Acceleration Methods Alexandre d’Aspremont CNRS & Ecole Normale Supérieure, Paris
[email protected] Damien Scieur Samsung SAIT AI Lab & MILA, Montreal
[email protected] Adrien Taylor INRIA & Ecole Normale Supérieure, Paris
[email protected] arXiv:2101.09545v2 [math.OC] 11 Mar 2021 Contents 1 Introduction 2 2 Chebyshev Acceleration 5 2.1 Introduction ................................... 5 2.2 OptimalMethodsandMinimaxPolynomials . ..... 7 2.3 TheChebyshevMethod ............................. 9 3 Nonlinear Acceleration 15 3.1 Introduction ................................... 15 3.2 QuadraticCase ................................. 16 3.3 The Non-Quadratic Case: Regularized Nonlinear Acceleration.. .. .. 20 3.4 Constrained/Proximal Nonlinear Acceleration . .......... 26 3.5 Heuristics for Speeding-up Nonlinear Acceleration . ............ 29 3.6 RelatedWork .................................. 31 4 Nesterov Acceleration 32 4.1 Introduction ................................... 33 4.2 GradientMethodandPotential Functions . ...... 35 4.3 OptimizedGradientMethod . 38 4.4 Nesterov’sAcceleration . 45 4.5 AccelerationunderStrongConvexity . ...... 51 4.6 Recent Variants of Accelerated Methods . ...... 59 4.7 PracticalExtensions . .. .. .. .. .. .. .. .. 65 4.8 Notes&References ............................... 81 5 Proximal Acceleration and Catalyst 85 5.1 Introduction ................................... 85 5.2 Proximal Point Algorithm and Acceleration . ........ 86 5.3 Güler and Monteiro-Svaiter Acceleration . ........ 90 5.4 ExploitingStrongConvexity.