Dnp63a Represses Anti-Proliferative Genes Via H2A.Z Deposition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
C57BL/6 and 129 Inbred Mouse Strains Differ in Gbp2 and Gbp2b
Wellcome Open Research 2019, 4:124 Last updated: 30 JAN 2020 RESEARCH ARTICLE C57BL/6 and 129 inbred mouse strains differ in Gbp2 and Gbp2b expression in response to inflammatory stimuli in vivo [version 1; peer review: 2 approved] Barbara Clough 1*, Ryan Finethy2*, Rabia T. Khan1*, Daniel Fisch 1*, Sarah Jordan1, Harshil Patel 3, Jörn Coers 2,4*, Eva-Maria Frickel 1* 1Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT, UK 2Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA 3Bioinformatics and Biostatistics, The Francis Crick Institute, London, NW1 1AT, UK 4Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA * Equal contributors First published: 20 Aug 2019, 4:124 ( Open Peer Review v1 https://doi.org/10.12688/wellcomeopenres.15329.1) Latest published: 20 Aug 2019, 4:124 ( https://doi.org/10.12688/wellcomeopenres.15329.1) Reviewer Status Abstract Invited Reviewers Background: Infections cause the production of inflammatory cytokines 1 2 such as Interferon gamma (IFNγ). IFNγ in turn prompts the upregulation of a range of host defence proteins including members of the family of version 1 guanylate binding proteins (Gbps). In humans and mice alike, GBPs restrict 20 Aug 2019 report report the intracellular replication of invasive microbes and promote inflammation. To study the physiological functions of Gbp family members, the most commonly chosen in vivo models are mice harbouring loss-of-function mutations in either individual Gbp genes or the entire Gbp gene cluster on 1 Peter Staeheli, University of Freiburg, Freiburg, mouse chromosome 3. Individual Gbp deletion strains differ in their design, Germany as some strains exist on a pure C57BL/6 genetic background, while other strains contain a 129-derived genetic interval encompassing the Gbp gene 2 Igor Kramnik , Boston University School of cluster on an otherwise C57BL/6 genetic background. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Chlamydia Cell Biology and Pathogenesis
HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Nat Rev Manuscript Author Microbiol. Author Manuscript Author manuscript; available in PMC 2016 June 01. Published in final edited form as: Nat Rev Microbiol. 2016 June ; 14(6): 385–400. doi:10.1038/nrmicro.2016.30. Chlamydia cell biology and pathogenesis Cherilyn Elwell, Kathleen Mirrashidi, and Joanne Engel Departments of Medicine, Microbiology and Immunology, University of California, San Francisco, California 94143, USA Abstract Chlamydia spp. are important causes of human disease for which no effective vaccine exists. These obligate intracellular pathogens replicate in a specialized membrane compartment and use a large arsenal of secreted effectors to survive in the hostile intracellular environment of the host. In this Review, we summarize the progress in decoding the interactions between Chlamydia spp. and their hosts that has been made possible by recent technological advances in chlamydial proteomics and genetics. The field is now poised to decipher the molecular mechanisms that underlie the intimate interactions between Chlamydia spp. and their hosts, which will open up many exciting avenues of research for these medically important pathogens. Chlamydiae are Gram-negative, obligate intracellular pathogens and symbionts of diverse 1 organisms, ranging from humans to amoebae . The best-studied group in the Chlamydiae phylum is the Chlamydiaceae family, which comprises 11 species that are pathogenic to 1 humans or animals . Some species that are pathogenic to animals, such as the avian 1 2 pathogen Chlamydia psittaci, can be transmitted to humans , . The mouse pathogen 3 Chlamydia muridarum is a useful model of genital tract infections . Chlamydia trachomatis and Chlamydia pneumoniae, the major species that infect humans, are responsible for a wide 2 4 range of diseases , and will be the focus of this Review. -
GBP2 As a Potential Prognostic Biomarker in Pancreatic Adenocarcinoma
