Application of Microarrays to Neurological Disease

Total Page:16

File Type:pdf, Size:1020Kb

Application of Microarrays to Neurological Disease BASIC SCIENCE SEMINARS IN NEUROLOGY SECTION EDITOR: HASSAN M. FATHALLAH-SHAYKH, MD Application of Microarrays to Neurological Disease Lisa-Marie Sturla, PhD; Ana Fernandez-Teijeiro, MD, PhD; Scott L. Pomeroy, MD, PhD odern microarray-based functional genomics holds great promise for revealing novel molecular and cellular mechanisms of disease. First introduced commercially in 1996, microarrays have been used widely to monitor the expression of thousands of genes in biological samples, as described in the following paragraphs. Other mi- Mcroarray-based genomic applications are also in development, including comparative genomic hy- bridization, on-chip sequencing, and novel drug discovery. For example, DNA array-based com- parative genomic hybridization identifies chromosomal gains and losses with greatly improved resolution compared with conventional methods that use metaphase chromosomes as hybridiza- tion targets.1 This increase in resolution will continue to improve as the technology advances. More- over, microarrays provide a better platform for automation than is possible with standard meta- phase techniques. Where genetic mutations and aberrations are already well characterized, microarrays can be customized to be effectively used as a diagnostic and prognostic tool.2,3 In the field of drug discovery, microarrays have the potential to dramatically enhance progress, being used at all stages from target discovery (through validation of new molecular targets and understanding modes of action) to predicting patient response.4 These devices are beginning to revolu- the application of microarray technology tionize how scientists explore the opera- and emerging data analysis techniques to tion of normal cells in the body and the pediatric brain tumors.8 Using microar- molecular aberrations that underlie medi- rays that monitor the expression of more cal disorders. DNA microarrays, which are than 6800 genes, we endeavored to de- based on well-established principles of finitively differentiate a group of embryo- nucleic acid hybridization, simulta- nal tumors whose diagnosis on the basis neously interrogate thousands of genes.5-7 of morphologic features remains contro- The actual mechanics of data capture from versial and to predict outcome in the most raw material are ever-improving and well common of these tumors, medulloblas- documented, and it is the analysis and dis- toma, for which patient response to treat- covery of meaningful gene expression pat- ment is unpredictable. terns within these data to which we now There are 2 general approaches to data must turn our attention. analysis: supervised and unsupervised. Un- Analytical approaches to gene ex- supervised methods are applied to the en- pression analysis using a cancer classifi- tire gene expression data set without any cation model are illustrated in the recent previous knowledge of sample classifica- article by Pomeroy et al.8 Several impor- tion, allowing an impartial assessment of the tant clinical questions were answered via underlying features within a data set. Two examples of unsupervised methods are prin- From the Division of Neuroscience, Department of Neurology, Children’s Hospital, cipal component analysis and self- Harvard Medical School, Boston, Mass (Drs Sturla, Fernandez-Teijeiro, and Pomeroy); organizing maps (SOMs). Principal com- and the Unidad de Oncologia Pediatrica, Hospital de Cruces-Baracaldo, Basque ponent analysis allowed us to differentiate Country, Spain (Dr Fernandez-Teijeiro). at a molecular level between the different (REPRINTED) ARCH NEUROL / VOL 60, MAY 2003 WWW.ARCHNEUROL.COM 676 ©2003 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/29/2021 brain tumor types and normal cer- primitive neuroectodermal tumors) in sonic hedgehog (shh)–related pro- ebellum (Figure 1). The marker a data set, may miss more subtle dis- teins are highly expressed in desmo- genes responsible for this distinc- tinctions. We found this to be true for plastic medulloblastomas, suggest- tion supported the conclusion that outcome prediction. Neither princi- ing that they arise as a consequence medulloblastomas are derived from pal component analysis nor SOMs of dysregulated shh signaling. Thus, cerebellar granule cell precursors and identified prognostically significant microarray analysis can identify