Marine Natural Products and Marine Chemical Ecology 8.07

Total Page:16

File Type:pdf, Size:1020Kb

Marine Natural Products and Marine Chemical Ecology 8.07 8.07 Marine Natural Products and Marine Chemical Ecology JUN’ICHI KOBAYASHI and MASAMI ISHIBASHI Hokkaido University, Sapporo, Japan 7[96[0 INTRODUCTION 305 7[96[1 FEEDING ATTRACTANTS AND STIMULANTS 306 7[96[1[0 Fish 306 7[96[1[1 Mollusks 307 7[96[2 PHEROMONES 319 7[96[2[0 Sex Attractants of Al`ae 319 7[96[2[1 Others 315 7[96[3 SYMBIOSIS 315 7[96[3[0 Invertebrates and Microal`ae 315 7[96[3[1 Others 318 7[96[4 BIOFOULING 329 7[96[4[0 Microor`anisms 329 7[96[4[1 Hydrozoa 320 7[96[4[2 Polychaetes 321 7[96[4[3 Mollusks 321 7[96[4[4 Barnacles 324 7[96[4[5 Tunicates 339 7[96[5 BIOLUMINESCENCE 333 7[96[5[0 Sea Fire~y 333 7[96[5[1 Jelly_sh 335 7[96[5[2 Squid 343 7[96[5[3 Microal`ae 346 7[96[6 CHEMICAL DEFENSE INCLUDING ANTIFEEDANT ACTIVITY 348 7[96[6[0 Al`ae 348 7[96[6[1 Mollusks 351 7[96[6[2 Spon`es 354 7[96[6[3 Other Invertebrates 369 7[96[6[4 Fish 362 7[96[7 MARINE TOXINS 365 7[96[7[0 Cone Shells 365 7[96[7[0[0 Conus geographus 365 7[96[7[0[1 Other Conus toxins 367 7[96[7[1 Tetrodotoxin and Saxitoxin 379 7[96[7[1[0 Tetrodotoxin 379 7[96[7[1[1 Saxitoxin 374 7[96[7[1[2 Sodium channels and TTX:STX 375 7[96[7[2 Diarrhetic Shell_sh Poisonin` 378 7[96[7[2[0 Okadaic acid and dinophysistoxin 389 7[96[7[2[1 Pectenotoxin and yessotoxin 386 304 305 Marine Natural Products and Marine Chemical Ecolo`y 7[96[7[3 Ci`uatera 490 7[96[7[3[0 Ci`uatoxin 490 7[96[7[3[1 Maitotoxin 493 7[96[7[3[2 Gambieric acid 497 7[96[7[4 Other Toxins 498 7[96[7[4[0 Palytoxin 498 7[96[7[4[1 Brevetoxin 400 7[96[7[4[2 Suru`atoxin 404 7[96[7[4[3 Polycavernoside 404 7[96[7[4[4 Prymnesin 407 7[96[7[4[5 Pinnatoxin 407 7[96[8 BIOACTIVE MARINE NATURAL PRODUCTS 410 7[96[8[0 Dru` Candidates 410 7[96[8[1 Topics on Tunicates 410 7[96[8[1[0 Vanadium accumulation by tunicates 410 7[96[8[1[1 Eudistomins and related alkaloids 414 7[96[8[1[2 New tunicate metabolites 418 7[96[8[1[3 Pseudodistomins 436 7[96[8[2 Spon`e Metabolites 442 7[96[8[2[0 Manzamines and related alkaloids 442 7[96[8[2[1 Metabolites of the `enus Theonella 456 7[96[8[2[2 Others 472 7[96[8[3 Microbial Metabolites 476 7[96[8[3[0 Bacteria 476 7[96[8[3[1 Fun`i 488 7[96[8[3[2 Blue!`reen al`ae 592 7[96[8[3[3 Dino~a`ellates and other microal`ae 502 7[96[8[3[4 Amphidinolides 508 7[96[09 REFERENCES 523 7[96[0 INTRODUCTION The oceans cover nearly 69) of the whole surface area of the earth and more than 29 phylums and 499 999 species of marine organisms live in them[ In the oceans the circumstances are quite di}erent from those on the land[ The undersea environment is a closed system with high salinity\ high pressure\ and relatively constant temperature[ Animals\ plants\ and microorganisms living in the ocean therefore are expected to produce quite di}erent secondary metabolites from those produced by terrestrial organisms[ Since the 0869s\ a great number of new marine natural products have been isolated from various marine organisms[ Most of these marine natural products possess a variety of unique chemical structures that have never been encountered among natural products of terrestrial origins\ whereas these marine natural products frequently exhibit interesting biological activity which may be of great importance in many _elds of biological sciences[ The aims of research projects concerned with marine natural products may be "i# to _nd novel compounds that are useful as leads for drug development\ "ii# to provide good tools for basic studies of life science\ and "iii# to study the roles and biological functions of secondary metabolites in the life of marine organisms[ The third subject\ which is called {{marine chemical ecology\|| has\ since the mid 0879s\ become a _eld of study[ This chapter describes studies on marine natural products\ particularly those of interest from the viewpoint of marine chemical ecology\ and consists mainly of two parts[ The _rst part deals with marine natural