid specific predator, Episyrphus balteatus DEGEER (Diptera: Syrphidae), was investigated with respect to the aphid colony size, using a leaf disc bioassay. Female E. balteatus exhibited pronounced searching and acceptance behaviour, leading to egg laying, in response to large Myzus persicae Sulzer (Homoptera: Aphididae) colony sizes. Behavioural impacts of synthetic aphid alarm pheromone and geranyl acetone toward E. balteatus female foraging and oviposition behaviour were also demonstrated in this work. These results highlight the role of aphid semiochemicals in predatory hoverfly attraction and provided an opportunity to elucidate some mechanisms of decision-making by female syrphid predators during their foraging and egg-laying behaviour. Keywords: Episyrphus balteatus, foraging behaviour, Myzus persicae, (E)-P famesene, geranyl acetone Introduction Volatile chemical signals released by herbivore-infested plants serve as olfactory cues for parasitoids (Du et al., I998; DE MORAES et al., I998; VAN LOON et al., 2000) and predators (EVANS & DIXON, 1986; DICKE, 1999; NINKOVIC et al., 2001). -
Hoverflies of Assam (Diptera: Syrphidae): New JEZS 2019; 7(4): 965-969 © 2019 JEZS Records and Their Diversity Received: 10-05-2019 Accepted: 12-06-2019
Journal of Entomology and Zoology Studies 2019; 7(4): 965-969 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Hoverflies of Assam (Diptera: Syrphidae): New JEZS 2019; 7(4): 965-969 © 2019 JEZS records and their diversity Received: 10-05-2019 Accepted: 12-06-2019 Rojeet Thangjam Rojeet Thangjam, Veronica Kadam, Kennedy Ningthoujam and Mareena College of Agriculture, Central Sorokhaibam Agricultural University, Kyrdemkulai, Meghalaya, India Abstract Veronica Kadam Hoverflies, generally known as Syrphid flies belongs to family Syrphidae, which is one of the largest College of Post Graduate Studies families of order Diptera. The adults use to feed on nectar and pollen of many flowering plants and larval in Agricultural Sciences, Umiam stages of some species are predaceous to homopteran insects. The objective of the present investigation (CAU-Imphal) Meghalaya, India was focused on the assessment of the diversity and abundance of hoverfly at Assam Agricultural University, Jorhat, Assam during 2015-16. A total of 225 individual hoverflies were recorded during the Kennedy Ningthoujam study out of which 23 species belonging to 16 genera under 2 sub-families viz., Eristalinae and Syrphinae College of Post Graduate Studies were observed. Among them, ten species viz., Eristalinus tristriatus, Eristalis tenax, Eristalodes paria, in Agricultural Sciences, Umiam (CAU-Imphal) Meghalaya, India Lathyrophthalmus arvorum, Lathyrophthalmus megacephalus, Lathyrophthalmus obliquus, Phytomia errans, Pandasyopthalmus rufocinctus, Metasyrphus bucculatus and Sphaerophoria macrogaster were Mareena Sorokhaibam newly recorded from Assam. Among the species, Episyrphus viridaureus and Lathyrophthalmus College of Agriculture, Central arvorum were found to be the most abundant species with the relative abundance of 16.89 and 10.22% Agricultural University, Imphal, respectively. -
UK Biodiversity Indicators 2015
UK Biodiversity Indicators 2015 Department for Environment, Food and Rural Affairs Nobel House 17 Smith Square London SW1P 3JR Telephone 020 7238 6000 Website: www.gov.uk/defra © Crown copyright 2016 Copyright in the typographical arrangement and design rests with the Crown. This publication (excluding logos) may be reproduced free of charge in any format or medium provided that it is reproduced accurately and not used in a misleading context. The material must be acknowledged as Crown copyright with the title and source of the publication specified. This document, with additional supporting data and text, is available to be downloaded on the Joint Nature Conservation Committee website: www.jncc.defra.gov.uk/ukbi Published by the Department for Environment, Food and Rural Affairs. National Statistics are produced to high professional standards set out in the National Statistics Code of Practice. They undergo regular quality assurance reviews to ensure that they meet customer needs. They are produced free from any political interference. Image credits: 1 2 3 1. Volunteers taking part in field observations © Beth Halski/Plantlife 2. Hebridean shearling ram © Alyson Small 3. Marmalade Fly Episyrphus balteatus © Wendy Dalton PB 14348 UK Biodiversity Indicators 2015 Measuring progress towards halting biodiversity loss Indicator C9a: Animal Genetic Resources was corrected and updated 30 November 2016 Contents Introduction UK Biodiversity Indicators 2015 2 Assessing indicators 3 Overview of assessment of change for all indicators 4 Assessment -
