(Rhizopoda, Gymnamoebia) in Turiec River

Total Page:16

File Type:pdf, Size:1020Kb

(Rhizopoda, Gymnamoebia) in Turiec River Folia faunistica Slovaca, 2003, 8: 23-26 ISSN 1335-7522 NOTES ON ACTIVE GYMNAMOEBAE (RHIZOPODA, GYMNAMOEBIA) IN TURIEC RIVER MARTIN MRVA Department of Zoology, Comenius University, Mlynská dolina B-1, 842 15 Bratislava, Slovakia [[email protected]] Abstract: By direct examination of 8 samples of sediments of Turiec river (Central Slovakia) in August 2001, 14 taxa (2 orders, 8 families, 12 genera) of active gymnamoebae were noted. Several notes to observed species are given. Keywords: amoebae, Gymnamoebia, Turiec River, Slovakia INTRODUCTION Tab. 1 Studied localities and substrates examined. Problematic identification of gymnamoebae have Locality / date of sampling Substrate caused that only few modern faunistic studies were (2001) 1. Sklené / 23. 08. Detritus, stones published till now (for reviews: SMIRNOV & GOOD- 2. Dubové / 23. 08. Detritus, vegetation, stones KOV 1996; BUTLER & ROGERSON 2000) and therefore 3. Socovce / 23. 08. Vegetation we still do not have enough information on their di- 4. Košťany / 24. 08. Detritus, vegetation, stones versity and distribution. Data on gymnamoebae of freshwater habitats in Slovakia were summarized by RESULTS MATIS et al. (1997). The results from examined material taken only Turiec River is relatively well known from the sci- once indicate interesting species riches. From 8 exam- entific literature for more research programs that were ined samples 7 were positive for active naked amoe- performed in this locality. Intensive research was done bae. In whole collected material 14 taxa were recorded on various groups of macrozoobenthos and microzoo- (2 orders, 8 families, 12 genera), 5 of them were iden- benthos (KRNO et al. 1996) and ichthyofauna (KOVÁČ tified to genus level only (Tab. 2). Besides gymna- & SIRYOVÁ 2002). Several protozoological studies moebae, unidentified vahlkampfiid amoebae (Het- were also done, with attention to fauna of ciliates erolobosea, Vahlkampfiidae) were noted in all sites. (TIRJAKOVÁ 1993; TIRJAKOVÁ & DEGMA 1996; KRNO et al. 1995, 2002). Highest number of species was noted for family Amoebidae (4). In all sites were recorded only two This article gives notes on active gymnamoebae species from family Paramoebidae: Korotnevella recorded in several examined samples from Turiec stella and Mayorella penardi. River taken in August 2001. Family Amoebidae Ehrenberg, 1838 MATERIAL AND METHODS Chaos nobile (Penard, 1902) Bovee et Jahn, 1973 The samples were collected 23 and 24 August 2001 in (Fig. 1) Turiec River (Central Slovakia) at four sites. The sites repre- Locomotive form polypodial, the pseudopodia sented four different sections, with character of submountain with narrow anterior hyaline crescents. Posterior end river, situated in the order given in Tab. 1. Characteristics of with short remains of pseudopodia that formed irregu- the sites with abiotic and biotic analyses were published re- lar uroid. About 20 granular spherical nuclei. Endo- cently by KRNO et al. (2002). Samples consisted of detritus, vegetation or stones and water and were collected in 200 ml plasma with dark appearance due to many small glass bottles. After immediate transport to laboratory, the bipyramidal crystals. Length of locomotive form 360- sampled material was analysed by direct microscopy for de- 486 µm, breadth of the pseudopodia 25-80 µm. tection of the trofozoits that are active in habitat. For exami- nation of samples Nikon Labophot microscope with phase Deuteramoeba mycophaga (Pussard, Alabouvette, contrast equipment was used. Lemaitre et Pons, 1980) Page, 1988 (Fig. 2) Locomotive form mostly monopodial, sometimes Identification of active naked amoebae was performed according to light microscopy criteria after works of PAGE polypodial, with short blunt