products related to marine chemical ecology[ Classi_cation of the phenomena associated with marine chemical ecology is arbitrary\ and here we describe them in seven sections "Sections 7[96[1Ð7#[ In the latter part of this chapter "Section 7[96[8#\ topics in marine natural products chemistry are described from various viewpoints irrespective of the relationships to eco! logical subjects[ As the dividing line between the sections may sometimes be obscure\ the selection of compounds and topics is arbitrary and not necessarily comprehensive[ A series of excellent reviews on marine natural products chemistry\ published by Faulkner\0Ð01 cover all the literature describing marine natural products\ organized phylogenetically[ A special issue of Chemical Reviews appeared in 0882\02 providing broad aspects of contributions on marine natural products chemistry[ The present authors wrote a review in 088103 covering the nitrogen! containing secondary metabolites isolated from marine organisms\ mainly reported in the late 0879s[ Marine Natural Products and Marine Chemical Ecolo`y 306 Several good books or reviews dealing with general or specialized subjects in marine natural products research have been published\04Ð10 in particular\ those describing the role of marine natural products in chemical ecology[11Ð14 7[96[1 FEEDING ATTRACTANTS AND STIMULANTS Feeding is one of the most fundamental behaviors of all living organisms[ It was suggested by many biological studies that chemical substances or chemical changes in the environment may initiate the feeding behavior of marine organisms and promote the ingestion of foods\ and those chemicals may be designated as {{attractants|| and {{stimulants\|| respectively[ This sections deals with studies of feeding attractants and stimulants of marine animals[ Excellent reviews have been published on this subject by Sakata[15Ð17 This section contains descriptions of feeding attractants of stimulants of particularly _sh and mollusks[15Ð18 7[96[1[0 Fish It is well known that chemical substances participate in feeding behaviors of _sh and this phenomenon is called {{chemoreception[|| Fish possess a sense of smell and taste and their sensitivity is much higher than that of man "Table 0#[17 The gustatory organs "taste buds# of _sh are distributed not only in the mouth but also on the palp\ lip\ and skin[ The senses of taste and smell cannot be clearly categorized for _sh because signal communications by chemical substances are mediated with water[ It has been suggested that the gustatory organs of _sh may play a role in receiving signals of chemical substances over long distances[ Table 0 Comparison of taste sensitivity of man and _sh[17\29 *ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ Lowest concentration of taste "mol l−0# *ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ Substance Man Fisha Ratio *ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ Ra.nose 0:134 659 Sucrose 0:80 0:70 810 899]0 Lactose 0:05 0:1459 059]0 Glucose 0:02 0:19 379 0464]0 Galactose 0:8 0:4019 458]0 Fructose 0:13 0:50 339 1459]0 Arabinose 0:02 0:04 259 0071]0 Saccharin 0:8980 0:0 425 999 058]0 Quinine hydrochloride 0:0 929 817 0:13 465 999 13]0 Sodium chloride 0:099 0:19 379 194]0 Acetic acid 0:0149 0:193 799 053]0 *ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ a Cypriniformes family[ Hashimoto et al[20 studied feeding attractants and stimulants of the eel An`uilla japonica in extracts of mussels Tapes japonicus by watching the behavior of eels using samples mixed with gelatin[ Seven amino acids were isolated in the active fraction\ and among them the e}ective concentrations of glycine "Gly#\ L!alanine "Ala#\ and L!arginine "Arg# were revealed to be 1×09−4 mM\ 0×09−6 mM\ and 4×09−7 mM\ respectively[ Mixtures of these amino acids were more e}ective than each pure amino acid\ suggesting that the synergetic e}ect of amino acids may be important[ Quaternary ammonium salts\ nucleic acid derivatives\ and organic acids proved