Tases from Ribonucleic Acid Tumor Viruses

Total Page:16

File Type:pdf, Size:1020Kb

Tases from Ribonucleic Acid Tumor Viruses JOURNAL OF VIROLOGY, Jan. 1972, p. 110-115 Vol. 9, No. I Copyright © 1972 American Society for Microbiology Printed in U.S.A. Immunological Relationships of Reverse Transcrip- tases from Ribonucleic Acid Tumor Viruses WADE P. PARKS, EDWARD M. SCOLNICK, JEFFREY ROSS, GEORGE J. TODARO, AND STUART A. AARONSON Viral Carcinogenesis Branch and Viral Leukemia and Lymphoma Branch, National Cancer Institute, Bethesda, Maryland 20014 Received for publication 12 October 1971 Antiserum to partially purified reverse transcriptase from the Schmidt-Ruppin strain of Rous sarcoma virus has been prepared and characterized. Antibody to the avian polymerase inhibited the reverse transcriptase activity of avian C-type viruses but had no effect on the polymerase activity from C-type viruses of other classes. The known mammalian C-type viral polymerases were significantly inhibited only by the antiserum to murine C-type viral polymerases; reverse transcriptases from four other mammalian viruses were immunologically distinct from both avian and mam- malian C-type viral polymerases. Partially purified murine leukemia viral DNA po- lymerase activity was comparably reduced by specific antibody regardless of the tem- plate used for enzyme detection. Antibody to the deoxyribonucleic acid (DNA) grown in a line of sheep testes cells and kindly pro- polymerase activities of murine C-type viruses vided by K. K. Takemoto and L. B. Stone (NIH, has been previously demonstrated in the sera of Bethesda, Md.). Mason-Pfizer monkey virus (MP- rats with murine leukemia virus (MuLV)-re- MV; reference 9) was grown in either monkey embryo cells or a human lymphoblastoid line (NC-37); some leasing tumors and in the sera of rabbits im- MP-MV preparations were provided by M. Ahmed. munized with partially purified murine viral The primate syncytium-forming ("foamy") virus polymerases (2). These studies suggested that the type 3 was propagated in monkey kidney cells or rat reverse transcriptases of mammalian C-type cells (13). viruses were immunologically related. In the Polymerase purification. DNA polymerase from the present report, we describe the preparation of a Rauscher strain of murine leukemia virus (R-MuLV), rabbit antiserum against a partially purified the Schmidt-Ruppin strain of Rous sarcoma virus avian C-type viral reverse transcriptase and (SR-RSV), and the MP-MV were partially purified by extend our previous studies of the immunological gel filtration and phosphocellulose chromatography as reported earlier, except that the dextran-poly- relationships between viral reverse transcriptases. ethylene glycol step was omitted (14). AND METHODS Preparation of antisera. New Zealand white rabbits MATERIALS (2 to 3 kg) were inoculated with 1 to 2 ml of con- Viruses. The sources of several of the viruses used centrated, partially purified viral polymerase (<5 jug in the present studies have been detailed previously of protein) emulsified with an equal volume of com- (16); they were purified by sucrose density gradient plete Freund's adjuvant. Inoculation was either into sedimentation and were used as 100- to 300-fold con- the hind footpads or at multiple subcutaneous sites. centrates unless otherwise specified. Rous-associated Booster doses were administered subcutaneously at viruses types 1 and 2 (RAV-1 and RAV-2) and the subsequent 2- to 3-week intervals. Control rabbit sera Bryan strain of Rous sarcoma virus (B-RSV) were consisted of either preimmunization bleedings from obtained from the Viral Resources and Logistics the same rabbits or sera from comparable nonim- Segment, National Cancer Institute, National In- munized rabbits. stitutes of Health (NIH), Bethesda, Md. The C-type Chromatographic procedures. High-titered antisera virus of ophidian origin (viper virus) originally de- were fractionated by precipitation with 50% am- scribed by Zeigal and Clark (17) was grown