pseudopodia. Anterior (1988, 1991), FISHBECK & BOVEE (1993), MICHEL & SMIR- hyaloplasma crescent-like, posterior end with irregular NOV (1999), SMIRNOV (1999) and SMIRNOV & GOODKOV uroid with short papillae. Nucleus vesicular, with (1997). somewhat irregular, or coarsely contoured spherical central nucleolus. Endoplasma with many bipyramidal 23 crystals. Floating form with irregular central mass and Tab. 2 Gymnamoebae recorded from localities up to 10 broad pseudopodia. Length of locomotive Taxon Sklené Dubové Socovce Košťany form about 90 µm, breadth 40-50 µm. Chaos nobile + Deuteramoeba myco- + Trichamoeba sp. (Fig. 3) phaga Monopodial amoeba with distinct crescent-like an- Flamella sp. + + + terior hyaline cap. Posterior end narrowed, with papil- Korotnevella sp. + late bulbous uroid. Nucleus was spherical, with nucle- Korotnevella stella + + + + olar material concentrated on periphery, giving thus a Mayorella penardi + + + + ring-like appearance to nucleus. In endoplasma were Platyamoeba stenopodia + present many bipyramidal crystals. Length of cell in Rhizamoeba australiensis + locomotion 112-125 µm, breadth 30-50 µm. Saccamoeba limax + + Thecamoeba quad- + + Trichamoeba sinuosa Siemensma et Page, 1986 rilineata (Fig. 4) Trichamoeba sinuosa + Shape of amoeba monopodial, with anterior hya- Trichamoeba sp. + line cap and morulate uroid at the posterior end. Nu- Vannella sp. + + + cleus spherical, granular. Endoplasma with many Vexillifera sp. + bipyramidal crystals. Length of cell in locomotion Total 4 6 6 10 115-130 µm, breadth about 30 µm. Family Paramoebidae (Poche, 1913) Page, 1987 Family Hartmannellidae (Volkonsky, 1931) Page, Korotnevella sp. (Fig. 9) 1974 Shape of amoeba generally triangular, with broad Saccamoeba limax (Dujardin, 1841) Page, 1974 anterior with hyaloplasmatic part. Hyaloplasma pro- (Fig. 5) duced hyaline dactylopodia on the anterior and lateral Amoeba with monopodial locomotive form with parts of the cell. Posterior end of amoeba rounded, ur- anterior hyaline cap, that frequently obliterated. Poste- oid was not differentiated. Nucleus vesicular, with rior end formed bulbous uroid. Nucleus vesicular, with central nucleolus. Length of amoeba in locomotion central nucleolus. Endopolasma with several bipyra- 25-38 µm, breadth 10-18 µm. midal crystals. Length of amoeba in locomotion was Korotnevella stella (Schaeffer, 1926) Goodkov, 1988 65-89 µm, breadth 12-26 µm. (Fig. 10) Family Thecamoebidae (Schaeffer, 1926) Page, Amoeba mostly of triangular shape, with broad an- 1987 terior hyaloplasma that formed hyaline dactylopodia. Posterior end of the cell without uroid. Nucleus was Thecamoeba quadrilineata (Carter, 1856) Lepşi, vesicular, with central nucleolus. Length of locomo- 1960 (Fig. 6) tive form 20-30 µm breadth 15-20 µm. Shape of the body oval, with hyaloplasma in form of broad antero-lateral crescent. Posterior end Mayorella penardi Page, 1972 (Fig. 11) rounded, without uroid. On the dorsal surface were Shape of the cell oblong, anterior end broad, with formed several longitudinal folds. Nucleus vesicular, hyaline border, posterior end with morulate or bulbous with central nucleolus. Length of locomotive form uroid. Conical subpseudopodia frequently absented about 55 µm, breadth about 25 µm. during rapid locomotion. Nucleus vesicular, with cen- tral nucleolus. In endoplasma were present paired Family Vannellidae (Bovee, 1970) Page, 1987 crystallic inclusions. Length of amoeba 50-70 µm, Vannella sp. (Fig. 7) breadth about 30 µm. Amoeba flattened, with broad oval shape. Broad Family Vexilliferidae Page, 1987 hyaloplasma occupied anterior half of the cell. Poste- rior end rounded, without uroid. Nucleus vesicular Vexillifera sp. (Fig. 12) with central nucleolus. Length of locomotive form 10- Shape of the cell triangular, with broad anterior 25 µm, breadth 20-30 µm. hyaloplasma which formed hyaline