Handbook of Enology Volume 1 the Microbiology of Wine and Vinifications 2Nd Edition

Total Page:16

File Type:pdf, Size:1020Kb

Handbook of Enology Volume 1 the Microbiology of Wine and Vinifications 2Nd Edition Handbook of Enology Volume 1 The Microbiology of Wine and Vinifications 2nd Edition Handbook of Enology Volume 1 The Microbiology of Wine and Vinifications 2nd Edition P. Ribereau-Gayon,´ D. Dubourdieu, B. Doneche` and A. Lonvaud 2006 John Wiley & Sons, Ltd ISBN: 0-470-01034-7 Handbook of Enology Volume 1 The Microbiology of Wine and Vinifications 2nd Edition Pascal Ribereau-Gayon´ Denis Dubourdieu Bernard Doneche` Aline Lonvaud Faculty of Enology Victor Segalen University of Bordeaux II, Talence, France Original translation by Jeffrey M. Branco, Jr. Winemaker M.S., Faculty of Enology, University of Bordeaux II Revision translated by Christine Rychlewski Aquitaine Traduction, Bordeaux, France Copyright 2006 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone (+44) 1243 779777 Email (for orders and customer service enquiries): [email protected] Visit our Home Page on www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to [email protected], or faxed to (+44) 1243 770620. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought. Other Wiley Editorial Offices John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809 John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1 Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. Library of Congress Cataloging-in-Publication Data: Ribereau-Gayon,´ Pascal. [Traite´ d’oenologie. English] Handbook of enology / Pascal Ribereau-Gayon,´ Denis Dubourdieu, Bernard Doneche` ; original translation by Jeffrey M. Branco, Jr.—2nd ed. / translation of updates for 2nd ed. [by] Christine Rychlewski. v. cm. Rev. ed. of: Handbook of enology / Pascal Ribereau´ Gayon ... [et al.]. c2000. Includes bibliographical references and index. Contents: v. 1. The microbiology of wine and vinifications ISBN-13: 978-0-470-01034-1 (v. 1 : acid-free paper) ISBN-10: 0-470-01034-7 (v. 1 : acid-free paper) 1. Wine and wine making—Handbooks, manuals, etc. 2. Wine and wine making—Microbiology—Handbooks, manuals, etc. 3. Wine and wine making—Chemistry—Handbooks, manuals, etc. I. Dubourdieu, Denis. II. Doneche,` Bernard. III. Traite´ d’oenologie. English. IV. Title. TP548.T7613 2005 663.2—dc22 2005013973 British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library ISBN-13: 978-0-470-01034-1 (HB) ISBN-10: 0-470-01034-7 (HB) Typeset in 10/12pt Times by Laserwords Private Limited, Chennai, India Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production. Contents Remarks Concerning the Expression of Certain Parameters of Must and Wine Composition vii Preface to the First Edition ix Preface to the Second Edition xiii 1 Cytology, Taxonomy and Ecology of Grape and Wine Yeasts 1 2 Biochemistry of Alcoholic Fermentation and Metabolic Pathways of Wine Yeasts 53 3 Conditions of Yeast Development 79 4 Lactic Acid Bacteria 115 5 Metabolism of Lactic Acid Bacteria 139 6 Lactic Acid Bacteria Development in Wine 161 7 Acetic Acid Bacteria 183 8 The Use of Sulfur Dioxide in Must and Wine Treatment 193 9 Products and Methods Complementing the Effect of Sulfur Dioxide 223 10 The Grape and its Maturation 241 11 Harvest and Pre-Fermentation Treatments 299 12 Red Winemaking 327 13 White Winemaking 397 14 Other Winemaking Methods 445 Index 481 Remarks Concerning the Expression of Certain Parameters of Must and Wine Composition UNITS more correct expression in milliequivalents per liter has not been embraced in France. The expres- Metric system units of length (m), volume (l) and sion of total and volatile acidity in the equivalent weight (g) are exclusively used. The conversion of weight of sulfuric acid has been used predomi- metric units into Imperial units (inches, feet, gal- nantly throughout these works. In certain cases, the lons, pounds, etc.) can be found in the following corresponding weight in tartaric acid, often used in enological work: Principles and practices of wine- other