in a viper monium sulfate, and the immunoglobulin G (IgG) spleen cell line and kindly provided by R. Gilden was purified by (DEAE) chroma- (Flow Laboratories, Rockville, Md.). A nontrans- diethylaminoethyl forming "helper" leukemia virus (RaLV) was isolated tography as previously described (2). The immuno- from a stock of the rat-tropic sarcoma virus, MSV-0 globulin fractions were concentrated by ultrafiltration (1). The rat mammary carcinoma cell line R-35, pro- with a P-30 membrane (Amicon, Lexington, Mass.), ducing a C-type virus (4), was kindly supplied by M. and protein concentrations were determined by the Ahmed (Pfizer, Maywood, N.J.). Visna virus was procedure of Lowry et al. (10). 110 VOL. 9, 1972 REVERSE TRANSCRIPTASES FROM RNA TUMOR VIRUSES III Polymerase assays. Each reaction mixture was RESULTS incubated at 37 C for periods of time (30 to 60 min) when the reaction was still linear and contained in 0.10 Antiserum inhibition of avian and murine poly- or 0.20 ml, as indicated in the appropriate legends: merase. Sera from animals inoculated with 0.04 M tris(hydroxymethyl)aminomethane-hydrochlo- polymerase preparations first demonstrated in- ride (pH 7.8); 0.06 M potassium chloride; 0.002 M hibition of viral enzyme activity 8 to 12 weeks dithiothreitol; 2 X 10- M 3H-thymidine triphosphate after primary immunization. Once an antibody (5,000 counts per min per pmole); and, unless other- response was detected, animals were given ad- wise noted, polyriboadenylic oligodeoxythymidylic ditional inoculations until antiserum titers reached acid (poly rA - oligo dT(l2 l8); Collaborative Research, maximal levels. As shown in Fig. 1A, 19 Mg of Waltham, Mass.; references 12-17). All templates were included at saturating levels: 0.02 absorbancy R-MuLV polymerase antisera reduced R-MuLV unit at 260 nm per 0.1 or 0.2 ml. For reactions con- polymerase activity by more than 50% of the taining poly rA oligo dT or polyriboadenylic-poly- control incorporation, whereas SR-RSV polym- ribouridylic (poly rA. poly rU), the divalent cation erase was unaffected by as much as 162,ug of used was manganese (10-4 M manganese acetate). serum protein. Conversely, antiserum to the SR- In reactions containing "activated" DNA (14) RSV polymerase inhibited partially purified SR- or viral ribonucleic acid (RNA), the divalent RSV enzyme over 90% but had no effect on the cation used was magnesium (6 X 10-3 M magne- R-MuLV polymerase activity (Fig. IB). sium acetate); 5 X 10-4 M unlabeled deoxyaden- Purified DEAE osine triphosphate, deoxycytidine triphosphate, and IgG isolated by chromatog- deoxyguanosine triphosphate were also included. In- raphy from immune sera showed the same pat- corporation in the absence of added templates was terns of inhibition as did whole serum but had a between 0.1 and 0.2 pmoles and was subtracted higher specific activity for enzyme inhibition. where indicated. The sources of isotopes, polymers, Whereas 50 to 100 jig of whole serum protein per and the preparation of enzymes have been pre- reaction was required for 90%/ inhibition of R- viously described (14); enzymes referred to as MuLV polymerase activity (Fig. 2A), less than partially purified represent the Sephadex G-100 or 10,Mg of IgG protein gave comparable inhibition phosphocellulose fractions as indicated in appropriate (Fig. 2B). Although stimulation of viral polym- legends. Murine viral polymerase partially purified by erase was phosphocellulose chromatography does not have activity frequently observed with detectable nuclease activity nor group-specific (gs) whole serum at low concentrations (10 to 50,Mg antigens; both nuclease and gs antigen reactivity are per reaction mixture; reference 2), inhibition of recovered in the column void volume (unpublished viral polymerase by control sera or DEAE- data). MuLV RNA was the gift of M. Hatanaka purified IgG fractions was observed at high pro- (Flow Laboratories, Rockville, Md.). tein levels (>200 mg per reaction mixture). This 100 0 o 80 a_ 0 0 cr_ 660 \ 