gene that they are molecularly distinct from subgroups of medulloblastomas, so expression profiles that signify an ac- supratentorial primitive neuroecto- we turned to supervised analysis. Ex- tivated regulatory pathway or inter- dermal tumors. This argues against pression profiles were obtained from acting molecular processes leading to the hypothesis that medulloblasto- 60 children with medulloblastomas a known cellular response. mas are a subset of primitive neuro- who received similar treatment and There are, of course, limita- ectodermal tumors, differing only in whose outcome was known. Super- tions to any approach that involves their location in the cerebellum. Self- vised methods were used to “learn” the generation of such a large amount organizing maps are ideally suited for the distinction between survivors of data for each of a relatively small exploratory data analysis in the gen- and patients who failed treatment group of samples. One of the most sig- erally large and complex data sets gen- (Figure 3). Using take-one-out cross- nificant risks is finding statistically sig- erated in the study of a particular dis- validation, gene expression patterns nificant associations by chance. Con- ease, in our case brain tumors. Using predict survival with substantially sequently, identification of gene SOMs, we identified 2 distinct bio- more accuracy than current clinical expression patterns that may under- logical subtypes of medulloblasto- risk criteria. Several supervised analy- lie the pathogenesis of brain tumors mas with low and high ribosomal pro- sis methods showed a similar degree requires validation. Validation of the tein expression (Figure 2). Electron of accuracy, including k-nearest expression of single genes can be done microscopy subsequently con- neighbor, support vector machines, using well-established techniques firmed that these differences in ribo- and structural pattern localization such as Northern or Western blot- somal gene expression were re- analysis by sequential histograms. ting, as well as immunohistochemis- flected at a cellular level by differences Supervised methods were also try or in situ hybridization. Hypoth- in ribosome biogenesis. Although this used to successfully classify classic eses that arise from the interpretation was not an expected result, it pro- and desmoplastic medulloblasto- of significant patterns of gene expres- vided us with an interesting thera- mas (histologically confirmed by a sion can be tested in a variety of ways. peutic target. Sirolimus and its ana- single neuropathologist). These al- For example, we used electron mi- logues are currently under clinical gorithms allowed us not only to clas- croscopy to demonstrate that tu- investigation in tumors reliant on the sify tumors and predict outcome but mors with increased coordinate ex- PI3K signaling pathway and ribo- also to discover previously un- pression of ribosomal proteins have some biogenesis.9 known relationships between coor- high numbers of free ribosomes. Our This approach, although useful dinate gene expression and tumor gene expression–based outcome pre- in its ability to pull out prominent characteristics. For example, we dem- dictions must be validated in an in- structure (eg, medulloblastoma vs onstrated that the genes encoding dependent, prospective cohort of A B 0.000 0.000 Comp3 Comp3 4.000 13.000 0.000 4.000 Comp2 Comp2 18.000 0.000 0.000 –4.000 Comp1 0.000 Comp1 Medulloblastoma –4.000 –13.000 Malignant Glioma –18.000 Rhabdoid Tumor (Extrarenal) Atypical Rhabdoid Tumor (CNS) Normal Cerebellum PNETs Figure 1. Principal component analysis, with axes representing the 3 principal components (Comp) (linear combinations of genes) accounting for most of the data variance, using all genes exhibiting variation across the data set (A) and using the top 10 genes most highly associated with each tumor class (B). CNS indicates central nervous system; PNETs, primitive neuroectodermal tumors. (REPRINTED) ARCH NEUROL / VOL 60, MAY 2003 WWW.ARCHNEUROL.COM 677 ©2003 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/29/2021 Class 0 Class 1 40S RIBOSOMAL PROTEIN S19 40S RIBOSOMAL PROTEIN S17 Metallopanstimulin 1 RPL 12 Ribosomal Protein L12 Ribosomal Protein S18 Enhancer of Rudimentary Homolog mRNA RPS5 Ribosomal Protein S5 RPL31 Ribosomal Protein L31 RPL18 Ribosomal Protein L18 Ribosomal Protein S7 Type II Inosine Monophosphate Dehydrogenase Ribosomal Protein S10 MRNA RpS8 Gene for