countries, has been given. making, R.B. Boulton, V.L. Singleton, L.F. Bisson Using the weight of the milliequivalent of the and R.E. Kunkee, 1995, The Chapman & Hall various acids, the below table permits the conver- Enology Library, New York. sion from one expression to another. More particularly, to convert from total acidity EXPRESSION OF TOTAL ACIDITY expressed in H2SO4 to its expression in tartaric AND VOLATILE ACIDITY acid, add half of the value to the original value (4 g/l H2SO4 → 6 g/l tartaric acid). In the other Although EC regulations recommend the expres- direction a third of the value must be subtracted. sion of total acidity in the equivalent weight of tar- The French also continue to express volatile taric acid, the French custom is to give this expres- acidity in equivalent weight of sulfuric acid. More sion in the equivalent weight of sulfuric acid. The generally, in other countries, volatile acidity is Desired Expression Known Expression meq/l g/l g/l g/l H2SO4 tartaric acid acetic acid meq/l 1.00 0.049 0.075 0.060 g/l H2SO4 20.40 1.00 1.53 1.22 g/l tartaric acid 13.33 0.65 1.00 g/l acetic acid 16.67 0.82 1.00 Multiplier to pass from one expression of total or volatile acidity to another viii Remarks Concerning the Expression of Certain Parameters of Must and Wine Composition expressed in acetic acid. It is rarely expressed and then divided by 17 to obtain a fairly good in milliequivalents per liter. The below table also approximation of the TAP. allows simple conversion from one expression to another. In any case, the determination of the Brix or TAP The expression in acetic acid is approximately of a must is approximate. First of all, it is not 20% higher than in sulfuric acid. always possible to obtain a representative grape or must sample for analysis. Secondly, although physical, densimetric or refractometric measure- EVALUATING THE SUGAR ments are extremely precise and rigorously express CONCENTRATION OF MUSTS the sugar concentration of a sugar and water mix- ture, these measurements are affected by other sub- This measurement is important for tracking grape stances released into the sample from the grape maturation, fermentation kinetic and if necessary and other sources. Furthermore, the concentrations determining the eventual need for chaptalization. of these substances are different for every grape This measurement is always determined by or grape must sample. Finally, the conversion rate physical, densimetric or refractometric analysis. of sugar into alcohol (approximately 17 to 18 g/l) The expression of the results can be given accord- varies and depends on fermentation conditions and ing to several scales: some are rarely used, i.e. yeast properties. The widespread use of selected degree Baume´ and degree Oechsle. Presently, two yeast strains has lowered the sugar conversion rate. systems exist (Section 10.4.3): 1. The potential alcohol content (titre alcoom´et- Measurements Using Visible raque potential or TAP, in French) of musts and Ultraviolet Spectrometry can be read directly on equipment, which is The measurement of optic density, absorbance, is graduated using a scale corresponding to 17.5 widely used to determine wine color (Volume 2, or 17 g/l of sugar for 1% volume of alcohol. Section 6.4.5) and total phenolic compounds con- Today, the EC recommends using 16.83 g/l as centration (Volume 2, Section 6.4.1). In these the conversion factor. The ‘mustimeter’ is a works, the optic density is noted as OD, OD 420 hydrometer containing two graduated scales: (yellow), OD 520 (red), OD 620 (blue) or OD 280 one expresses density and the other gives a (absorption in ultraviolet spectrum) to indicate the direct reading of the TAP. Different methods optic density at the indicated wavelengths. varying in precision exist to calculate the TAP Wine color intensity is expressed as: from a density reading. These methods take var- ious elements of must composition into account CI = OD 420 + OD 520 + OD 620, (Boulton et al., 1995). Or is sometimes expressed in a more simplified 2.