0 z o 40 0 IL 0 z 20- LUJ 0 CL 0.25 0.5 1.0 2.0 0.25 0.5 1.0 2.0 MICROLITERS SERUM ADDED FIG. 1. Inhibition of partially purified viral polymerase by immune whole sera. The effect of anti-R-MuLV po- lymerase whole sera (76 mg/ml) on 3H-thymidine monophosphate incorporation with phosphocellulose-purified R- MuLV polymerase (3 ,ug, 0) and phosphocellulose-purified SR-RSV (5 ,ug, 0) is shown in Fig. JA. The effect of anti-SR-RSV whole sera (66 mg/ml) on R-MuLV and SR-RSV polymerase activity is shown in Fig. lB. Incorpo- ration in the absence ofserum was 4.2 and 3.8 pmolesfor R-MuLV and SR-RS V, respectively. 112 PARKS ET AL. J. VIROL. A. B. "1- inhibition may be due to contaminating nucleases 160 or proteases in the preparation. Cross-inhibition studies. To characterize further / \ / \ _ the cross-reactivity of antibodies to viral reverse 140 140 s o \transcriptases, the effect of the avian and murine C-type polymerase antisera on the DNA polym- 120 erase activities of other RNA-containing viruses was studied. IgG from antiserum to the SR-RSV >< polymerase inhibited approximately matched 00oo,> enzyme activities from the disrupted virions of and RAV-2 and paritally puri- C> \B-RSV, RAV-1, 80 fied polymerase from avian myeloblastosis virus lto approximately the same degree as noted with La \ cr t lpartially purified SR-RSV polymerase. However, 60 none of these avian viral enzymes was inhibited by IgG from anti-R-MuLV polymerase sera. 40_ . Conversely, antiserum to the SR-RSV polym- erase failed to inhibit significantly the viper C- type viral polymerase or any mammalian C-type 20 viral enzymes. Previous studies have also re- ported inhibition of the hamster C-type viral o IJ. polymerase with similar antisera (2). Under 0 20 40 80 5 10 20 conditions where there was more than 90% in- MICROGRAMS PROTEIN ADDED hibition of the R-MuLV enzyme, the inhibition FIG. 2. Purification of polymerase antibodies by of the rat leukemia and feline leukemia polym- DEAE fractionation.
Recommended publications
  • Advances in the Study of Transmissible Respiratory Tumours in Small Ruminants Veterinary Microbiology
    Veterinary Microbiology 181 (2015) 170–177 Contents lists available at ScienceDirect Veterinary Microbiology journa l homepage: www.elsevier.com/locate/vetmic Advances in the study of transmissible respiratory tumours in small ruminants a a a a,b a, M. Monot , F. Archer , M. Gomes , J.-F. Mornex , C. Leroux * a INRA UMR754-Université Lyon 1, Retrovirus and Comparative Pathology, France; Université de Lyon, France b Hospices Civils de Lyon, France A R T I C L E I N F O A B S T R A C T Sheep and goats are widely infected by oncogenic retroviruses, namely Jaagsiekte Sheep RetroVirus (JSRV) Keywords: and Enzootic Nasal Tumour Virus (ENTV). Under field conditions, these viruses induce transformation of Cancer differentiated epithelial cells in the lungs for Jaagsiekte Sheep RetroVirus or the nasal cavities for Enzootic ENTV Nasal Tumour Virus. As in other vertebrates, a family of endogenous retroviruses named endogenous Goat JSRV Jaagsiekte Sheep RetroVirus (enJSRV) and closely related to exogenous Jaagsiekte Sheep RetroVirus is present Lepidic in domestic and wild small ruminants. Interestingly, Jaagsiekte Sheep RetroVirus and Enzootic Nasal Respiratory infection Tumour Virus are able to promote cell transformation, leading to cancer through their envelope Retrovirus glycoproteins. In vitro, it has been demonstrated that the envelope is able to deregulate some of the Sheep important signaling pathways that control cell proliferation. The role of the retroviral envelope in cell transformation has attracted considerable attention in the past years, but it appears to be highly dependent of the nature and origin of the cells used. Aside from its health impact in animals, it has been reported for many years that the Jaagsiekte Sheep RetroVirus-induced lung cancer is analogous to a rare, peculiar form of lung adenocarcinoma in humans, namely lepidic pulmonary adenocarcinoma.