GBP2 as a potential prognostic biomarker in pancreatic adenocarcinoma Bo Liu1,2,3,*, Rongfei Huang4,*, Tingting Fu5, Ping He1,2, Chengyou Du3, Wei Zhou6, Ke Xu7 and Tao Ren7 1 Department of Hepatobiliary Surgery, Pidu District People's Hospital of Chengdu, Chengdu, China 2 Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, China 3 Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China 4 Department of Pathology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China 5 Department of Nosocomial Infection Control, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, China 6 Department of Radiology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China 7 Department of Oncology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China * These authors contributed equally to this work. ABSTRACT Background. Pancreatic adenocarcinoma (PAAD) is a disease with atypical symptoms, an unfavorable response to therapy, and a poor outcome. Abnormal guanylate-binding proteins (GBPs) play an important role in the host's defense against viral infection and may be related to carcinogenesis. In this study, we sought to determine the relationship between GBP2 expression and phenotype in patients with PAAD and explored the possible underlying biological mechanism. Method. We analyzed the expression of GBP2 in PAAD tissues using a multiple gene expression database and a cohort of 42 PAAD patients. We evaluated GBP2's prognostic value using Kaplan–Meier analysis and the Cox regression model. GO and KEGG Submitted 13 January 2021 enrichment analysis, co-expression analysis, and GSEA were performed to illustrate the Accepted 16 April 2021 possible underlying biological mechanism. -
Role of RUNX1 in Aberrant Retinal Angiogenesis Jonathan D
Page 1 of 25 Diabetes Identification of RUNX1 as a mediator of aberrant retinal angiogenesis Short Title: Role of RUNX1 in aberrant retinal angiogenesis Jonathan D. Lam,†1 Daniel J. Oh,†1 Lindsay L. Wong,1 Dhanesh Amarnani,1 Cindy Park- Windhol,1 Angie V. Sanchez,1 Jonathan Cardona-Velez,1,2 Declan McGuone,3 Anat O. Stemmer- Rachamimov,3 Dean Eliott,4 Diane R. Bielenberg,5 Tave van Zyl,4 Lishuang Shen,1 Xiaowu Gai,6 Patricia A. D’Amore*,1,7 Leo A. Kim*,1,4 Joseph F. Arboleda-Velasquez*1 Author affiliations: 1Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St., Boston, MA 02114 2Universidad Pontificia Bolivariana, Medellin, Colombia, #68- a, Cq. 1 #68305, Medellín, Antioquia, Colombia 3C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, 55 Fruit St., Boston, MA 02114 4Retina Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 243 Charles St., Boston, MA 02114 5Vascular Biology Program, Boston Children’s Hospital, Department of Surgery, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115 6Center for Personalized Medicine, Children’s Hospital Los Angeles, Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027, USA 7Department of Pathology, Harvard Medical School, 25 Shattuck St., Boston, MA 02115 Corresponding authors: Joseph F. Arboleda-Velasquez: [email protected] Ph: (617) 912-2517 Leo Kim: [email protected] Ph: (617) 912-2562 Patricia D’Amore: [email protected] Ph: (617) 912-2559 Fax: (617) 912-0128 20 Staniford St. Boston MA, 02114 † These authors contributed equally to this manuscript Word Count: 1905 Tables and Figures: 4 Diabetes Publish Ahead of Print, published online April 11, 2017 Diabetes Page 2 of 25 Abstract Proliferative diabetic retinopathy (PDR) is a common cause of blindness in the developed world’s working adult population, and affects those with type 1 and type 2 diabetes mellitus. -
Modulating Antiviral Response Via CRISPR–Cas Systems
viruses Review Immunity and Viral Infections: Modulating Antiviral Response via CRISPR–Cas Systems Sergey Brezgin 1,2,3,† , Anastasiya Kostyusheva 1,†, Ekaterina Bayurova 4 , Elena Volchkova 5, Vladimir Gegechkori 6 , Ilya Gordeychuk 4,7, Dieter Glebe 8 , Dmitry Kostyushev 1,3,*,‡ and Vladimir Chulanov 1,3,5,‡ 1 National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; [email protected] (S.B.); [email protected] (A.K.); [email protected] (V.C.) 2 Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia 3 Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia 4 Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; [email protected] (E.B.); [email protected] (I.G.) 5 Department of Infectious Diseases, Sechenov University, 119991 Moscow, Russia; [email protected] 6 Department of Pharmaceutical and Toxicological Chemistry, Sechenov