Aphid Honeydew: an Arrestant and a Contact Kairomone for Episyrphus Balteatus (Diptera: Syrphidae) Larvae and Adults
Eur. J. Entomol. 111(2): 237–242, 2014 doi: 10.14411/eje.2014.028 ISSN 1210-5759 (print), 1802-8829 (online) Aphid honeydew: An arrestant and a contact kairomone for Episyrphus balteatus (Diptera: Syrphidae) larvae and adults PASCAL D. Leroy 1, RAKI ALmohAmAD 1*, SABRINE AttiA 2, QUENTIN CApeLLA 1, FRANÇOIS J. VerheGGen 1, ERIC hAubruGe 1 and FRÉDÉRIC FrAnCiS 1 1 Department of Functional and Evolutionary Entomology, University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés 2, 5030 Gembloux, Belgium; e-mails: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected] 2 Department of Analytical Chemistry, University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés 2, 5030 Gembloux, Belgium; e-mail: [email protected] Key words. Diptera, Syrphidae, Episyrphus balteatus, Acyrthosiphon pisum, searching behaviour, adults, honeydew, kairomone, larvae Abstract. predator searching efficiency increases in response to a variety of environmental cues associated with its prey. the sugary excretion of aphids (honeydew) has been found to act as a prey-associated cue for many aphid natural enemies. In the present study, the honeydew excreted by Acyrthosiphon pisum (harris) was identified as an arrestant and a contact kairomone for young larvae and adults of a common predatory hoverfly, Episyrphus balteatus (De Geer) (Diptera: Syrphidae). First and second instar larvae increased their foraging behaviour in the honeydew-treated area. When plants were sprayed with crude honeydew, the speed of movement of female E. balteatus was significantly higher than in controls, resulting in a longer period of time spent on treated plants and laying eggs. -
Diptera, Sy Ae)
Ce nt re fo r Eco logy & Hydrology N AT U RA L ENVIRO N M EN T RESEA RC H CO U N C IL Provisional atlas of British hover les (Diptera, Sy ae) _ Stuart G Ball & Roger K A Morris _ J O I N T NATURE CONSERVATION COMMITTEE NERC Co pyright 2000 Printed in 2000 by CRL Digital Limited ISBN I 870393 54 6 The Centre for Eco logy an d Hydrolo gy (CEI-0 is one of the Centres an d Surveys of the Natu ral Environme nt Research Council (NERC). Established in 1994, CEH is a multi-disciplinary , environmental research organisation w ith som e 600 staff an d w ell-equipp ed labo ratories and field facilities at n ine sites throughout the United Kingdom . Up u ntil Ap ril 2000, CEM co m prise d of fou r comp o nent NERC Institutes - the Institute of Hydrology (IH), the Institute of Freshw ater Eco logy (WE), the Institute of Terrestrial Eco logy (ITE), and the Institute of Virology an d Environmental Micro b iology (IVEM). From the beginning of Ap dl 2000, CEH has operated as a single institute, and the ind ividual Institute nam es have ceased to be used . CEH's mission is to "advance th e science of ecology, env ironme ntal microbiology and hyd rology th rough h igh q uality and inte rnat ionall) recognised research lead ing to better understanding and quantifia ttion of the p hysical, chem ical and b iolo gical p rocesses relating to land an d freshwater an d living organisms within the se environments". -
3Rd International Symposium on Syrphidae
3rd International Symposium on Syrphidae Leiden 2-5 September 2005 Programme and Abstracts Edited by Menno Reemer & John T. Smit 3rd International Symposium on Syrphidae 2 – 5 September Leiden, the Netherlands Organizing committee Menno Reemer John Smit Wouter van Steenis Aat Barendregt Laurens van der Leij Willem Renema Mark van Veen Theo Zeegers Postal address EIS - the Netherlands, P.O. Box 9517, 2300 RA Leiden, the Netherlands Telephone: 00-31-(0)71-5687594 Fax: 00-31-(0)71-5687666 Supported by European Invertebrate Survey - the Netherlands Naturalis - National Museum of Natural History Eerste Nederlandse Fietsersbond KNAW Congressubsidiefonds Uyttenboogaart-Eliasen Stichting Het Zeeuwsche Landschap Williston Diptera Research Fund World Wildlife Fund - INNO Supporting scientific committee Name Institution Prof. Dr. C. Barnard Professor of Animal Behaviour, Nottingham University, School of Biology, Nottingham NG7 2RD, UK President of the Association for the Study of Animal Behaviour Prof. Dr. B. Clarke Professor of Ecological Genetics, Nottingham University, School of Biology, Nottingham NG7 2RD, UK Former President of the Royal Society of London Dr. F.S. Gilbert Senior Lecturer Evolutionary Ecology, Nottingham University, School of Biology, Nottingham NG7 2RD, UK Prof. Dr. E. Gittenberger University of Leiden, Evolutionaire en Ecologische Wetenschappen, Leiden, the Netherlands National Museum of Natural History, Postbus 9517, 2300 RA Leiden, the Netherlands Prof. Dr. H. Hippa Swedish Museum of Natural History (Naturhistoriska riksmuseet),Box -