    [Show full text]
  • Murine Models for Evaluating Antiretroviral Therapy1
    [CANCER RESEARCH (SUPPL.) 50. 56l8s-5627s, September 1, I990| Murine Models for Evaluating Antiretroviral Therapy1 Ruth M. Ruprecht,2 Lisa D. Bernard, Ting-Chao Chou, Miguel A. Gama Sosa, Fatemeh Fazely, John Koch, Prem L. Sharma, and Steve Mullaney Division of Cancer Pharmacology. Dana-Farber Cancer Institute ¡R.M. R., L. D. B., M. A. G. S.. F. F.. J. K.. P. L. S., S. M.J; Departments of Medicine [R. M. K.J. Pathology ¡M.A. G. S.J, and Biological Chemistry and Molecular Pharmacology [F. F., J. K., P. L. S.J. Harvard Medical School, Boston, Massachusetts 02115, and Memorial Sloan-Kettering Cancer Center ¡T-C.C.], New York, New York 10021 Abstract Prior to using a given animal model system to test a candidate anti-AIDS agent, the following questions need to be addressed: The pandemic of the acquired immunodeficiency syndrome (AIDS), (a) Is the potential anti-AIDS drug an antiviral agent or an caused by the human immunodeficiency virus type 1 (IIIV-I ). requires immunomodulator that may be able to restore certain immune rapid development of effective therapy and prevention. Analysis of can didate anti-HIV-1 drugs in animals is problematic since no ideal animal functions? Thus, is a candidate anti-AIDS drug likely to be model for IIIV-I infection and disease exists. For many reasons, including active during the phase of asymptomatic viremia or only during small size, availability of inbred strains, immunological reagents, and overt disease? (¿>)Does a candidate antiviral agent inhibit a lymphokines, murine systems have been used for in vivo analysis of retroviral function shared by all retroviruses such as gag, pol, antiretroviral agents.
    [Show full text]
  • 2007Murciaphd.Pdf
    https://theses.gla.ac.uk/ Theses Digitisation: https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ This is a digitised version of the original print thesis. Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] LATE RESTRICTION INDUCED BY AN ENDOGENOUS RETROVIRUS Pablo Ramiro Murcia August 2007 Thesis presented to the School of Veterinary Medicine at the University of Glasgow for the degree of Doctor of Philosophy Institute of Comparative Medicine 464 Bearsden Road Glasgow G61 IQH ©Pablo Murcia ProQuest Number: 10390741 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10390741 Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLO.
    [Show full text]
  • A Proposal for a New Approach to a Preventive Vaccine Against Human Immunodeficiency Virus Type 1 (Simpler Retrovirus/More Complex Retrovirus/Co-Virus) HOWARD M
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 4419-4420, May 1993 Medical Sciences A proposal for a new approach to a preventive vaccine against human immunodeficiency virus type 1 (simpler retrovirus/more complex retrovirus/co-virus) HOWARD M. TEMIN McArdle Laboratory, 1400 University Avenue, Madison, WI 53706 Contributed by Howard M. Temin, February 22, 1993 ABSTRACT Human immunodeficiency virus type 1 retroviruses infected our ancestors, as shown by the relic (HIV-1) is a more complex retrovirus, coding for several proviruses in human DNA (7-16). accessory proteins in addition to the structural proteins (Gag, More complex retroviruses were first isolated in horses Pol, and Env) that are found in all retroviruses. More complex (equine infectious anemia virus). Since then they have been retroviruses have not been isolated from birds, and simpler isolated from many other mammals, including at least five retroviruses have not been isolated from humans. However, the from humans (HIV-1, HIV-2, HTLV-I, HTLV-II, and proviruses of many endogenous simpler retroviruses are pres- HSRV). So far, more complex retroviruses have not been ent in the human genome. These observations suggest that isolated from vertebrate families other than mammals, and humans can mount a successful protective response against simpler retroviruses have not been isolated from humans or simpler retrovrwuses, whereas birds cannot. Thus, humans ungulates. However, more complex retroviruses have been might be able to mount a successful protective response to isolated from both humans and ungulates. infection with a simpler HIV-1. As a model, a simpler bovine I propose that this phylogenetic distribution is not an leukemia virus which is capable of replicating has been con- artifact of virus isolation techniques, but that it reflects the structed; a simpler HIV-1 could be constructed in a similar ability of humans and ungulates to respond to infection by fashion.