Ribosomal Protein S8 60S RIBOSOMAL PROTEIN L23 CAG-isl 7 (Trinucleotide Repeat-Containing Sequence) RPS 14 Gene (Ribosomal Protein S14) 60S RIBOSOMAL PROTEIN L13 40S RIBOSOMAL PROTEIN S15A Human Ribosomal Protein S24 LAMR1 Laminin Receptor (2H5 Epitope) Ribosomal Protein L27a mRNA Alpha-Tubulin mRNA LCR1 HOMOLOG SnRNP Core Protein Sm D2 mRNA RPL8 Ribosomal Protein L8 5-Aminoimidazole-4-Carboxamide-1-Beta-D-Ribonucleotide Transformylase/Inosinicase RPL7A Ribosomal Protein L7a RPS25 Ribosomal Protein S25 RPL35a Ribosomal Protein L35a RPS21 Ribosomal Protein S21 60S RIBOSOMAL PROTEIN L18A HSPB1 Heat Shock 27kD Protein 1 RPS28 Ribosomal Protein S28 RPS9 Ribosomal Protein S9 Alpha-Tubulin
Recommended publications
  • An Advance About the Genetic Causes of Epilepsy
    E3S Web of Conferences 271, 03068 (2021) https://doi.org/10.1051/e3sconf/202127103068 ICEPE 2021 An advance about the genetic causes of epilepsy Yu Sun1, a, *, †, Licheng Lu2, b, *, †, Lanxin Li3, c, *, †, Jingbo Wang4, d, *, † 1The School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3633, US 2High School Affiliated to Shanghai Jiao Tong University, Shanghai, 200441, China 3Applied Biology program, University of British Columbia, Vancouver, V6r3b1, Canada 4School of Chemical Machinery and Safety, Dalian University of Technology, Dalian, 116023, China †These authors contributed equally. Abstract: Human hereditary epilepsy has been found related to ion channel mutations in voltage-gated channels (Na+, K+, Ca2+, Cl-), ligand gated channels (GABA receptors), and G-protein coupled receptors, such as Mass1. In addition, some transmembrane proteins or receptor genes, including PRRT2 and nAChR, and glucose transporter genes, such as GLUT1 and SLC2A1, are also about the onset of epilepsy. The discovery of these genetic defects has contributed greatly to our understanding of the pathology of epilepsy. This review focuses on introducing and summarizing epilepsy-associated genes and related findings in recent decades, pointing out related mutant genes that need to be further studied in the future. 1 Introduction Epilepsy is a neurological disorder characterized by 2 Malfunction of Ion channel epileptic seizures caused by abnormal brain activity. 1 in Functional variation in voltage or ligand-gated ion 100 (50 million people) people are affected by symptoms channel mutations is a major cause of idiopathic epilepsy, of this disorder worldwide, with men, young children, and especially in rare genetic forms.
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]
  • Pflugers Final
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Serveur académique lausannois A comprehensive analysis of gene expression profiles in distal parts of the mouse renal tubule. Sylvain Pradervand2, Annie Mercier Zuber1, Gabriel Centeno1, Olivier Bonny1,3,4 and Dmitri Firsov1,4 1 - Department of Pharmacology and Toxicology, University of Lausanne, 1005 Lausanne, Switzerland 2 - DNA Array Facility, University of Lausanne, 1015 Lausanne, Switzerland 3 - Service of Nephrology, Lausanne University Hospital, 1005 Lausanne, Switzerland 4 – these two authors have equally contributed to the study to whom correspondence should be addressed: Dmitri FIRSOV Department of Pharmacology and Toxicology, University of Lausanne, 27 rue du Bugnon, 1005 Lausanne, Switzerland Phone: ++ 41-216925406 Fax: ++ 41-216925355 e-mail: [email protected] and Olivier BONNY Department of Pharmacology and Toxicology, University of Lausanne, 27 rue du Bugnon, 1005 Lausanne, Switzerland Phone: ++ 41-216925417 Fax: ++ 41-216925355 e-mail: [email protected] 1 Abstract The distal parts of the renal tubule play a critical role in maintaining homeostasis of extracellular fluids. In this review, we present an in-depth analysis of microarray-based gene expression profiles available for microdissected mouse distal nephron segments, i.e., the distal convoluted tubule (DCT) and the connecting tubule (CNT), and for the cortical portion of the collecting duct (CCD) (Zuber et al., 2009). Classification of expressed transcripts in 14 major functional gene categories demonstrated that all principal proteins involved in maintaining of salt and water balance are represented by highly abundant transcripts. However, a significant number of transcripts belonging, for instance, to categories of G protein-coupled receptors (GPCR) or serine-threonine kinases exhibit high expression levels but remain unassigned to a specific renal function.
