A Recurrent Mutation in Bone Morphogenetic Proteins-2-Inducible Kinase Gene Is Associated with Developmental Dysplasia of the Hip
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Visual Gene Network Analysis of Aging-Specific Gene Co-Expression
4open 2018, 1,4 © B.P. Parida et al., Published by EDP Sciences 2018 https://doi.org/10.1051/fopen/2018004 Available online at: www.4open-sciences.org RESEARCH ARTICLE Visual gene network analysis of aging-specific gene co-expression in human indicates overlaps with immuno-pathological regulations Bibhu Prasad Parida1,*, Biswapriya Biswavas Misra2, Amarendra Narayan Misra3,4 1 Post-Graduate Department of Biosciences and Biotechnology, School of Biotechnology, Fakir Mohan University, Balasore 756020, Odisha, India 2 Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem 27157, NC, USA 3 Central University of Jharkhand, Brambe, Ratu-Lohardaga Road, Ranchi 835205, Jharkhand, India 4 Khallikote University, Berhampur 760001, Odisha, India Received 19 September 2017, Accepted 4 July 2018 Abstract- - Introduction: Aging is a complex biological process that brings about a gradual decline of physiological and metabolic machineries as a result of maturity. Also, aging is irreversible and leads ultimately to death in biological organisms. Methods: We intend to characterize aging at the gene expression level using publicly available human gene expression arrays obtained from gene expression omnibus (GEO) and ArrayExpress. Candidate genes were identified by rigorous screening using filtered data sets, i.e., GSE11882, GSE47881, and GSE32719. Using Aroma and Limma packages, we selected the top 200 genes showing up and down regulation (p < 0.05 and fold change >2.5) out of which 185 were chosen for further comparative analysis. Results: This investigation enabled identification of candidate genes involved in aging that are associated with several signaling cascades demonstrating strong correlation with ATP binding and protease functions. -
Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ...................................................... -
Function of STAT3 and SMG1 in Maintaining Glioblastoma Stem Cells !
Function of STAT3 and SMG1 in maintaining Glioblastoma stem cells ! A Dissertation submitted by Sejuti Sengupta In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cellular & Molecular Physiology TUFTS UNIVERSITY Sackler School of Graduate Biomedical Sciences May, 2016 Advisor: Dr. Brent Cochran Thursday March 24, 2016 Thesis Chair: Dr. Dan Jay Committee Member: Dr. Peter Juo Outside Examiner: Dr Keith Ligon ! Abstract Glioblastoma multiforme (GBM) is the most common and most aggressive tumor of the central nervous system, with a mean survival of only 14 months post diagnosis. Due to the highly lethal nature of glioblastoma, new therapies are urgently needed. It is thought that the major reason for poor prognosis of GBM is that a small population of GBM stem cells (GSC) selectively survives therapy and leads to tumor re-growth. Therefore, in this thesis I have identified new potential therapeutic targets for GBM stem cells and investigated the underlying mechanisms by which these targets regulate the growth of GBM stem cells. The transcription factor STAT3 is required for the self-renewal of several stem cell types including GSC. Interestingly, STAT3 inhibition leads to an irreversible decrease in proliferation and neurosphere formation, as well as loss of stem cell markers. The work presented in this thesis reports a novel epigenetic mechanism for inhibiting self-renewal of GSC. by STAT3. Here, we show that STAT3 inhibition upregulates histone H3K27me2/3 demethylase JMJD3 (KDM6B), which can reverse polycomb complex mediated repression of neural differentiation genes. To identify the set of STAT3 regulated differentiation-specific genes, genome wide ChIP-sequencing and microarray analysis were performed to determine changes in histone H3K27 methylation as well as gene expression following STAT3 inhibition. -
A Resource for Exploring the Understudied Human Kinome for Research and Therapeutic
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.02.022277; this version posted March 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A resource for exploring the understudied human kinome for research and therapeutic opportunities Nienke Moret1,2,*, Changchang Liu1,2,*, Benjamin M. Gyori2, John A. Bachman,2, Albert Steppi2, Clemens Hug2, Rahil Taujale3, Liang-Chin Huang3, Matthew E. Berginski1,4,5, Shawn M. Gomez1,4,5, Natarajan Kannan,1,3 and Peter K. Sorger1,2,† *These authors contributed equally † Corresponding author 1The NIH Understudied Kinome Consortium 2Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, Massachusetts 02115, USA 3 Institute of Bioinformatics, University of Georgia, Athens, GA, 30602 USA 4 Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA 5 Joint Department of Biomedical Engineering at the University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA † Peter Sorger Warren Alpert 432 200 Longwood Avenue Harvard Medical School, Boston MA 02115 [email protected] cc: [email protected] 617-432-6901 ORCID Numbers Peter K. Sorger 0000-0002-3364-1838 Nienke Moret 0000-0001-6038-6863 Changchang Liu 0000-0003-4594-4577 Benjamin M. Gyori 0000-0001-9439-5346 John A. Bachman 0000-0001-6095-2466 Albert Steppi 0000-0001-5871-6245 Shawn M. -