University, 119991 Moscow, Russia; [email protected] 7 Department of Organization and Technology of Immunobiological Drugs, Sechenov University, 119991 Moscow, Russia 8 National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Institute of Medical Virology, Justus Liebig University of Giessen, 35392 Giessen, Germany; [email protected] * Correspondence: [email protected] † Co-first authors. Citation: Brezgin, S.; Kostyusheva, ‡ Co-senior authors. A.; Bayurova, E.; Volchkova, E.; Gegechkori, V.; Gordeychuk, I.; Glebe, Abstract: Viral infections cause a variety of acute and chronic human diseases, sometimes resulting D.; Kostyushev, D.; Chulanov, V. Immunity and Viral Infections: in small local outbreaks, or in some cases spreading across the globe and leading to global pandemics. -
Integrated Cytogenetic and High-Resolution Array CGH Analysis of Genomic Alterations Associated with MYCN Amplification
Original Article Cytogenet Genome Res 2011;134:27–39 Accepted: November 3, 2010 DOI: 10.1159/000324698 by M. Schmid Published online: April 18, 2011 Integrated Cytogenetic and High-Resolution Array CGH Analysis of Genomic Alterations Associated with MYCN Amplification a b c c b d A. Pandita J. Bayani J. Paderova P. Marrano C. Graham M. Barrett e f g M. Prasad M. Zielenska J.A. Squire a b Department of Oncology Diagnostics, Genentech, South San Francisco, Calif. , USA; Department of c Laboratory Medicine and Pathobiology, University of Toronto, and Department of Applied Molecular Oncology, d Ontario Cancer Institute, Toronto, Ont. , Canada; Pharmaceutical Genomics Division, Translational Genomics e Research Institute, Scottsdale, Ariz. , Agilent Technologies Inc. Headquarters, Santa Clara, Calif. , USA; f Department of Pathology and Laboratory Medicine, The Hospital for Sick Children, Toronto, Ont. , and g Department of Pathology and Molecular Medicine, Queen’s University and Kingston General Hospital, Kingston, Ont. , Canada Key Words plicon is quite intriguing. MYCN is usually centrally located in aCGH ؒ FISH ؒ mBAND ؒ MYCN ؒ Neuroblastoma ؒ the amplicon; however, the structure and complexity of the Retinoblastoma amplicons were highly variable. It is noteworthy that clusters of unstable repetitive regions characterized by CNV se- quences were present throughout the regions encompassed Abstract by MYCN gene amplification, and these sequences could Amplification of oncogenes and closely linked flanking provide a mechanism to destabilize this region of the ge- genes is common in some types of cancer and can be asso- nome. Complex structural rearrangements involving ge- ciated with complex chromosome rearrangements and/or nomic losses and gains in the 2p24 region lead to MYCN am- co-amplification of non-syntenic chromosomal regions. -
Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol . -
New Basal Cell Carcinoma Susceptibility Loci
ARTICLE Received 5 Nov 2014 | Accepted 3 Mar 2015 | Published 9 Apr 2015 DOI: 10.1038/ncomms7825 OPEN New basal cell carcinoma susceptibility loci Simon N. Stacey1, Hannes Helgason1, Sigurjon A. Gudjonsson1, Gudmar Thorleifsson1, Florian Zink1, Asgeir Sigurdsson1, Birte Kehr1, Julius Gudmundsson1, Patrick Sulem1, Bardur Sigurgeirsson2,3, Kristrun R. Benediktsdottir2,3, Kristin Thorisdottir2,3, Rafn Ragnarsson2,3, Victoria Fuentelsaz4, Cristina Corredera5, Yolanda Gilaberte6, Matilde Grasa7, Dolores Planelles8, Onofre Sanmartin9,10, Peter Rudnai11, Eugene Gurzau12, Kvetoslava Koppova13, Bjørn A. Nexø14, Anne Tjønneland15, Kim Overvad16, Jon G. Jonasson2,3,17, Laufey Tryggvadottir3,17, Hrefna Johannsdottir1, Anna M. Kristinsdottir1, Hreinn Stefansson1, Gisli Masson1, Olafur T. Magnusson1, Bjarni V. Halldorsson1,18, Augustine Kong1, Thorunn Rafnar1, Unnur Thorsteinsdottir1,3, Ulla Vogel19, Rajiv Kumar20, Eduardo Nagore9,10, Jose´ I. Mayordomo21, Daniel F. Gudbjartsson1, Jon H. Olafsson2,3 & Kari Stefansson1,3 In an ongoing screen for DNA sequence variants that confer risk of cutaneous basal cell carcinoma (BCC), we conduct a genome-wide association study (GWAS) of 24,988,228 SNPs and small indels detected through whole-genome sequencing of 2,636 Icelanders and imputed into 4,572 BCC patients and 266,358 controls. Here we show the discovery of four new BCC susceptibility loci: 2p24 MYCN (rs57244888[C], OR ¼ 0.76, P ¼ 4.7 Â 10 À 12), 2q33 CASP8-ALS2CR12 (rs13014235[C], OR ¼ 1.15, P ¼ 1.5 Â 10 À 9), 8q21 ZFHX4 (rs28727938[G], OR ¼ 0.70, P ¼ 3.5 Â 10 À 12) and 10p14 GATA3 (rs73635312[A], OR ¼ 0.74, P ¼ 2.4 Â 10 À 16). Fine mapping reveals that two variants correlated with rs73635312[A] occur in conserved binding sites for the GATA3 transcription factor. -