Recommended publications
  • Basic Definitions and Tips for Winemaking
    Presque Isle Wine Cellars “Serving the Winemaker Since 1964” (814) 725-1314 www.piwine.com Basic Winemaking Terms & Tips Definitions & Tips: Not all-inclusive but hopefully helpful. Email us your favorites; maybe we’ll include them in the next edition. Acid Reduction - Reducing the acid in juice or wine to an acceptable level. It is usually measured as tartaric acid and requires a testing apparatus and reagents. Good levels are typically in a range of 0.6 to 0.8 percent acid, depending on the wine. More technically the reading is read as grams per liter. Therefore 0.6 percent would be 6.0 g/l. Acidulation or Acidification - Raising the acid level of juice, wine or sometimes water by adding some type of acid increasing additive or blending with a higher acid juice or wine. Acidified or Acidulated Water - Water to which acid (most commonly citric acid) has been added. It is a way to reduce sugar in a juice that is too high in sugar without diluting (thus reducing) the acid level of that juice. Additives - Things added to wine to enhance quality or possibly fix some type of flaw. There are many additives for many situations and it is wise to gain at least some basic knowledge in this area. Alcohol - Obviously one of the significant components of wine. Yeast turns sugar to alcohol. Rule of thumb says for each percentage of sugar in a non-fermented juice, the alcohol will be half. For example 21% sugar should ferment out to an alcohol level of about 11.5 to 12%.
    [Show full text]
  • Press-Kit-2015-CIVR
    PRESS PACK 2015 THE WINES OF ROUSSILLON www.winesofroussillon.com / www.vinsduroussillon.com Contact Eric ARACIL [email protected] - 1 - For free use. GEOGRAPHICAL SITUATION 4 A LAND BLESSED BY THE GODS 5 THE LEGACY OF THE ANCIENT GREEKS 5 THE SPREAD OF EXPORTS 6 THE RAPID EXPANSION OF THE VINEYARD 6 THE ERA OF RECOGNITION 7 SUD DE FRANCE/SOUTH OF FRANCE 8 GENERAL INTRODUCTION TO THE VINEYARDS 9 14 AOP, 3 IGP AND 23 VARIETALS: EXTERNAL SIGNS OF THE WEALTH OF WINES 10 A SOCIETY OF SMALL WINE GROWERS 10 VARIED TERROIRS 11 A – TO THE NORTH WEST OF THE TÊT RIVER, 11 B – TO THE NORTH EAST OF THE TÊT RIVER 12 C - TO THE SOUTH OF THE TÊT RIVER 13 D- THE BANYULS AND COLLIOURE AREA 13 THE IDEAL CLIMATE 14 23 VARIETALS FOR PEDIGREE WINES 15 WHITE AND GREY VARIETALS 15 GRENACHE BLANC 15 GRENACHE GRIS 15 MACABEU 15 MALVOISIE DU ROUSSILLON BLANCHE 16 MARSANNE 16 MUSCAT D’ALEXANDRIE 17 MUSCAT A PETITS GRAINS 17 ROUSSANNE 17 VERMENTINO 18 BLACK VARIETAL 18 CARIGNAN NOIR 18 GRENACHE NOIR 19 LLADONER PELUT 20 MOURVEDRE 20 SYRAH 21 WINE PRODUCTION 23 THE SECRET ALCHEMY OF THE VINS DOUX NATURELS 23 FROM LEGEND TO HISTORY 23 THE MYSTERIES OF MUTAGE 23 WITH TIME, A UNIQUE BOUQUET 24 THE AOP DRY WINES AND THE IGP 24 WINE MAKING TECHNIQUES ADAPTED TO THE TERROIRS AND VARIETALS 24 - 2 - For free use. 14 APPELLATIONS D’ORIGINE CONTROLEE 26 AOP VINS DOUX NATURELS 26 AOP RIVESALTES 26 AOP MUSCAT DE RIVESALTES 28 AOP MAURY DOUX 28 AOP BANYULS 29 AOP BANYULS GRAND CRU 30 AOP DRY WINES 30 AOP COTES DU ROUSSILLON 30 AOP COTES DU ROUSSILLON LES ASPRES : 31 AOP COTES DU ROUSSILLON VILLAGES 31 AOP MAURY SEC 32 AOP COLLIOURE 32 IGP CÔTES CATALANES AND CÔTE VERMEILLE 33 APPENDIX 1: DISHES AND THE WINES THAT COMPLEMENT THEM 35 APPENDIX 2: SPECIFICATIONS 37 APPENDIX 3 : 2014 HARVEST SUMMARY 52 APPENDIX 4 : OVERVIEW OF SALES 55 CONTACTS 57 - 3 - For free use.