    [Show full text]
  • Supplemetary Table 2. List of Genes Down-Regulated in LPAR6 Knocked Down Cells
    Supplemetary Table 2. List of genes down-regulated in LPAR6 knocked down cells g# initial alias c# converted alias name description namespace 1 NM_002317.5 1.1 ENSG00000113083 LOX lysyl oxidase [Source:HGNC Symbol;Acc:6664] REFSEQ_MRNA 2 NM_006183.4 2.1 ENSG00000133636 NTS neurotensin [Source:HGNC Symbol;Acc:8038] REFSEQ_MRNA 3 NM_005213.3 3.1 ENSG00000121552 CSTA cystatin A (stefin A) [Source:HGNC Symbol;Acc:2481] REFSEQ_MRNA 4 NM_007231.3 4.1 ENSG00000087916 SLC6A14 solute carrier family 6 (amino acid transporter), member 14 [Source:HGNC Symbol;Acc:11047] REFSEQ_MRNA 5 NM_001873.2 5.1 ENSG00000109472 CPE carboxypeptidase E [Source:HGNC Symbol;Acc:2303] REFSEQ_MRNA 6 NM_019856.1 6.1 ENSG00000101605 MYOM1 myomesin 1, 185kDa [Source:HGNC Symbol;Acc:7613] REFSEQ_MRNA 7 NM_032590.4 7.1 ENSG00000089094 KDM2B lysine (K)-specific demethylase 2B [Source:HGNC Symbol;Acc:13610] REFSEQ_MRNA 8 NM_001901.2 8.1 ENSG00000118523 CTGF connective tissue growth factor [Source:HGNC Symbol;Acc:2500] REFSEQ_MRNA 9 NM_007183.2 9.1 ENSG00000184363 PKP3 plakophilin 3 [Source:HGNC Symbol;Acc:9025] REFSEQ_MRNA 10 NM_182965.2 10.1 ENSG00000176170 SPHK1 sphingosine kinase 1 [Source:HGNC Symbol;Acc:11240] REFSEQ_MRNA 11 NM_152423.4 11.1 ENSG00000157502 MUM1L1 melanoma associated antigen (mutated) 1-like 1 [Source:HGNC Symbol;Acc:26583] REFSEQ_MRNA 12 NM_002923.3 12.1 ENSG00000116741 RGS2 regulator of G-protein signaling 2, 24kDa [Source:HGNC Symbol;Acc:9998] REFSEQ_MRNA 13 NR_003038.2 13.1 N/A N/A N/A N/A 14 NM_080862.1 14.1 ENSG00000175093 SPSB4 splA/ryanodine receptor
    [Show full text]
  • Gene List of the Targeted NGS MCD and CCA Gene Panel AKT3,ALX1
    Gene List of the targeted NGS MCD and CCA gene panel AKT3,ALX1,ALX3,ALX4,AMPD2,ARFGEF2,ARID1B,ARX,ASPM,ATR,ATRX,B3GALTL,BRPF1,c12orf57,C6orf70,CASK,CCND2,CDK5RAP2,CDON,C ENPJ,CEP170,CHMP1A,COL4A1,CREBBP,CYP11A1,DCHS1,DCLK1,DCX,DHCR24,DHCR7,DIS3L2,DISC1,DISP1,DLL1,DMRTA2,DYNC1H1,DYRK1 A,EARS2,EFNB1,EMX1,EOMES,EP300,ERBB4,ERMARD,EXOSC3,FAM36A,FGF8,FGFR1,FGFR2,FLNA,FOXC1,FOXG1,FOXH1,FZD10,GLI2,GLI3,GP R56,GPSM2,HCCS,HESX1,HNRNPU,IGBP1,IGFBP1,ISPD,ITPA,KAL1,KAT6B,KATNB1,KIAA1279,KIF14,KIF1A,KIF1B,KIF21A,KIF2A,KIF5C,KIF7,L1 