    [Show full text]
  • Expression of Rous Sarcoma Virus-Derived Retroviral Vectors In
    Proc. Natl. Acad. Sci. USA Vol. 88, pp. 10505-10509, December 1991 Developmental Biology Expression of Rous sarcoma virus-derived retroviral vectors in the avian blastoderm: Potential as stable genetic markers (embryonic development/replication-defective virus/lineage marker/lacZ) SRINU T. REDDY, ANDREW W. STOKER, AND MINA J. BISSELL Division of Cell and Molecular Biology, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 Communicated by Melvin Calvin, August 26, 1991 ABSTRACT Retroviruses are valuable tools in studies of preliminary evidence that cultured chicken blastoderm cells embryonic development, both as gene expression vectors and as could express viral proteins upon RSV infection. Because the cell lineage markers. In this study early chicken blastoderm resolution of this question has important implications for the cells are shown to be permissive for infection by Rous sarcoma use of retroviruses in studies of early avian development, we virus and derivative replication-defective vectors, and, in con- have now addressed directly the permissivity of the chicken trast to previously published data, these cells will readily blastoderm toward viral expression. express viral genes. In cultured blastoderm cells, Rous sarcoma We have asked specifically whether or not a block to viral virus stably integrates and is transcribed efficiently, producing expression occurs in cultured cells isolated from chicken infectious virus particles. Using replication-defective vectors blastoderms, and whether replication-defective vectors can encoding the bacterial lacZ gene, we further show that blas- be used to mark cells genetically at the blastoderm stage in toderms can be infected in culture and in ovo. In ovo, lacZ ovo. Using cultured chicken blastoderm cells, we demon- expression is seen within 24 hr of virus inoculation, and by 96 strate that RSV not only infects and integrates but, in contrast hr stably expressing clones of cells are observed in diverse to previous data (15), is also expressed well in these cells.
    [Show full text]
  • Oncogenic Transformation by the Jaagsiekte Sheep Retrovirus Envelope Protein
    Oncogene (2007) 26, 789–801 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc REVIEW Oncogenic transformation by the jaagsiekte sheep retrovirus envelope protein S-L Liu1 and AD Miller2 1Department of Microbiology and Immunology, McGill University, Montreal, Canada and 2Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA Retroviruses have played profound roles in our under- sarcoma virus, both of which cause tumors in chickens standing of the genetic and molecular basis of cancer. (for a comprehensive review see Rosenberg and Jaagsiekte sheep retrovirus (JSRV) is a simple retrovirus Jolicoeur (1997)). Oncogenic retroviruses are historically that causes contagious lung tumors in sheep, known as classified into acute transforming retroviruses and ovine pulmonary adenocarcinoma (OPA). Intriguingly, nonacute retroviruses. Acute transforming retroviruses OPA resembles pulmonary adenocarcinoma in humans, induce tumors through acquisition and expression of and may provide a model for this frequent human cancer. cellular proto-oncogenes – a process referred to as Distinct from the classical mechanisms of retroviral oncogene capture. These retroviruses induce tumors oncogenesis by insertional activation of or virus capture rapidly, the tumors are of polyclonal origin, and the of host oncogenes, the native envelope (Env) structural viral oncogenes in these viruses are not essential for protein of JSRV is itself the active oncogene. A major virus replication. In fact, acute transforming retro- pathway for Env transformation involves interaction of viruses are often replication-defective (Rous sarcoma the Env cytoplasmic tail with as yet unidentified cellular virus is an exception) because of the loss or disruption of adaptor(s), leading to the activation of PI3K/Akt and essential viral genes during the oncogene capture MAPK signaling cascades.
    [Show full text]
  • Human Foamy Virus Integrase Fails to Catalyse the Integration of a Circular DNA Molecule Containing an LTR Junction Sequence
    Gene Therapy (2002) 9, 1326–1332 2002 Nature Publishing Group All rights reserved 0969-7128/02 $25.00 www.nature.com/gt BRIEF COMMUNICATION Human foamy virus integrase fails to catalyse the integration of a circular DNA molecule containing an LTR junction sequence RA Russell1, R Critchley2, G Vassaux2 and MO McClure1 1Jefferiss Research Trust Laboratories, Wright-Fleming Institute, Imperial College School of Medicine at St Mary’s Hospital, London, UK; and 2Molecular Therapy Laboratory, ICRF Molecular Oncology Unit, ICSM at Hammersmith Hospital, London, UK The presence of closed circular forms of the linear DNA gen- ing transfection of both 293 and 293T cells indicated that the ome of human foamy virus (HFV) has not been established. level of integration was not significantly increased by the The ability of the HFV integrase (IN) to catalyse the inte- HFV IN. Moreover, correctly integrated provirus-like forms gration of these circular forms (termed 2 long terminal repeat of the input plasmid could not be detected by PCR. Taken (LTR) circles) was investigated, with a view to producing a together, these results show that the HFV IN is not able to novel hybrid vector. To this end, a construct was made con- integrate a circular molecule containing an LTR junction and, taining, in addition to the enhanced green fluorescent protein hence, the technique is not exploitable as a tool to produce (eGFP) marker gene, the last 27 bp of the 3’ U5 LTR region hybrid vectors for gene therapy. of HFV fused to the first 28 bp of the 5’ U3 LTR, the latter Gene Therapy (2002) 9, 1326–1332.