    [Show full text]
  • Sugar in Wine Join Us Every Friday Evening from 5Pm to 8Pm
    July 2014 A WINE ENTHUSIAST’S MONTHLY JOURNEY THROUGH MONTEREY’S WINE COUNTRY COMING EVENTS Every Fridays Wine Bar A Taste of Monterey 5:00pm-8:00pm* Sugar in Wine Join us every Friday evening from 5pm to 8pm. Start your weekend off More than a Sweetener with a relaxing view, live music, great food and a Sugars occur naturally in fruits, grapes included. So, it should come as no surprise that there’s glass of Monterey’s finest. sugar in that glass of wine you’re sipping from. And, no, we’re just talking about the overly sweet taste in a ruby port-style wine. We’re talking about the presence of sugars in all wines. In fact, sugars are required in order for the fermentation process in winemaking to occur, so really they are an important part of the process. But, what about this thing you’ve heard of called the “re- sidual sugar” content of a particular wine? Does it really mean leftover sugar, as the name would imply? Yes…in a way, but we’ll come back to this topic. Store Hours Wine grapes accumulate sugars while they are on the vine during the photosynthesis process. A Taste of Monterey Cannery Row At harvest time, a grape will be composed of 15 to 25% different sugar compounds. Then, later Sun-Wed 11am-7pm during the fermentation process, the introduction of yeast breaks down and converts most of Thu-Sat 11am-8pm the sugars into alcohol and carbon dioxide. Once an alcohol level *No new member tastings is reached during fermentation, the remaining sugars will effec- after 6:00pm tively kill off the yeast.
    [Show full text]
  • Reducing Sugars in Wine
    Sirromet Wines Pty Ltd 850-938 Mount Cotton Rd Mount Cotton Queensland Australia 4165 www.sirromet.com Courtesy of Jessica Ferguson Assistant Winemaker & Chemist Downloaded from seniorchem.com/eei.html Determination of Reducing Sugar Content: Clinitest, Benedict’s Solution and the Rebelein Titration Chemical Concepts and Techniques: The most important sugars present in wine and fruit juice are the hexoses - glucose and fructose. These are the sugars that yeast ferment to produce alcohol. They have the characteristic of being reducing sugars, as they contain functional groups capable of being oxidised and therefore causing reduction of other species under specific conditions. Structurally, reducing sugars must contain a free aldehyde or an alpha-hydroxy ketone capable of being oxidised. Hexose and pentose sugars in the free aldo- or keto- form or in equilibrium with these forms will fit in this category. Hexoses: Structures of Glucose: Structures of Fructose: Pentoses: The five carbon pentoses are also classified as reducing sugars and may contribute as much as 28% of the residual reducing sugar content of a dry table wine. Pentoses in wine include ribose, arabinose and rhamnose. Most are not fermentable by yeast (although some can be utilised by bacteria). Example of pentose structure (Ribose): Hexoses and pentoses share the quality of existing in aqueous solution in two or more different forms (cyclic and non-cyclic) in equilibrium. The non-cyclic is the least common but it is present in small amounts in the wine or juice matrix. In alkaline solution sugars undergo decyclisation to yield the corresponding non-cyclic aldo- and keto- forms.
    [Show full text]
  • An Overview on Botrytized Wines Revisão: Vinhos Botritizados
    Ciência Téc. Vitiv. 35(2) 76-106. 2020 AN OVERVIEW ON BOTRYTIZED WINES REVISÃO: VINHOS BOTRITIZADOS Georgios Kallitsounakis1, Sofia Catarino1,2* 1LEAF (Linking Landscape Environment Agriculture and Food) Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal. 2CeFEMA (Centre of Physics and Engineering of Advanced Materials) Research Center, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal. * Corresponding author: Tel.: +351 21 3653246, e-mail: [email protected] (Received 08.06.2020. Accepted 29.08.2020) SUMMARY Noble rot wine is a specific type of sweet wine that derives from the infection of grape berries by a fungus called Botrytis cinerea. These wines are produced in specific wine regions around the world, with Sauternes region of France and Tokay region of Hungary being the most famous ones. The purpose of the current article is to provide a systematic review on the different stages of botrytized wines production, including a detailed analysis of the technical aspects involved. Specifically, it describes the process and development of berry infection by B. cinerea, and special emphasis is given to the main stages and operations of winemaking, conservation, aging and stabilization. A complex combination of a number of parameters (e.g., very specific environmental conditions) explains the rarity of noble rot occurrence and highlights the uniqueness of botrytized wines. RESUMO Os vinhos botritizados representam uma categoria específica de vinhos doces, sendo obtidos a partir de bagos de uva infectados pelo fungo Botrytis cinerea, através de um processo designado por podridão nobre. Estes vinhos são produzidos em regiões específicas do mundo, sendo Sauternes e Tokay, originários de França e Hungria respectivamente, os exemplos mais conhecidos a nível mundial.