to be inactive[ Amino acids were generally identi_ed as feeding attractants and stimulants of _sh of other kinds "Table 1#[ They were mostly normal amino acids such as Gly\ Ala\ and Arg\ while unusual amino acids were also reported such as arcamine "0# and strombine "1#[21 In addition to amino acids\ inosine\ inosine!4?!monophosphate "4?!IMP "2##\ adenosine!4?!monophosphate "4?!AMP "3##\ betaine ðBet\ ¦ − ¦ − "CH2#2N CH1CO1 Ł\ and trimethylamine N!oxide ðTMAO\ "CH2#2N O Ł were also reported as active substances of turbot\ plaice\ or Dover sole "Table 1#[ 307 Marine Natural Products and Marine Chemical Ecolo`y Table 1 Feeding attractants and stimulants of _sh[ *ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ Predator _sh Prey animals Active substances Ref[ *ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ Bathystoma rimator Arca zevra arcamine "0#21 Bathystoma rimator Strombus `i`as strombine "1#21 Merlan`ius merlan`us Arenicola marina Gly\ Ala\ Ser\ Thr\ Leu\ Glu\ Val 16\ 22 Chrysophrys major Perinereis vancaurica tetradentata Gly\ Ala\ Val\ amphoteric ~uorescent substance 23 La`odon rhomboides Penacus duorarum Gly\ Asp\ Ile\ Phe\ Bet 16 Salmo `airdnerii Gly\ Ala\ a!Aba\a Val 24 Scophthalmus maximus squid extract 4?!IMP\ inosine 25 Pleuronectes platessa squid extract amino acids\ AMP\ TMAO 26 Limanda limanda squid extract amino acids 26 Soleo solea Mytilus edulis Bet 16 *ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ
Recommended publications
  • H. Abdul Jaffar Ali · M. Tamilselvi a Comprehensive Inventory Of
    H. Abdul Jaffar Ali · M. Tamilselvi Ascidians in Coastal Water A Comprehensive Inventory of Ascidian Fauna from the Indian Coast Ascidians in Coastal Water H. Abdul Jaffar Ali • M. Tamilselvi Ascidians in Coastal Water A Comprehensive Inventory of Ascidian Fauna from the Indian Coast 123 H. Abdul Jaffar Ali M. Tamilselvi Department of Biotechnology Department of Zoology Islamiah College (Autonomous) V.V. Vanniaperumal College for Women Vaniyambadi, Tamil Nadu Virudhunagar, Tamil Nadu India India ISBN 978-3-319-29117-8 ISBN 978-3-319-29118-5 (eBook) DOI 10.1007/978-3-319-29118-5 Library of Congress Control Number: 2015960399 © Springer International Publishing Switzerland 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]
  • Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity
    toxins Article Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity Massimo Picardo 1 , Oscar Núñez 2,3 and Marinella Farré 1,* 1 Department of Environmental Chemistry, IDAEA-CSIC, 08034 Barcelona, Spain; [email protected] 2 Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08034 Barcelona, Spain; [email protected] 3 Serra Húnter Professor, Generalitat de Catalunya, 08034 Barcelona, Spain * Correspondence: [email protected] Received: 5 October 2020; Accepted: 26 November 2020; Published: 28 November 2020 Abstract: This study presents the application of a suspect screening approach to screen a wide range of natural toxins, including mycotoxins, bacterial toxins, and plant toxins, in surface waters. The method is based on a generic solid-phase extraction procedure, using three sorbent phases in two cartridges that are connected in series, hence covering a wide range of polarities, followed by liquid chromatography coupled to high-resolution mass spectrometry. The acquisition was performed in the full-scan and data-dependent modes while working under positive and negative ionisation conditions. This method was applied in order to assess the natural toxins in the Ter River water reservoirs, which are used to produce drinking water for Barcelona city (Spain). The study was carried out during a period of seven months, covering the expected prior, during, and post-peak blooming periods of the natural toxins. Fifty-three (53) compounds were tentatively identified, and nine of these were confirmed and quantified. Phytotoxins were identified as the most frequent group of natural toxins in the water, particularly the alkaloids group.