CAM,LAMB1,LAMC3,LRP2,MCPH1,MED12,MID1,NDE1,NFIB,NPC1,NR2F1,NSD1,NTRK1,NTRK3,OCEL1,OPA1,OTX2,PAFAH1B1,PAX6,PEX1,PHF1 0,PIK3R2,POLR3A,POLR3B,POMT1,POMT2,PTCH1,PTPRS,PYCR1,RAB3GAP1,RARS2,RELN,RFX3,ROBO1,ROBO3,RPS6KA3,RTTN,SATB2,SEPSEC S,SHH,SIX3,SLC12A6,SOX2,SPOCK1,SRPX2,TBCD,TBCE,TCF4,TDGF1,TEAD1,THBS2,TMEM5,TSC1,TSC2,TSEN15,TSEN2,TSEN34,TSEN54,TUBA1 A,TUBA8,TUBB,TUBB2A,TUBB2B,TUBB3,TUBB4A,TUBG1,VAX1,VRK1,WDR47,WDR62,ZBTB18,ZEB2,ZIC2. Gene List of the targeted NGS epilepsy gene panel AARS, ADGRV1, ADRA2B, ADSL, ALDH4A1, ALDH7A1, ALG13, ALPL, ARHGEF15, ARHGEF9, ARX, ASAH1, ATP1A2, ATP1A3, BRD2, CACNA1A, CACNA1H, CACNA2D2, CACNB4, CBL, CDKL5, CERS1, CHD2, CHRNA2, CHRNA4, CHRNB2, CLCN2, CLCN4, CLN8, CLTC, CNKSR2, CNTNAP2, CPA6, CPLX1, CSNK1G1, CSNK2B, CTNND2, DEPDC5, DHDDS, DNM1, DOCK7, DYNC1H1, EEF1A2, EFHC1, EIF2S3, EMC1, EPM2A, FASN, FLNA, FOXG1, GABBR2, GABRA1, GABRA2, GABRA3, GABRB2, GABRB3, GABRD, GABRG2, GAL, GNAO1, GOSR2, GRIA1, GRIN1, GRIN2A, GRIN2B, HCN1, HCN4, HDAC4, HNRNPU, IDH3A, IQSEC2, JRK, KCNA1, KCNA2, KCNB1,
    [Show full text]
  • CENTOGENE's Severe and Early Onset Disorder Gene List
    CENTOGENE’s severe and early onset disorder gene list USED IN PRENATAL WES ANALYSIS AND IDENTIFICATION OF “PATHOGENIC” AND “LIKELY PATHOGENIC” CENTOMD® VARIANTS IN NGS PRODUCTS The following gene list shows all genes assessed in prenatal WES tests or analysed for P/LP CentoMD® variants in NGS products after April 1st, 2020. For searching a single gene coverage, just use the search on www.centoportal.com AAAS, AARS1, AARS2, ABAT, ABCA12, ABCA3, ABCB11, ABCB4, ABCB7, ABCC6, ABCC8, ABCC9, ABCD1, ABCD4, ABHD12, ABHD5, ACACA, ACAD9, ACADM, ACADS, ACADVL, ACAN, ACAT1, ACE, ACO2, ACOX1, ACP5, ACSL4, ACTA1, ACTA2, ACTB, ACTG1, ACTL6B, ACTN2, ACVR2B, ACVRL1, ACY1, ADA, ADAM17, ADAMTS2, ADAMTSL2, ADAR, ADARB1, ADAT3, ADCY5, ADGRG1, ADGRG6, ADGRV1, ADK, ADNP, ADPRHL2, ADSL, AFF2, AFG3L2, AGA, AGK, AGL, AGPAT2, AGPS, AGRN, AGT, AGTPBP1, AGTR1, AGXT, AHCY, AHDC1, AHI1, AIFM1, AIMP1, AIPL1, AIRE, AK2, AKR1D1, AKT1, AKT2, AKT3, ALAD, ALDH18A1, ALDH1A3, ALDH3A2, ALDH4A1, ALDH5A1, ALDH6A1, ALDH7A1, ALDOA, ALDOB, ALG1, ALG11, ALG12, ALG13, ALG14, ALG2, ALG3, ALG6, ALG8, ALG9, ALMS1, ALOX12B, ALPL, ALS2, ALX3, ALX4, AMACR, AMER1, AMN, AMPD1, AMPD2, AMT, ANK2, ANK3, ANKH, ANKRD11, ANKS6, ANO10, ANO5, ANOS1, ANTXR1, ANTXR2, AP1B1, AP1S1, AP1S2, AP3B1, AP3B2, AP4B1, AP4E1, AP4M1, AP4S1, APC2, APTX, AR, ARCN1, ARFGEF2, ARG1, ARHGAP31, ARHGDIA, ARHGEF9, ARID1A, ARID1B, ARID2, ARL13B, ARL3, ARL6, ARL6IP1, ARMC4, ARMC9, ARSA, ARSB, ARSL, ARV1, ARX, ASAH1, ASCC1, ASH1L, ASL, ASNS, ASPA, ASPH, ASPM, ASS1, ASXL1, ASXL2, ASXL3, ATAD3A, ATCAY, ATIC, ATL1, ATM, ATOH7,
    [Show full text]
  • Gene Trapping Identifies Chloride Channel 4 As a Novel Inducer of Colon Cancer Cell Migration, Invasion and Metastases
    British Journal of Cancer (2010) 102, 774 – 782 & 2010 Cancer Research UK All rights reserved 0007 – 0920/10 $32.00 www.bjcancer.com Gene trapping identifies chloride channel 4 as a novel inducer of colon cancer cell migration, invasion and metastases 1 1 2 3 4 *,1 T Ishiguro , H Avila , S-Y Lin , T Nakamura , M Yamamoto and DD Boyd 1 2 Cancer Biology Department, MD Anderson Cancer Center, Houston, TX, USA; Systems Biology Department, MD Anderson Cancer Center, Houston, 3 4 TX, USA; Surgical Oncology Department, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Second Department of Surgery, Hamamatsu University School of Medicine, Hamanatsu, Japan BACKGROUND: To date, there are few reports on gene products contributing to colon cancer progression. METHODS: We used a gene trap comprised of an enhanced retroviral mutagen (ERM) cassette that includes a tetracycline-responsive promoter upstream of a haemagglutinin (HA) tag and a splice donor site. Integration of the ERM within an endogenous gene yields a tetracycline-regulated HA-tagged transcript. We transduced RKO colon cancer cells expressing a tetracycline trans-activator-off with the ERM-encoding retrovirus and screened for enhanced migration. RESULTS: One clone showed fivefold enhanced migration with tetracycline withdrawal. Rapid amplification of cDNA ends identified the trapped gene as the chloride channel 4 (CLCN4) exchanger. Stable expression of a CLCN4 cDNA enhanced motility, whereas cells knocked down or null for this transcript showed reduced migration/invasion. CLCN4-overexpressing RKO colon cancer cells were þ more resistant than controls to proton load-induced cytotoxicity, consistent with the H -extruding function of this antiporter.