    [Show full text]
  • Chardonnay Matthieu Finot King Family Vineyards
    Comparing reverse osmosis and chaptalization in Chardonnay Matthieu Finot King Family Vineyards Summary In Virginia, wet vintages like 2003, 2011 and 2018 as well as more frequent fall rains and occasional hurricanes sometimes lead winemakers to pick grapes with lower potential alcohol than desired. The 2018 in Virginia included high amounts of rainfall, providing an opportunity to test the use of juice RO as a means of increasing potential alcohol and combatting dilution of flavor and body. Chardonnay juice was treated with either chaptalization or reverse osmosis to the same target Brix prior to fermentation. Chemical and sensory outcomes were evaluated 6 months after completion of primary fermentation. Reverse osmosis led to higher TA, higher pH and slightly higher volatile acidity in the finished wine. There were no significant differences in perception of aroma or flavor concentration in a paired difference test. Descriptors for intensity and volume were also scored the same by a sensory panel with no significant differences between the wines. Introduction In Virginia, wet vintages like 2003, 2011 and 2018 as well as more frequent fall rains and occasional hurricanes sometimes lead winemakers to pick grapes with lower potential alcohol than desired. Winemakers are then left with the decision of whether to intervene to augment the potential alcohol or not intervene and make a lower alcohol wine. Several options for increasing sugar include chaptalization, addition of juice concentrate and reverse osmosis of juice to remove water. Chaptalization adds only sugar and does not address concerns about flavor dilution, though chaptalization alone has been shown to increase sensory perception of ripeness (Sherman et al 2017).
    [Show full text]
  • Starting a Winery in Illinois: Profile and Business Plan Workbook
    Starting a Winery in Illinois: Profile and Business Plan Workbook This Winery Business Plan Workbook was prepared by the Small Business Development Center at Southern Illinois University Carbondale in coordination with the Illinois Department of Commerce and Economic Opportunity’s Entrepreneurship Network Business Information Center. The following organizations and individuals made valuable contributions to the development of this publication: Susan M. Daily, C.P.A. Business Counselor Small Business Development Center Southern Illinois University, Carbondale Illinois Entrepreneurship Network (IEN)/Business Information Center Illinois Small Business Office Illinois Department of Commerce and Economic Opportunity Stephen Menke, Enology Specialist Food Science and Human Nutrition College of ACES (Agricultural, Consumer, and Environmental Science) University of Illinois, Urbana-Champaign Bonnie Cissell, Executive Director and Marketing Specialist Illinois Grape and Wine Resources Council Imed Dami, Viticulture Specialist Plant and Soil Science Department Alan Dillard Limestone Creek, Jonesboro, Illinois Kyle Harfst Rural Enterprise and Alternative Agriculture Development Initiative The Office of Economic and Regional Development Southern Illinois University, Carbondale, Illinois The Indiana Wine and Grape Council The Missouri Grape and Wine Program Updated 2008 by Bradley Beam University of Illinois Enology Specialist 1 TABLE OF CONTENTS INTRODUCTION ...............................................................................................................................