    [Show full text]
  • The Discovery of HTLV-1, the First Pathogenic Human Retrovirus John M
    PERSPECTIVE PERSPECTIVE The discovery of HTLV-1, the first pathogenic human retrovirus John M. Coffin1 Tufts University School of Medicine, Boston MA 02111 Edited by Peter K. Vogt, The Scripps Research Institute, La Jolla, CA, and approved November 11, 2015 (received for review November 2, 2015) After the discovery of retroviral reverse transcriptase in 1970, there was a flurry of activity, sparked by the “War on Cancer,” to identify human cancer retroviruses. After many false claims resulting from various artifacts, most scientists abandoned the search, but the Gallo laboratory carried on, developing both specific assays and new cell culture methods that enabled them to report, in the accompanying 1980 PNAS paper, identification and partial characterization of human T-cell leukemia virus (HTLV; now known as HTLV-1) produced by a T-cell line from a lymphoma patient. Follow-up studies, including collaboration with the group that first identified a cluster of adult T-cell leukemia (ATL) cases in Japan, provided conclusive evidence that HTLV was the cause of this disease. HTLV-1 is now known to infect at least 4–10 million people worldwide, about 5% of whom will develop ATL. Despite intensive research, knowledge of the viral etiology has not led to improvement in treatment or outcome of ATL. However, the technology for discovery of HTLV and acknowledgment of the existence of pathogenic human retroviruses laid the technical and intellectual foundation for the discovery of the cause of AIDS soon afterward. Without this advance, our ability to diagnose and treat HIV infection most likely would have been long delayed.
    [Show full text]
  • Jaagsiekte Sheep Retrovirus (JSRV)
    Jaagsiekte Sheep Retrovirus (JSRV): from virus to lung cancer in sheep Caroline Leroux, Nicolas Girard, Vincent Cottin, Timothy Greenland, Jean-François Mornex, Fabienne Archer To cite this version: Caroline Leroux, Nicolas Girard, Vincent Cottin, Timothy Greenland, Jean-François Mornex, et al.. Jaagsiekte Sheep Retrovirus (JSRV): from virus to lung cancer in sheep. Veterinary Research, BioMed Central, 2007, 38 (2), pp.211-228. 10.1051/vetres:2006060. hal-00902865 HAL Id: hal-00902865 https://hal.archives-ouvertes.fr/hal-00902865 Submitted on 1 Jan 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copyright Vet. Res. 38 (2007) 211–228 211 c INRA, EDP Sciences, 2007 DOI: 10.1051/vetres:2006060 Review article Jaagsiekte Sheep Retrovirus (JSRV): from virus to lung cancer in sheep Caroline La*,NicolasGa, Vincent Ca,b, Timothy Ga, Jean-François Ma,b, Fabienne Aa a Université de Lyon 1, INRA, UMR754, École Nationale Vétérinaire de Lyon, IFR 128, F-69007, Lyon, France b Centre de référence des maladies orphelines pulmonaires, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France (Received 11 September 2006; accepted 23 November 2006) Abstract – Jaagsiekte Sheep Retrovirus (JSRV) is a betaretrovirus infecting sheep.