679514V2.Full.Pdf
bioRxiv preprint doi: https://doi.org/10.1101/679514; this version posted August 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The large GTPase, mGBP-2, regulates Rho family GTPases to inhibit migration and invadosome formation in Triple-Negative Breast Cancer cells. Geoffrey O. Nyabuto, John P. Wilson, Samantha A. Heilman, Ryan C. Kalb, Ankita V. Abnave, and Deborah J. Vestal* Department of Biological Sciences, University of Toledo, Toledo, OH, USA 43606 *Corresponding author: Deborah J. Vestal, Department of Biological Sciences, University of Toledo, 2801 West Bancroft St., MS 1010, Toledo, OH 43606. Phone: 1-419-383-4134. FAX: 1-419-383-6228. Email: [email protected]. Running title: mGBP-2 inhibits breast cancer cell migration. Key words: Guanylate-Binding Protein, Triple-Negative Breast Cancer, migration, CDC42, Rac1. This work was supported by funding from the University of Toledo to D.J.V. Disclosure of Potential Conflicts of Interest No potential conflicts of interest were disclosed. 1 bioRxiv preprint doi: https://doi.org/10.1101/679514; this version posted August 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Breast cancer is the most common cancer in women. Despite advances in early detection and treatment, it is predicted that over 40,000 women will die of breast cancer in 2019. This number of women is still too high. To lower this number, more information about the molecular players in breast cancer are needed. -
Mouse Fam49a Conditional Knockout Project (CRISPR/Cas9)
https://www.alphaknockout.com Mouse Fam49a Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Fam49a conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Fam49a gene (NCBI Reference Sequence: NM_029758 ; Ensembl: ENSMUSG00000020589 ) is located on Mouse chromosome 12. 13 exons are identified, with the ATG start codon in exon 4 and the TAG stop codon in exon 13 (Transcript: ENSMUST00000069066). Exon 5 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Fam49a gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-184A24 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 5 starts from about 7.33% of the coding region. The knockout of Exon 5 will result in frameshift of the gene. The size of intron 4 for 5'-loxP site insertion: 17286 bp, and the size of intron 5 for 3'-loxP site insertion: 1046 bp. The size of effective cKO region: ~622 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 5 6 13 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Fam49a Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. -
GBP5 Repression Suppresses the Metastatic Potential and PD-L1 Expression in Triple-Negative Breast Cancer
biomedicines Article GBP5 Repression Suppresses the Metastatic Potential and PD-L1 Expression in Triple-Negative Breast Cancer Shun-Wen Cheng 1, Po-Chih Chen 2,3,4 , Min-Hsuan Lin 5, Tzong-Rong Ger 1, Hui-Wen Chiu 5,6,7,* and Yuan-Feng Lin 5,8,* 1 Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan City 32023, Taiwan; [email protected] (S.-W.C.); [email protected] (T.-R.G.) 2 Neurology Department, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; [email protected] 3 Taipei Neuroscience Institute, Taipei Medical University, New Taipei City 23561, Taiwan 4 Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan 5 Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; [email protected] 6 Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan 7 TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan 8 Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan * Correspondence: [email protected] (H.-W.C.); [email protected] (Y.-F.L.); Tel.: +886-2-22490088 (H.-W.C.); +886-2-2736-1661 (ext. 3106) (Y.-F.L.) Citation: Cheng, S.-W.; Chen, P.-C.; Abstract: Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype because Lin, M.-H.; Ger, T.-R.; Chiu, H.-W.; of its high metastatic potential. Immune evasion due to aberrant expression of programmed cell Lin, Y.-F.