    [Show full text]
  • Vins D'alsace Josmeyer
    VINS D’ALSACE JOSMEYER Wine made from organically and biodynamically grown grapes RIESLING LE DRAGON 2004 VINES Terroir: This wine come from the southwest – facing slope of Letzenberg in a sheltered area known locally as Petit Sénégal, characterized by a limestone soil. Age of vines : 35 years on average Grape Variety : Riesling THE WINE Sugar Level : < 9 g /l Acidity Level : 8,1 g /litre (tartaric acidity) Alcohol level : 12,9 % / volume Yields : 50 hl / ha Name : The name of this wine is attached to the legend of the Grand Cru BRAND where a Dragon fought against the sun, Mortally wounded, the dragon withdrew in its cave to die. Vintage : After a cold winter in December, a milder weather followed, but still cold until mid January. After some alternatively periods of rain, snow and mild weather conditions, the Spring season is starting on March 15 th . Temperatures are going from 7°C in the morning to 20°C in the afternoon. Early April the vine starts to grow seriously. May is mild and humid, and the flowering begins around the 5 th of June to finish at the end of the month. For information we got 37 mm rain from the mid-April until the end of May, and 53 mm during June. The good flowering let us hope a good harvest. The grapes are nicely built. July is nicely warm and humid (84 mm rain) and August is really wet with 118 mm rain. September is mild and dry. We start to pick the first grapes (Pinot Blanc and Auxerrois) the 23 rd of September under beautiful weather conditions.
    [Show full text]
  • Unit: 01 Wines-I
    Food & Beverage Service Management –II BHM-602BT UNIT: 01 WINES-I Structure 1.1 Introduction 1.2 Objectives 1.3 Wine 1.4 Classification of Wines 1.4.1 By Colour 1.4.2 By Nature 1.4.3 By Taste 1.4.4 By Year of Production 1.4.5 By Body 1.4.6 Unspecified Wines 1.5 Production of Wines 1.6 Principle wine regions 1.6.1 France 1.6.2 Germany 1.6.3 Italy 1.6.4 Spain 1.7 Summary 1.8 Glossary 1.9 References/Bibliography 1.10 Suggested Readings 1.11 Terminal Questions 1.1 INTRODUCTION Legally defined in most countries, Wine is an alcoholic beverage made from the partial or complete fermentation of grape juice. Now talking about wines, the Wine and sprit association of the Great Britain has sponsored the following definition of Wine ―Wine is an alcoholic beverage obtained from the fermentation of the juice of freshly gathered grapes. Fermentation is conducted in the district of origin according to local customs and traditions. To bear the name Wine, the product must come only from grapes. If made from other fruits; the fruit name must be put before the tern Wine eg. Blackberry Wine, Apricot Wine, Fig Wine. Only a small part of the world is Wine producing. This is because the grape will only provide juice of the quality required for conversion into consumable Wine where two climatic conditions prevail. 1. Sufficient sun-shine to ripen the grape 2. Winters that are moderate yet sufficiently cool to give the Wine a chance to rest and restore its strength for the growing and fruiting season.
    [Show full text]
  • Analytical Methods in Wineries: Is It Time to Change?
    CORE Metadata, citation and similar papers at core.ac.uk Provided by University of Lincoln Institutional Repository Publisher: TAYLOR & FRANCIS INC, 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA Subject Category: Food Science & Technology; Nutrition & Dietetics Website: http://www.informaworld.com/smpp/content~db=all?content=10.1081/FRI-200051897 ISSN: 8755-9129 Analytical Methods in Wineries: Is It Time to Change? M. D. LUQUE DE CASTRO,1 J. GONZÁLEZ-RODRÍGUEZ,2 AND P. PÉREZ-JUAN3 1Department of Analytical Chemistry, Campus of Rabanales, Córdoba, Spain 2Southampton Oceanography Centre, George Deacon Division, Waterfront Campus, European Way, Southampton, United Kingdom 3LIEC, Polígono Industrial, Manzaranes Ciudad Real, Spain A review of the methods for the most common parameters determined in wine—namely, ethanol, sulfur dioxide, reducing sugars, polyphenols, organic acids, total and volatile acidity, iron, soluble solids, pH, and color—reported in the last 10 years is presented here. The definition of the given parameter, official and usual methods in wineries appear at the beginning of each section, followed by the methods reported in the last decade divided into discontinuous and continuous methods, the latter also are grouped in nonchromatographic and chromatographic methods because of the typical characteristics of each subgroup. A critical comparison between continuous and discontinuous methods for the given parameter ends each section. Tables summarizing the features of the methods and a conclusions section may help users to select the most appropriate method and also to know the state-of-the-art of analytical methods in this area. Keywords Parameters, Official methods, Usual methods, Non chromatographic methods, Chromatographic methods Wine is a product with a very complex composition.