    [Show full text]
  • NIH Public Access Author Manuscript FEBS Lett
    NIH Public Access Author Manuscript FEBS Lett. Author manuscript; available in PMC 2011 May 17. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: FEBS Lett. 2010 May 17; 584(10): 2102±2111. doi:10.1016/j.febslet.2010.01.037. Chloride Channels of Intracellular Membranes John C. Edwards* and Christina R. Kahl UNC Kidney Center and the Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill Abstract Proteins implicated as intracellular chloride channels include the intracellular ClC proteins, the bestrophins, the cystic fibrosis transmembrane conductance regulator, the CLICs, and the recently described Golgi pH regulator. This paper examines current hypotheses regarding roles of intracellular chloride channels and reviews the evidence supporting a role in intracellular chloride transport for each of these proteins. Keywords chloride channel; ClC; CLIC; bestrophin; GPHR The study of chloride channels of intracellular membranes has seen enormous advances over the past two decades and exciting recent developments have sparked renewed interest in this field. The discovery of important roles for intracellular chloride channels in human disease processes as diverse as retinal macular dystrophy, osteopetrosis, renal proximal tubule dysfunction, and angiogenesis have highlighted the importance of these molecules in critical cellular activities. Startling discoveries regarding the intracellular ClC family of proteins have forced a re-examination
    [Show full text]
  • 1 1 2 3 Cell Type-Specific Transcriptomics of Hypothalamic
    1 2 3 4 Cell type-specific transcriptomics of hypothalamic energy-sensing neuron responses to 5 weight-loss 6 7 Fredrick E. Henry1,†, Ken Sugino1,†, Adam Tozer2, Tiago Branco2, Scott M. Sternson1,* 8 9 1Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 10 20147, USA. 11 2Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, 12 Cambridge CB2 0QH, UK 13 14 †Co-first author 15 *Correspondence to: [email protected] 16 Phone: 571-209-4103 17 18 Authors have no competing interests 19 1 20 Abstract 21 Molecular and cellular processes in neurons are critical for sensing and responding to energy 22 deficit states, such as during weight-loss. AGRP neurons are a key hypothalamic population 23 that is activated during energy deficit and increases appetite and weight-gain. Cell type-specific 24 transcriptomics can be used to identify pathways that counteract weight-loss, and here we 25 report high-quality gene expression profiles of AGRP neurons from well-fed and food-deprived 26 young adult mice. For comparison, we also analyzed POMC neurons, an intermingled 27 population that suppresses appetite and body weight. We find that AGRP neurons are 28 considerably more sensitive to energy deficit than POMC neurons. Furthermore, we identify cell 29 type-specific pathways involving endoplasmic reticulum-stress, circadian signaling, ion 30 channels, neuropeptides, and receptors. Combined with methods to validate and manipulate 31 these pathways, this resource greatly expands molecular insight into neuronal regulation of 32 body weight, and may be useful for devising therapeutic strategies for obesity and eating 33 disorders.