subpseudopodia. Posterior end narrowed, without uroid. Subpseudopo- Platyamoeba stenopodia Page, 1969 (Fig. 8) dia of two types – thin, long, frequently extended up- Locomotive form tongue-shaped, with hya- wards and shorter, lobe-like. Nucleus vesicular, with loplasma occupying anterior half of cell. Posterior end central nucleolus. Length of cell in locomotion 10-15 rounded, without uroidal structures. Vesicular nucleus µm, breadth 8-11 µm. possessed central nucleolus and was situated in the an- terior part of granuloplasma, near the hyaline zone. Family Flabellulidae Bovee, 1970 Length of the cell in locomotion was about 35 µm, Flamella sp. (Fig. 13) breadth 8 µm. Amoeba of oval or circular shape, with distinct an- terolateral hyaline margin with irregular outline that formed short, mostly conical subpseudopodia. Poste- rior thin uroidal filaments were frequently formed. Nucleus vesicular, with central nucleolus. About 5-15 24 refractile inclusions in endoplasma. Length of locomo- bae of Slovakia. Folia faun. Slovaca. 2: 1-6 (in Slovak tive form 17-25 µm, breadth 30-38 µm. with English summary). MICHEL R, SMIRNOV AV, 1999: The genus Flamella Family Leptomyxidae (Pussard et Pons, 1976) Schaeffer, 1926 (Lobosea, Gymnamoebia), with descrip- Page, 1987 tion of two new species. Europ. J. Protistol. 35: 403- 410. Rhizamoeba australiensis (Chakraborty et Pussard, PAGE FC, 1988: A new key to freshwater and soil Gymna- 1985) Page, 1988 (Fig. 14) moebae. Freshwater Biological Association, Ambleside, Amoeba of broad irregular shape frequently with 122 pp. more pseudopodia or monopodial, limax form. Hya- PAGE FC, 1991: Nackte Rhizopoda. In: PAGE FC, SIEMEN- loplasma formed a margin or hyaline cap (in case of SMA FJ: Nackte Rhizopoda und Heliozoea. G. Fischer limax form) on the anterior end. Posterior end with Verlag, Stuttgart-New York, p. 1-170. numerous and distinct adhesive filaments. Nucleus ve- SMIRNOV AV, 1999:
Recommended publications
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • A Revised Classification of Naked Lobose Amoebae (Amoebozoa
    Protist, Vol. 162, 545–570, October 2011 http://www.elsevier.de/protis Published online date 28 July 2011 PROTIST NEWS A Revised Classification of Naked Lobose Amoebae (Amoebozoa: Lobosa) Introduction together constitute the amoebozoan subphy- lum Lobosa, which never have cilia or flagella, Molecular evidence and an associated reevaluation whereas Variosea (as here revised) together with of morphology have recently considerably revised Mycetozoa and Archamoebea are now grouped our views on relationships among the higher-level as the subphylum Conosa, whose constituent groups of amoebae. First of all, establishing the lineages either have cilia or flagella or have lost phylum Amoebozoa grouped all lobose amoe- them secondarily (Cavalier-Smith 1998, 2009). boid protists, whether naked or testate, aerobic Figure 1 is a schematic tree showing amoebozoan or anaerobic, with the Mycetozoa and Archamoe- relationships deduced from both morphology and bea (Cavalier-Smith 1998), and separated them DNA sequences. from both the heterolobosean amoebae (Page and The first attempt to construct a congruent molec- Blanton 1985), now belonging in the phylum Per- ular and morphological system of Amoebozoa by colozoa - Cavalier-Smith and Nikolaev (2008), and Cavalier-Smith et al. (2004) was limited by the the filose amoebae that belong in other phyla lack of molecular data for many amoeboid taxa, (notably Cercozoa: Bass et al. 2009a; Howe et al. which were therefore classified solely on morpho- 2011). logical evidence. Smirnov et al. (2005) suggested The phylum Amoebozoa consists of naked and another system for naked lobose amoebae only; testate lobose amoebae (e.g. Amoeba, Vannella, this left taxa with no molecular data incertae sedis, Hartmannella, Acanthamoeba, Arcella, Difflugia), which limited its utility.