    [Show full text]
  • Animal Models for HIV AIDS: a Comparative Review
    Comparative Medicine Vol 57, No 1 Copyright 2007 February 2007 by the American Association for Laboratory Animal Science Pages 33-43 Animal Models for HIV AIDS: A Comparative Review Debora S Stump and Sue VandeWoude* Human immunodeficiency virus (HIV), the causative agent for acquired immune deficiency syndrome, was described over 25 y ago. Since that time, much progress has been made in characterizing the pathogenesis, etiology, transmission, and disease syndromes resulting from this devastating pathogen. However, despite decades of study by many investigators, basic questions about HIV biology still remain, and an effective prophylactic vaccine has not been developed. This review provides an overview of the viruses related to HIV that have been used in experimental animal models to improve our knowledge of lentiviral disease. Viruses discussed are grouped as causing (1) nonlentiviral immunodeficiency-inducing diseases, (2) naturally occurring pathogenic infections, (3) experimentally induced lentiviral infections, and (4) nonpathogenic lentiviral infections. Each of these model types has provided unique contributions to our understanding of HIV disease; further, a comparative overview of these models both reinforces the unique attributes of each agent and provides a basis for describing elements of lentiviral disease that are similar across mammalian species. Abbreviations: AIDS, acquired immune deficiency syndrome; BIV, bovine immunodeficiency virus; CAEV, caprine arthritis-encephalitis virus; CRPRC, California Regional Primate Research
    [Show full text]
  • Reverse Transcriptase, Temin & BalMore; Nobel Prize 1975
    Reverse transcrip-on and integra-on Lecture 9 Biology W3310/4310 Virology Spring 2013 “One can’t believe impossible things,” said Alice. “I dare say you haven’t had much pracce,” said the Queen. “Why, some=mes I’ve believed as many as six impossible things before breakfast.” --LEWIS CARROLL, Alice in Wonderland 1 Some history • 1908 - Discovery oF chicken leukemia virus, Bang & Ellerman • 1911 - Discovery oF Rous sarcoma virus, Peyton Rous (Nobel Prize 55 years later) • Called tumor viruses 2 Tumor viruses • Found to have RNA genomes • How could these viruses transForm cells? • 1970 - Discovery oF retroviral reverse transcriptase, Temin & BalZmore; Nobel Prize 1975 3 Reverse transcriptase • Enzyme that countered Central Dogma: DNA => RNA => protein • Retroviruses got their name because oF their ability to reverse the flow oF geneZc inFormaon 4 retroviruses hepaZs B virus reovirus Poliovirus Sindbis virus Influenza virus VSV 5 Balmore and Temin independently discovered RT in virions of RNA tumor viruses Listen to TWiV #100 (BalZmore) and TWiV #66 (Reverse transcripZon) For more insight 6 Temin’s insight • Retroviral DNA was integrated into host genome • Became permanent part oF host DNA • Provirus 7 Lessons from lambda 8 9 10 11 Reverse transcriptase Base P OH 5’- Primer -3’OH 3’- -5’ Direction Of Chain Growth • Primer can be DNA or RNA • Primer must have paired 3’-OH terminus • Template can be RNA or DNA • Only dNTPs, not rNTPs, are incorporated • Correct incoming dNTP is selected by base pairing 12 RT • Some strains oF myxobacteria, E.
    [Show full text]
  • Growth of Murine Sarcoma and Murine Xenotropic Leukemia Viruses in Japanese Quail: Induction of Tumors and Development of Continuous Tumor Cell Lines
    [CANCER RESEARCH 42, 2523-2531, July 1982] 0008-5472/82/0042-OOOOS02.00 Growth of Murine Sarcoma and Murine Xenotropic Leukemia Viruses in Japanese Quail: Induction of Tumors and Development of Continuous Tumor Cell Lines W. G. Robey,1 W. J. Kuenzel, G. F. Vande Woude, and P. J. Fischinger Laboratory of Viral Carcinogenesis, National Cancer Institute, Frederick, Maryland 21701 [W. G. R., P. J. F.]; Department of Poultry Science, University of Maryland, College Park, Maryland 20724 [W. J. K.]; and Laboratory of Molecular Virology, National Cancer Institute, Bethesda, Maryland 20205 ¡G.F. V. W.] ABSTRACT and induces sarcomas in mice, rats, and hamsters (19, 32). Most MSV isolates do not have a functional reverse transcrip- The BALB/c murine endogenous xenotropic leukemia virus tase (31) or envelope glycoprotein (34, 36) or the genetic pseudotype of ml Moloney sarcoma virus [mlMSV(B-MuX)] information to specify those polypeptides (9, 39). In order to was used to productively transform diploid Japanese quail replicate, MSV isolates must obtain these functions from any embryo cells. The majority of newly hatched quail inoculated number of replicating helper viruses from various species (20, with ml MSV(B-MuX)-transformed quail embryo fibroblast cells 31 ). ml MSV (13) is a defective retrovirus containing nucleotide rapidly developed tumors which were predominantly locally sequences derived from M-MuLV (~3.8 kilobases) and normal invasive fibrosarcomas, but métastaseswere observed in two mouse cellular sequences, mos (~1.4 kilobases) (16, 39, 40). birds. In two tumor-bearing quail, lymphosarcomas were ob The mIMSV does express a portion of the leukemia virus served in conjunction with fibrosarcomas.
    [Show full text]