Diptera: Syrphidae)
Eur. J. Entomol. 97: 165-170, 2000 ISSN 1210-5759 Development of ovaries, allometry of reproductive traits and fecundity of Episyrphus balteatus (Diptera: Syrphidae) Etienne BRANQUART1 and Jean -Louis HEMPTINNE2* 'Faculté universitaire des Sciences agronomiques, Passage des Déportés 2, B-5030 Gembloux, Belgium 2Ecole nationale de Formation agronomique, B.P. 87, F-31326 Castanet-Tolosan, France; e-mail: [email protected] Key words.Syrphidae, Episyrphus balteatus, fecundity, egg production, ovaries, allometry Abstract.Episyrphus balteatus only matures eggs after emergence. Ovaries develop in 4 stages. In the absence of oviposition sites, females refrain from ovipositing and their ovaries progressively fill the abdomen and then egg resorption occurs. The potential fecundity, which is expressed by the ovariole number, the reproductive biomass and the abdomen volume, scales isometrically with the size of females. Egg size is much less variable and does not rise proportionally to body size. In laboratory conditions, females of E. balteatus might lay between 2,000 and 4,500 eggs during their life-time at a rate of 1 to 2 eggs per ovariole per day. Both life time fecundity and rate of egg production are directly related to the size of females. The potential and realized fecundities are likely to be limited by the availability of food resources during larval and adult life, respectively. INTRODUCTION The aim of this paper is to test the above predictions, Larvae of Episyrphus balteatus (De Geer, 1776) are determine the relationship between the reproductive potential biological control agents of many aphid species investment and body size, and measure the realised fecun (Chambers & Adams, 1986; Nawrocka, 1988; Tenhum- dity of females of E. -
The Behaviour of Hoverfly Larvae (Diptera, Syrphidae) Lessens the Effects of Floral 2 Subsidy in Agricultural Landscapes
bioRxiv preprint doi: https://doi.org/10.1101/045286; this version posted March 23, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 The behaviour of hoverfly larvae (Diptera, Syrphidae) lessens the effects of floral 2 subsidy in agricultural landscapes 3 4 Elsa A. Laubertie1,2,3, Steve D. Wratten1, Alexandra Magro2 and Jean-Louis Hemptinne2* 5 6 ¹Bio-Protection Research Centre, PO Box 84, Lincoln University, Canterbury, New Zealand. 7 Email address : [email protected] 8 ²Université de Toulouse - ENFA, UMR CNRS 5174 « Evolution et Diversité biologique », 9 BP 22687, F-31326 Castanet-Tolosan Cedex, France. Email addresses: jean- 10 [email protected]; [email protected] 11 342A, rue Roquemaurel F-31330 Grenade, France. Email address: [email protected] 12 *Corresponding author: Jean Louis Hemptinne; 13 Université de Toulouse - ENFA, UMR CNRS 5174 Evolution et Diversité biologique, BP 14 22687, F-31326 Castanet-Tolosan Cedex, France. 15 Phone: +33 5 61 75 32 95; Fax: +33 5 61 75 34 86. 16 Email address: [email protected] 17 18 Running head: Scale mismatch in conservation biological control 19 1 bioRxiv preprint doi: https://doi.org/10.1101/045286; this version posted March 23, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 20 Abstract 21 Modern agricultural landscapes favour crop pests: herbivores benefit from resource 22 concentration and/or the absence of natural enemies in large areas of intensively farmed fields 23 interspersed by small fragments of natural or non-crop habitats. -
Molecular Phylogeny of Allograpta (Diptera, Syrphidae) Reveals Diversity of Lineages and Non-Monophyly of Phytophagous Taxa
Molecular Phylogenetics and Evolution 49 (2008) 715–727 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Molecular phylogeny of Allograpta (Diptera, Syrphidae) reveals diversity of lineages and non-monophyly of phytophagous taxa Ximo Mengual a,*, Gunilla Ståhls b, Santos Rojo a a Dpto. de Ciencias Ambientales/Instituto Universitario CIBIO, Universidad de Alicante, Apdo 99, E-03080 Alicante, Spain b Finnish Museum of Natural History, P.O. Box 17, FI-00014 University of Helsinki, Finland article info abstract Article history: Phylogenetic relationships of genera Allograpta, Sphaerophoria and Exallandra (Diptera, Syrphidae) were Received 20 November 2007 analyzed based on sequence data from the mitochondrial protein-coding gene cytochrome c oxidase sub- Revised 7 September 2008 unit I (COI) and the nuclear 28S and 18S ribosomal RNA genes. The three genera are members of the sub- Accepted 16 September 2008 family Syrphinae, where nearly all members feed as larvae on soft-bodied Hemiptera and other