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • Protistology an International Journal Vol
    Protistology An International Journal Vol. 10, Number 2, 2016 ___________________________________________________________________________________ CONTENTS INTERNATIONAL SCIENTIFIC FORUM «PROTIST–2016» Yuri Mazei (Vice-Chairman) Welcome Address 2 Organizing Committee 3 Organizers and Sponsors 4 Abstracts 5 Author Index 94 Forum “PROTIST-2016” June 6–10, 2016 Moscow, Russia Website: http://onlinereg.ru/protist-2016 WELCOME ADDRESS Dear colleagues! Republic) entitled “Diplonemids – new kids on the block”. The third lecture will be given by Alexey The Forum “PROTIST–2016” aims at gathering Smirnov (Saint Petersburg State University, Russia): the researchers in all protistological fields, from “Phylogeny, diversity, and evolution of Amoebozoa: molecular biology to ecology, to stimulate cross- new findings and new problems”. Then Sandra disciplinary interactions and establish long-term Baldauf (Uppsala University, Sweden) will make a international scientific cooperation. The conference plenary presentation “The search for the eukaryote will cover a wide range of fundamental and applied root, now you see it now you don’t”, and the fifth topics in Protistology, with the major focus on plenary lecture “Protist-based methods for assessing evolution and phylogeny, taxonomy, systematics and marine water quality” will be made by Alan Warren DNA barcoding, genomics and molecular biology, (Natural History Museum, United Kingdom). cell biology, organismal biology, parasitology, diversity and biogeography, ecology of soil and There will be two symposia sponsored by ISoP: aquatic protists, bioindicators and palaeoecology. “Integrative co-evolution between mitochondria and their hosts” organized by Sergio A. Muñoz- The Forum is organized jointly by the International Gómez, Claudio H. Slamovits, and Andrew J. Society of Protistologists (ISoP), International Roger, and “Protists of Marine Sediments” orga- Society for Evolutionary Protistology (ISEP), nized by Jun Gong and Virginia Edgcomb.
    [Show full text]
  • Phylogeny of Flabellulidae (Amoebozoa: Leptomyxida) Inferred
    FOLIA PARASITOLOGICA 55: 256–264, 2008 Phylogeny of Flabellulidae (Amoebozoa: Leptomyxida) inferred from SSU rDNA sequences of the type strain of Flabellula citata Schaeffer, 1926 and newly isolated strains of marine amoebae Iva Dyková1,2, Ivan Fiala1,2, Hana Pecková1 and Helena Dvořáková1 1Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, 370 05 České Budějovice, Czech Republic; 2Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic Key words: Amoebozoa, Leptomyxida, Flabellulidae, Flabellula citata, SSU rDNA phylogeny Abstract. New strains of non-vannellid flattened amoebae isolated from fish, an invertebrate and the marine environment were studied together with Flabellula citata Schaeffer, 1926 selected by morphology as a reference strain. The study revealed a pau- city of features distinguishing individual strains at the generic level, but clearly evidenced mutual phylogenetic relationships within the assemblage of strains as well as their affiliation to the Leptomyxida. In this study, the SSU rDNA dataset of lepto- myxids was expanded and a new branching pattern was presented within this lineage of Amoebozoa. Sequences of three newly introduced strains clustered in close relationship with the type strain of F. citata, the type species of the genus. Three strains, including one resembling Flamella sp., were positioned within a sister-group containing Paraflabellula spp. Results of phyloge- netic analysis confirmed doubts of previous authors regarding generic assignment of several Rhizamoeba and Ripidomyxa strains. Naked amoebae with fan-shaped trophozoites flat- In phylogenetic analyses based on SSU rDNA se- tened to a substrate were described in the early period of quences, two representatives of Flabellulidae, P.