Annotation of the Understudied Kinome and Preliminary Teseting of Kinase Inhibitor Combinations
ANNOTATION OF THE UNDERSTUDIED KINOME AND PRELIMINARY TESETING OF KINASE INHIBITOR COMBINATIONS Claire Reisig Hall A thesis submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Master of Science in the Joint Program of Biomedical Engineering in the School of Medicine. Chapel Hill 2017 Approved by: Shawn Gomez Jeffrey Macdonald Glenn Walker © 2017 Claire Reisig Hall ALL RIGHTS RESERVED ii ABSTRACT Claire Reisig Hall: Annotation of the Understudied Kinome and Preliminary Testing of Kinase Inhibitor Combinations (Under the direction of Shawn Gomez) A technique utilizing multiplexed inhibitor beads and mass spectrometry (MIB/MS) detects functional protein kinases in breast cancer cell lines. Data from this technique was used to shed light on the understudied kinome, a portion of which is captured by the MIB/MS method. Regression analysis was performed to find correlations in kinase activity. The functional linkages were then used to annotate the understudied kinases. Annotations revealed new possible functions and disease relations for many understudied kinases. Kinase inhibitor combinations were suggested by principle components analysis (PCA) results performed on MIB/MS data from treated breast cancer cell lines. The combinations were preliminarily tested for signs of effectiveness. Dose curves and growth assays were performed to compare drug combinations in the SKBR3 cell line. The interpretation of in vitro experiment results was impeded because of poor -
CAG-Encoded Polyglutamine Length Polymorphism in the Human Genome
BMC Genomics BioMed Central Research article Open Access CAG-encoded polyglutamine length polymorphism in the human genome Stefanie L Butland1, Rebecca S Devon2, Yong Huang1, Carri-Lyn Mead1, Alison M Meynert1, Scott J Neal2, Soo Sen Lee1, Anna Wilkinson1, George S Yang3, Macaire MS Yuen1, Michael R Hayden2,4, Robert A Holt3,5, Blair R Leavitt†2,4 and BF Francis Ouellette*†1,4 Address: 1UBC Bioinformatics Centre, Michael Smith Laboratories, University of British Columbia, Vancouver, Canada, 2Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada, 3Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, Canada, 4Department of Medical Genetics, University of British Columbia, Vancouver, Canada and 5Department of Psychiatry, University of British Columbia, Vancouver, Canada Email: Stefanie L Butland - [email protected]; Rebecca S Devon - [email protected]; Yong Huang - [email protected]; Carri-Lyn Mead - [email protected]; Alison M Meynert - [email protected]; Scott J Neal - [email protected]; Soo Sen Lee - [email protected]; Anna Wilkinson - [email protected]; George S Yang - [email protected]; Macaire MS Yuen - [email protected]; Michael R Hayden - [email protected]; Robert A Holt - [email protected]; Blair R Leavitt - [email protected]; BF Francis Ouellette* - [email protected] * Corresponding author †Equal contributors Published: 22 May 2007 Received: 23 October 2006 Accepted: 22 May 2007 BMC Genomics 2007, 8:126 doi:10.1186/1471-2164-8-126 This article is available from: http://www.biomedcentral.com/1471-2164/8/126 © 2007 Butland et al; licensee BioMed Central Ltd. -
High-Resolution Regulatory Maps Connect Cardiovascular Risk Variants to Disease Related Pathways
bioRxiv preprint doi: https://doi.org/10.1101/376699; this version posted July 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. High-resolution regulatory maps connect cardiovascular risk variants to disease related pathways Örjan Åkerborga†, Rapolas Spalinskasa†, Sailendra Pradhanangaa†, Anandashankar Anila, Pontus Höjera, Flore-Anne Poujadeb, Lasse Folkersenc, Per Erikssonb, Pelin Sahléna* a Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Division of Gene Technology, KTH Royal Institute of Technology, Solna, Sweden b Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden c Department of Bioinformatics, Technical University of Denmark, Copenhagen, Denmark † Share first authorship * Corresponding author bioRxiv preprint doi: https://doi.org/10.1101/376699; this version posted July 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Genetic variant landscape of cardiovascular disease (CVD) is dominated by non- coding variants among which many occur within putative enhancers regulating the expression levels of relevant genes. It is crucial to assign the genetic variants to their correct gene both to gain insights into perturbed functions and better assess the risk of disease. In this study, we generated high-resolution genomic interaction maps (~750 bases) in aortic endothelial, smooth muscle and THP-1 macrophages using Hi-C coupled with sequence capture targeting 25,429 features including variants associated with CVD. -