    [Show full text]
  • Simultaneous Analysis of Sugars and Organic Acids in Wine and Grape Juices T by HPLC: Method Validation and Characterization of Products from Northeast Brazil
    Journal of Food Composition and Analysis 66 (2018) 160–167 Contents lists available at ScienceDirect Journal of Food Composition and Analysis journal homepage: www.elsevier.com/locate/jfca Original research article Simultaneous analysis of sugars and organic acids in wine and grape juices T by HPLC: Method validation and characterization of products from northeast Brazil Emanuela Monteiro Coelhoa, Carla Valéria da Silva Padilhaa, Gabriela Aquino Miskinisa, Antônio Gomes Barroso de Sáa, Giuliano Elias Pereirab, Luciana Cavalcanti de Azevêdoa, ⁎ Marcos dos Santos Limaa, a Instituto Federal do Sertão Pernambucano, Departamento de Tecnologia em Alimentos, Campus Petrolina, Rod. BR 407 Km 08, S/N, Jardim São Paulo, CEP 56314-520, Petrolina, PE, Brazil b Empresa Brasileira de Pesquisa Agropecuária – Embrapa Semiárido/Uva e Vinho, Rodovia BR 428, Km 152, CP 23, CEP 56302-970 Petrolina, PE, Brazil ARTICLE INFO ABSTRACT Keywords: Organic acids and sugars are related to the chemical balance of wines and grape juices, besides exerting a strong Food analysis influence on the taste balance and sensorial acceptance by consumers. The aim of this study was to validate a Food composition method for the simultaneous determination of sugars and organic acids in wines and grape juices by high- Vitis labrusca L performance liquid chromatography (HPLC) with refractive index detection (RID) and diode array detection Beverage analysis (DAD) and to characterize commercial products from northeast Brazil. The method provided values for linearity Wine − (R > 0.9982), precision (CV% < 1.4), recovery (76–106%) and limits of detection (0.003–0.044 g L 1) and Grape juice fi – −1 Sparkling wine quanti cation (0.008 0.199 g L ) which are considered acceptable for application in the characterization of Sugars these types of matrices.
    [Show full text]
  • Analytical Methods and Procedures in the Small Winery Laboratory
    Appendix A Analytical Methods and Procedures in the Small Winery Laboratory 1. Acetaldehyde Determination 2. Agar Slant Preparation 3. Alcohol Determination by Distillation 4. Alcohol Determination by Salleron-DuJardin Ebulliometer 5. Balling Determination 6. Brix Determination by Hydrometer '7. Brix Determination by Refractometer 8. Carbon Dioxide Determination by Piercing Device 9. Copper and Iron Determination by Spectrophotometry 10. Differential Stain Procedure 11. Extract Determination by Hydrometer 12. Extract Determination by Nomograph-Dessert Wines 13. Extract Determination by Nomograph-Table Wines 14. Gram Stain Procedure 15. Light Transmission (Color Intensity) by Spectrophotometry 16. Malo-Lactic Fermentation Determination by Paper Chromatography 17. Microscopy 18. Organoleptic Analysis 19. Oxygen Determination 20. pH Determination 21. Plating Procedure 22. Sulfur Dioxide-Free 23. Sulfur Dioxide-Total 24. Total Acidity Determination by Titration 25. Total Acidity Determination by Titration-pH Meter 26. Viable Microorganisms in Bottled Wines-Millipore Method 27. Viable Yeasts in Bottled Wines-Rapid Method of Detection 28. Volatile Acidity Determination by Cash Volatile Acid Apparatus Courtesy of Champagne News and Information Bureau 311 312 COMMERCIAL WINEMAKING 1. ACETALDEHYDE DETERMINATION When analyzing wines for total acetaldehyde content, a small percentage (3-4% in wines containing 20% ethanol and less than 1% in table wine containing 12% ethanol) is bound as acetal. This is not recovered in the usual procedures. The procedure given below is that of Jaulmes and Ham­ elle as tested by Guymon and Wright and is an official method of the AOAC. Modifications to consider the acetal concentration can be made. The air oxidative changes taking place during the alkaline titration step are pre­ vented by addition of a chelating agent (EDTA) to bind copper present.
    [Show full text]