    [Show full text]
  • Species of Naked Amoebae (Protista) New for the Fauna of Ukraine
    Vestnik zoologii, 49(5): 387–392, 2015 Fauna and Systematics DOI 10.1515/vzoo-2015-0043 UDC 593.121:477.42 SPECIES OF NAKED AMOEBAE (PROTISTA) NEW FOR THE FAUNA OF UKRAINE M. K. Patsyuk I. I. Franko Zhytomir State University, Pushkin st., 42, Zhytomir, 10002 Ukraine E-mail: [email protected] Species of Naked Amoeba (Protista) New for the Fauna of Ukraine. Patsyuk, M. K. — Th e species Rhzamoeba sp., Th ecamoeba quadrilineata Carter, 1856, Th ecamoeba verrucosa Ehrenberg, 1838, Flamella sp., and Penardia mutabilis Cash, 1904 are fi rst reported in the fauna of Ukraine and described based on original material. Key words: fauna, Zhytomir Polissya, Volyn Polissya, naked amoebae. Новые находки голых амеб (Protista) фауны Украины. Пацюк М. К. — Представлены сведения об обнаружении новых для фауны Украины голых амеб: Rhizamoeba sp., Th ecamoeba quadrilineata (Carter, 1856), Th ecamoeba verrucosa (Ehrenberg, 1838), Flamella sp., Penardia mutabilis Cash, 1904. Ключевые слова: фауна, Житомирское Полесье, Волынское Полесье, голые амебы. Introduction Naked amoebae are unicellular eukaryotic organisms that are capable of amoeboid movement. Th is name characterizes morphologically and ecologically similar but not related organisms. According to the current system of eukaryotes (Adl et al., 2012), most of the amoeboid organisms are incorporated into three molecular clusters of unclear taxonomic position. Naked amoebae are among the most important components of aquatic and soil ecosystems. Due to nu- merous diffi culties in species identifi cation, the fauna of these protists remains poorly studied in Ukraine. Pre- vious studies (Patsyuk, 2010, 2011 a, 2011 b, 2012 a, 2012 b, 2014 a, 2014 b; Patcyuk, Dovgal, 2012) recorded 45 species of this group on the territory of Ukraine.
    [Show full text]
  • The Microbial Food Web of the Coastal Southern Baltic Sea As Influenced by Wind-Induced Sediment Resuspension
    THE MICROBIAL FOOD WEB OF THE COASTAL SOUTHERN BALTIC SEA AS INFLUENCED BY WIND-INDUCED SEDIMENT RESUSPENSION I n a u g u r a l - D i s s e r t a t i o n zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von TOBIAS GARSTECKI aus Magdeburg Köln, 2001 Berichterstatter: Prof. Dr. STEPHEN A. WICKHAM Prof. Dr. HARTMUT ARNDT Tag der letzten mündlichen Prüfung: 29.06.2001 Inhaltsverzeichnis Angabe von verwendeten Fremddaten .............................................. 5 Abkürzungsverzeichnis ..................................................................... 6 1. Einleitung ........................................................................................................ 7 1.1. Begründung der Fragestellung ......................................................... 7 1.2. Herangehensweise ..................................................................... 11 2. A comparison of benthic and planktonic heterotrophic protistan community structure in shallow inlets of the Southern Baltic Sea ........… 13 2.1. Summary ................... ........................................................................ 13 2.2. Introduction ................................................................................. 14 2.3. Materials and Methods ..................................................................... 15 2.3.1. Study sites ..................................................................... 15 2.3.2. Sampling design ........................................................
    [Show full text]
  • The Classification of Lower Organisms
    The Classification of Lower Organisms Ernst Hkinrich Haickei, in 1874 From Rolschc (1906). By permission of Macrae Smith Company. C f3 The Classification of LOWER ORGANISMS By HERBERT FAULKNER COPELAND \ PACIFIC ^.,^,kfi^..^ BOOKS PALO ALTO, CALIFORNIA Copyright 1956 by Herbert F. Copeland Library of Congress Catalog Card Number 56-7944 Published by PACIFIC BOOKS Palo Alto, California Printed and bound in the United States of America CONTENTS Chapter Page I. Introduction 1 II. An Essay on Nomenclature 6 III. Kingdom Mychota 12 Phylum Archezoa 17 Class 1. Schizophyta 18 Order 1. Schizosporea 18 Order 2. Actinomycetalea 24 Order 3. Caulobacterialea 25 Class 2. Myxoschizomycetes 27 Order 1. Myxobactralea 27 Order 2. Spirochaetalea 28 Class 3. Archiplastidea 29 Order 1. Rhodobacteria 31 Order 2. Sphaerotilalea 33 Order 3. Coccogonea 33 Order 4. Gloiophycea 33 IV. Kingdom Protoctista 37 V. Phylum Rhodophyta 40 Class 1. Bangialea 41 Order Bangiacea 41 Class 2. Heterocarpea 44 Order 1. Cryptospermea 47 Order 2. Sphaerococcoidea 47 Order 3. Gelidialea 49 Order 4. Furccllariea 50 Order 5. Coeloblastea 51 Order 6. Floridea 51 VI. Phylum Phaeophyta 53 Class 1. Heterokonta 55 Order 1. Ochromonadalea 57 Order 2. Silicoflagellata 61 Order 3. Vaucheriacea 63 Order 4. Choanoflagellata 67 Order 5. Hyphochytrialea 69 Class 2. Bacillariacea 69 Order 1. Disciformia 73 Order 2. Diatomea 74 Class 3. Oomycetes 76 Order 1. Saprolegnina 77 Order 2. Peronosporina 80 Order 3. Lagenidialea 81 Class 4. Melanophycea 82 Order 1 . Phaeozoosporea 86 Order 2. Sphacelarialea 86 Order 3. Dictyotea 86 Order 4. Sporochnoidea 87 V ly Chapter Page Orders. Cutlerialea 88 Order 6.