    [Show full text]
  • Transdifferentiation of Human Mesenchymal Stem Cells
    Transdifferentiation of Human Mesenchymal Stem Cells Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von Tatjana Schilling aus San Miguel de Tucuman, Argentinien Würzburg, 2007 Eingereicht am: Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Martin J. Müller Gutachter: PD Dr. Norbert Schütze Gutachter: Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am: Hiermit erkläre ich ehrenwörtlich, dass ich die vorliegende Dissertation selbstständig angefertigt und keine anderen als die von mir angegebenen Hilfsmittel und Quellen verwendet habe. Des Weiteren erkläre ich, dass diese Arbeit weder in gleicher noch in ähnlicher Form in einem Prüfungsverfahren vorgelegen hat und ich noch keinen Promotionsversuch unternommen habe. Gerbrunn, 4. Mai 2007 Tatjana Schilling Table of contents i Table of contents 1 Summary ........................................................................................................................ 1 1.1 Summary.................................................................................................................... 1 1.2 Zusammenfassung..................................................................................................... 2 2 Introduction.................................................................................................................... 4 2.1 Osteoporosis and the fatty degeneration of the bone marrow..................................... 4 2.2 Adipose and bone
    [Show full text]
  • CLCN4 Polyclonal Antibody
    CLCN4 polyclonal antibody Catalog # : PAB22540 規格 : [ 100 uL ] List All Specification Application Image Product Rabbit polyclonal antibody raised against recombinant CLCN4. Immunohistochemistry (Formalin/PFA-fixed paraffin- Description: embedded sections) Immunogen: Recombinant protein corresponding to amino acids of human CLCN4. Sequence: VVSRDSERLIGFAQRRELILAIKNARQRQEGIVSNSIMYFTEEPPELPANSP HPLKLRRILNLS Host: Rabbit enlarge Reactivity: Human Form: Liquid Purification: Antigen affinity purification Isotype: IgG Recommend Immunohistochemistry (1:20-1:50) Usage: The optimal working dilution should be determined by the end user. Storage Buffer: In PBS, pH 7.2 (40% glycerol, 0.02% sodium azide) Storage Store at 4°C. For long term storage store at -20°C. Instruction: Aliquot to avoid repeated freezing and thawing. Note: This product contains sodium azide: a POISONOUS AND HAZARDOUS SUBSTANCE which should be handled by trained staff only. Datasheet: Download Applications Immunohistochemistry (Formalin/PFA-fixed paraffin-embedded sections) Immunohistochemical staining of human pancreas with CLCN4 polyclonal antibody (Cat # PAB22540) shows strong cytoplasmic positivity in exocrine cells. Gene Information Page 1 of 2 2019/4/9 Entrez GeneID: 1183 Protein P51793 Accession#: Gene Name: CLCN4 Gene Alias: CLC4,ClC-4,ClC-4A,MGC163150 Gene chloride channel 4 Description: Omim ID: 302910 Gene Ontology: Hyperlink Gene Summary: The CLCN family of voltage-dependent chloride channel genes comprises nine members (CLCN1-7, Ka and Kb) which demonstrate quite diverse functional characteristics while sharing significant sequence homology. Chloride channel 4 has an evolutionary conserved CpG island and is conserved in both mouse and hamster. This gene is mapped in close proximity to APXL (Apical protein Xenopus laevis-like) and OA1 (Ocular albinism type I), which are both located on the human X chromosome at band p22.3.
    [Show full text]
  • Clcn4-2 Genomic Structure Differs Between the X Locus in Mus Spretus and the Autosomal Locus in Mus Musculus: at Motif Enrichment on the X
    Downloaded from genome.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Research Clcn4-2 genomic structure differs between the X locus in Mus spretus and the autosomal locus in Mus musculus: AT motif enrichment on the X Di Kim Nguyen,1,8 Fan Yang,1,8 Rajinder Kaul,2,3 Can Alkan,2,4 Anthony Antonellis,5,6 Karen F. Friery,1 Baoli Zhu,7 Pieter J. de Jong,7 and Christine M. Disteche1,2,9 1Department of Pathology, University of Washington, Seattle, Washington 98195, USA; 2Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA; 3Department of Medicine, University of Washington, Seattle, Washington 98195, USA; 4Howard Hughes Medical Institute, Seattle, Washington 98195, USA; 5Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA; 6Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA; 7Children’s Hospital, Oakland Research Institute, Oakland, California 94609, USA In Mus spretus, the chloride channel 4 gene Clcn4-2 is X-linked and dosage compensated by X up-regulation and X inactivation, while in the closely related mouse species Mus musculus, Clcn4-2 has been translocated to chromosome 7. We sequenced Clcn4-2 in M. spretus and identified the breakpoints of the evolutionary translocation in the Mus lineage. Genetic and epigenetic differences were observed between the 59ends of the autosomal and X-linked loci. Remarkably, Clcn4-2 introns have been truncated on chromosome 7 in M. musculus as compared with the X-linked loci from seven other eutherian mammals. Intron sequences specifically preserved in the X-linked loci were significantly enriched in AT-rich oligomers.
    [Show full text]