Available online 26 September 2008 arthropods. Phytophagous species have recently been discovered in two subgenera of Allograpta,sgFazia and a new subgenus from Costa Rica. Phylogenetic analyses of the combined datasets were performed Keywords: using parsimony, under static alignment and direct optimization, maximum likelihood and Bayesian Syrphidae inference. Congruent topologies obtained from all the analyses indicate paraphyly of the genus Allograpta Allograpta Sphaerophoria with respect to Sphaerophoria and Exallandra. Exallandra appears embedded in the genus Sphaerophoria, Exallandra and both genera are placed within Allograpta. The distribution of phytophagous taxa in Allograpta indi- Molecular phylogenetics cates that plant feeding evolved at least twice in this group. -
Episyrphus Balteatus (Diptera: Syrphidae)
NOTE Eur. J. Entomol. 99: 561-564, 2002 ISSN 1210-5759 Influence of prey host plant on a generalist aphidophagous predator:Episyrphus balteatus (Diptera: Syrphidae) N ic o l a s VANHAELEN*, Ch a r l e s GASPAR and Fr é d é r ic FRANCIS Gembloux Agricultural University, Department ofPure and Applied Zoology, Passage des Déportés 2, B-5030 Gembloux, Belgium Key words. Hoverfly, Episyrphus balteatus, Myzuspersicae, Brevicoryne brassicae, Brassicaceae, glucosinolates, tri-trophic interactions, allelochemicals Abstract. Secondary plant metabolites (allelochemicals) play a major role in plant-insect interactions. Glucosinolates (GLS) and their degradation products from Brassica species are attractants and feeding stimulants for Brassicaceae specialist insects but are generally repellent and toxic for generalist herbivores. The impact of these compounds on crucifer specialist insects are well known but their effect on generalist predators is still not well documented. The influence of the prey’s host plant on both development and reproduction of an aphidophagous beneficial, the hoverfly Episyrphus balteatus, was determined using the cabbage aphid, Brevico ryne brassicae (a specialist) and the peach aphid Myzus persicae (a generalist) reared on two crucifer plants, Brassica napus and Sinapis alba containing low and high GLS levels respectively. The prey and its host plant differently influenced life history parameters of E. balteatus. The predator’s rates of development and survival did not vary when it fed on the generalist aphid reared on different host plants. These rates decreased, however, when the predator fed on the specialist aphid reared on the host plant with high GLS content plant versus the host plant with lower GLS con tent. -
Encyclopaedia of Pests and Natural Enemies in Field Crops Contents Introduction
Encyclopaedia of pests and natural enemies in field crops Contents Introduction Contents Page Integrated pest management Managing pests while encouraging and supporting beneficial insects is an Introduction 2 essential part of an integrated pest management strategy and is a key component of sustainable crop production. Index 3 The number of available insecticides is declining, so it is increasingly important to use them only when absolutely necessary to safeguard their longevity and Identification of larvae 11 minimise the risk of the development of resistance. The Sustainable Use Directive (2009/128/EC) lists a number of provisions aimed at achieving the Pest thresholds: quick reference 12 sustainable use of pesticides, including the promotion of low input regimes, such as integrated pest management. Pests: Effective pest control: Beetles 16 Minimise Maximise the Only use Assess the Bugs and aphids 42 risk by effects of pesticides if risk of cultural natural economically infestation Flies, thrips and sawflies 80 means enemies justified Moths and butterflies 126 This publication Nematodes 150 Building on the success of the Encyclopaedia of arable weeds and the Encyclopaedia of cereal diseases, the three crop divisions (Cereals & Oilseeds, Other pests 162 Potatoes and Horticulture) of the Agriculture and Horticulture Development Board have worked together on this new encyclopaedia providing information Natural enemies: on the identification and management of pests and natural enemies. The latest information has been provided by experts from ADAS, Game and Wildlife Introduction 172 Conservation Trust, Warwick Crop Centre, PGRO and BBRO. Beetles 175 Bugs 181 Centipedes 184 Flies 185 Lacewings 191 Sawflies, wasps, ants and bees 192 Spiders and mites 197 1 Encyclopaedia of pests and natural enemies in field crops Encyclopaedia of pests and natural enemies in field crops 2 Index Index A Acrolepiopsis assectella (leek moth) 139 Black bean aphid (Aphis fabae) 45 Acyrthosiphon pisum (pea aphid) 61 Boettgerilla spp.