Identification and Characterisation of the Underlying Defects in Patients with Inherited Platelet Bleeding Disorders
Identification and Characterisation of the Underlying Defects in Patients with Inherited Platelet Bleeding Disorders By: Maryam Ahmed Aldossary A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy The University of Sheffield Faculty of Medicine, Dentistry and Health Department of Infection, Immunity & Cardiovascular Disease Submission Date January 2019 Abstract The underlying genetic defects remain unknown in about 50% of inherited platelet bleeding disorders (IPDs). This study investigated the use of whole exome sequencing (WES) to identify candidate gene defects in 34 index cases enrolled in the UK Genotyping and Phenotyping of Platelets study with a history of bleeding, whose platelets demonstrated defects in agonist-induced dense granule secretion or Gi- signalling. WES analysis identified a median of 98 candidate disease-causing variants per index case highlighting the complexity of IPDs. Sixteen variants were in genes that had previously been associated with IPDs, two of which were selected for further characterisation. Two novel FLI1 alterations, predicting p.Arg340Cys/His substitutions in the DNA binding domain of FLI1 were shown to reduce transcriptional activity and nuclear accumulation of FLI1, suggesting that these variants interfere with the regulation of essential megakaryocyte genes by FLI1 and may explain the bleeding tendency in affected patients. Expression of a novel truncated p.Arg430* variant of ETV6 revealed it to be stably expressed, possessing normal repressor activity in HEK 293T cells and a slight reduction in repressor activity in megakaryocytic cells. Further studies are required to confirm the pathogenicity of this variant. To identify novel genes involved in platelet granule biogenesis and secretion, gene expression was examined in megakaryocytic cells before and after knockdown of FLI1, defects in which are associated with platelet granule abnormalities. -
(INDEL) Variation in the Human Genome
Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Resource An initial map of insertion and deletion (INDEL) variation in the human genome Ryan E. Mills,1,2 Christopher T. Luttig,1 Christine E. Larkins,3 Adam Beauchamp,4 Circe Tsui,1,2 W. Stephen Pittard,2,5 and Scott E. Devine1,2,3,4,6 1Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA; 2Center for Bioinformatics, Emory University School of Medicine, Atlanta, Georgia 30322, USA; 3Biochemistry, Cell, and Developmental Biology Graduate Program, Emory University School of Medicine, Atlanta, Georgia 30322, USA; 4Genetics and Molecular Biology Graduate Program, Emory University School of Medicine, Atlanta, Georgia 30322, USA; 5Bimcore, Emory University School of Medicine, Atlanta, Georgia 30322, USA Although many studies have been conducted to identify single nucleotide polymorphisms (SNPs) in humans, few studies have been conducted to identify alternative forms of natural genetic variation, such as insertion and deletion (INDEL) polymorphisms. In this report, we describe an initial map of human INDEL variation that contains 415,436 unique INDEL polymorphisms. These INDELs were identified with a computational approach using DNA re-sequencing traces that originally were generated for SNP discovery projects. They range from 1 bp to 9989 bp in length and are split almost equally between insertions and deletions, relative to the chimpanzee genome sequence. Five major classes of INDELs were identified, including (1) insertions and deletions of single-base pairs, (2) mono- meric base pair expansions, (3) multi-base pair expansions of 2–15 bp repeat units, (4) transposon insertions, and (5) INDELs containing random DNA sequences. -
Protein Structure-Guided Approaches to Identify Functional Mutations in Cancer Sohini Sengupta Washington University in St
Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Winter 12-15-2018 Protein Structure-Guided Approaches to Identify Functional Mutations in Cancer Sohini Sengupta Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Bioinformatics Commons Recommended Citation Sengupta, Sohini, "Protein Structure-Guided Approaches to Identify Functional Mutations in Cancer" (2018). Arts & Sciences Electronic Theses and Dissertations. 1688. https://openscholarship.wustl.edu/art_sci_etds/1688 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Division of Biology and Biomedical Sciences Computational and Systems Biology Dissertation Examination Committee: Li Ding, Chair Greg Bowman Barak Cohen Cynthia Ma Chris Maher Protein Structure-Guided Approaches to Identify Functional Mutations in Cancer by Sohini Sengupta A dissertation presented to the Graduate School of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2018 St. Louis, Missouri © 2018, Sohini Sengupta Table of Contents Acknowledgments ..................................................................................................................