    [Show full text]
  • Role of Lipids and Fatty Acids in Stress Tolerance in Cyanobacteria
    Acta Protozool. (2002) 41: 297 - 308 Review Article Role of Lipids and Fatty Acids in Stress Tolerance in Cyanobacteria Suresh C. SINGH, Rajeshwar P. SINHA and Donat-P. HÄDER Institut für Botanik und Pharmazeutische Biologie, Friedrich-Alexander-Universität, Erlangen, Germany Summary. Lipids are the most effective source of storage energy, function as insulators of delicate internal organs and hormones and play an important role as the structural constituents of most of the cellular membranes. They also have a vital role in tolerance to several physiological stressors in a variety of organisms including cyanobacteria. The mechanism of desiccation tolerance relies on phospholipid bilayers which are stabilized during water stress by sugars, especially by trehalose. Unsaturation of fatty acids also counteracts water or salt stress. Hydrogen atoms adjacent to olefinic bonds are susceptible to oxidative attack. Lipids are rich in these bonds and are a primary target for oxidative reactions. Lipid oxidation is problematic as enzymes do not control many oxidative chemical reactions and some of the products of the attack are highly reactive species that modify proteins and DNA. This review deals with the role of lipids and fatty acids in stress tolerance in cyanobacteria. Key words: cyanobacteria, desiccation, fatty acids, lipids, salinity, temperature stress. INTRODUCTION The cyanobacteria such as Spirulina and Nostoc have been used as a source of protein and vitamin for Cyanobacteria are gram-negative photoautotrophic humans and animals (Ciferri 1983, Kay 1991, Gao 1998, prokaryotes having ´higher plant-type‘ oxygenic photo- Takenaka et al. 1998). Spirulina has an unusually high synthesis (Stewart 1980, Sinha and Häder 1996a).
    [Show full text]
  • Granulomatous Meningoencephalitis Balamuthia Mandrillaris in Peru: Infection of the Skin and Central Nervous System
    SMGr up Granulomatous Meningoencephalitis Balamuthia mandrillaris in Peru: Infection of the Skin and Central Nervous System A. Martín Cabello-Vílchez MSc, PhD* Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical “Alexander von Humboldt” *Corresponding author: Instituto de Medicina Tropical “Alexander von Humboldt”, Av. Honorio Delgado Nº430, San A. Martín Cabello-Vílchez, Universidad Peruana Cayetano Heredia, MartínPublished de Porras, Date: Lima-Perú, Tel: +511 989767619, Email: [email protected] February 16, 2017 ABSTRACT Balamuthia mandrillaris is an emerging cause of sub acute granulomatous amebic encephalitis (GAE) or Balamuthia mandrillaris amoebic infection (BMAI). It is an emerging pathogen causing skin lesions as well as CNS involvement with a fatal outcome if untreated. The infection has been described more commonly in inmunocompetent individuals, mostly males, many children. All continents have reported the disease, although a majority of cases are seen in North and South America, especially Peru. Balamuthia mandrillaris is a free living amoeba that can be isolated from soil. In published reported cases from North America, most patients will debut with neurological symptoms, where as in countries like Peru, a skin lesion will precede neurological symptoms. The classical cutaneous lesionis a plaque, mostly located on face, knee or other body parts. Diagnosis requires a specialized laboratory and clinical experience. This Amoebic encephalitis may be erroneously interpreted as a cerebral neoplasm, causing delay in the management of the infection. Thediagnosis of this infection has proven to be difficult and is usually made post-mortem but in Peru many cases were pre-morten. Despite case fatality rates as high as > 98%, some experimental therapies have shown protozoal therapy with macrolides and phenothiazines.
    [Show full text]
  • Molecular Characterisation of Neoparamoeba Strains Isolated from Gills of Scophthalmus Maximus
    DISEASES OF AQUATIC ORGANISMS Vol. 55: 11–16, 2003 Published June 20 Dis Aquat Org Molecular characterisation of Neoparamoeba strains isolated from gills of Scophthalmus maximus Ivan Fiala1, 2, Iva Dyková1, 2,* 1Institute of Parasitology, Academy of Sciences of the Czech Republic and 2Faculty of Biological Sciences, University of South Bohemia, Brani$ovská 31, 370 05 >eské Budeˇ jovice, Czech Republic ABSTRACT: Small subunit ribosomal RNA gene sequences were determined for 5 amoeba strains of the genus Neoparamoeba Page, 1987 that were isolated from gills of Scophthalmus maximus (Lin- naeus, 1758). Phylogenetic analyses revealed that 2 of 5 morphologically indistinguishable strains clustered with 6 strains identified previously as N. pemaquidensis (Page, 1970). Three strains branched as a clade separated from N. pemaquidenis and N. aestuarina (Page, 1970) clades. Our analyses suggest that these 3 strains could be representatives of an independent species. In a more comprehensive eukaryotic tree, strains belonging to Neoparamoeba spp. formed a monophyletic group with a sister-group relationship to Vannella anglica Page, 1980. They did not cluster with Gymnamoebae of the families Hartmannellidae, Flabellulidae, Leptomyxidae or Amoebidae presently available in GenBank. KEY WORDS: Paramoeba · Neoparamoeba · SSU rDNA · Phylogenetic position Resale or republication not permitted without written consent of the publisher INTRODUCTION Sequences of the SSU rRNA gene were made accessi- ble in GenBank in May 2002. Amoebic gill disease (AGD), repeatedly declared As a first step, aimed at unravelling the biology and one of the most serious diseases affecting farmed taxonomy of the agent of AGD in turbot Scophthalmus salmonids Salmo salar Linnaeus, 1758 and Oncorhyn- maximus, comparative light and transmission electron chus mykiss (Walbaum, 1792) in the last 2 decades microscopical studies of 6 Neoparamoeba strains indi- (Kent et al.
    [Show full text]
  • Actions of Cannabinoids on Amoebae
    Actions of Cannabinoids on Amoebae By Israa Al-hammadi This thesis is submitted for the degree of Doctor of Philosophy April 2020 Department of Biomedical and Life Sciences 2nd April 2020 To Whom It May Concern: Declaration Actions of cannabinoids on amoebae. This thesis has not been submitted in support of an application for another degree at this or any other university. It is the result of my own work and includes nothing that is the outcome of work done in collaboration except where specifically indicated. Many of the ideas in this thesis were the product of discussion with my supervisor Dr. Jackie Parry and Dr. Karen Wright. Israa Al-hammadi MSc. BSc. Table of contents Abstract 1 Chapter 1: General Introduction 3 1.1 Introduction 3 1.2 The Endocannabinoid System (ECS) in humans 3 1.2.1 General overview 3 1.2.2 Main ligands of the endocannabinoid system 3 1.2.2.1 Endocannabinoids 4 1.2.2.2 Phytocannabinoids 7 1.2.3 Main cannabinoid receptors 10 1.2.3.1. CB1 and CB2 receptors 10 1.2.3.2 The transient receptor potential vanilloid type 1 (TRPV1) 11 1.2.3.3 G-protein coupled receptor 55 (GPR55) 11 1.2.4 Other receptors 12 1.2.4.1 Peroxisome Proliferator-activated Receptors (PPARs) 12 1.2.4.2 Dopamine Receptors 14 1.2.4.3 Serotonin receptors (5-HT) 16 1.3. Existence of an endocannabinoid system in single-celled eukaryotes 17 1.3.1. Endocannabinoids in Tetrahymena 18 1.3.2. Enzymes in Tetrahymena 19 1.3.3.
    [Show full text]