    [Show full text]
  • Marine Pharmacology in 1999: Compounds with Antibacterial
    Comparative Biochemistry and Physiology Part C 132 (2002) 315–339 Review Marine pharmacology in 1999: compounds with antibacterial, anticoagulant, antifungal, anthelmintic, anti-inflammatory, antiplatelet, antiprotozoal and antiviral activities affecting the cardiovascular, endocrine, immune and nervous systems, and other miscellaneous mechanisms of action Alejandro M.S. Mayera, *, Mark T. Hamannb aDepartment of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA bSchool of Pharmacy, The University of Mississippi, Faser Hall University, MS 38677, USA Received 28 November 2001; received in revised form 30 May 2002; accepted 31 May 2002 Abstract This review, a sequel to the 1998 review, classifies 63 peer-reviewed articles on the basis of the reported preclinical pharmacological properties of marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria. In all, 21 marine chemicals demonstrated anthelmintic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antituberculosis or antiviral activities. An additional 23 compounds had significant effects on the cardiovascular, sympathomimetic or the nervous system, as well as possessed anti-inflammatory, immunosuppressant or fibrinolytic effects. Finally, 22 marine compounds were reported to act on a variety of molecular targets, and thus could potentially contribute to several pharmacological classes. Thus, during 1999 pharmacological research with marine chemicals continued
    [Show full text]
  • Investigations on the Impact of Toxic Cyanobacteria on Fish : As
    INVESTIGATIONS ON THE IMPACT OF TOXIC CYANOBACTERIA ON FISH - AS EXEMPLIFIED BY THE COREGONIDS IN LAKE AMMERSEE - DISSERTATION Zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften an der Universität Konstanz Fachbereich Biologie Vorgelegt von BERNHARD ERNST Tag der mündlichen Prüfung: 05. Nov. 2008 Referent: Prof. Dr. Daniel Dietrich Referent: Prof. Dr. Karl-Otto Rothhaupt Referent: Prof. Dr. Alexander Bürkle 2 »Erst seit gestern und nur für einen Tag auf diesem Planeten weilend, können wir nur hoffen, einen Blick auf das Wissen zu erhaschen, das wir vermutlich nie erlangen werden« Horace-Bénédict de Saussure (1740-1799) Pionier der modernen Alpenforschung & Wegbereiter des Alpinismus 3 ZUSAMMENFASSUNG Giftige Cyanobakterien beeinträchtigen Organismen verschiedenster Entwicklungsstufen und trophischer Ebenen. Besonders bedroht sind aquatische Organismen, weil sie von Cyanobakterien sehr vielfältig beeinflussbar sind und ihnen zudem oft nur sehr begrenzt ausweichen können. Zu den toxinreichsten Cyanobakterien gehören Arten der Gattung Planktothrix. Hierzu zählt auch die Burgunderblutalge Planktothrix rubescens, eine Cyanobakterienart die über die letzten Jahrzehnte im Besonderen in den Seen der Voralpenregionen zunehmend an Bedeutung gewonnen hat. An einigen dieser Voralpenseen treten seit dem Erstarken von P. rubescens existenzielle, fischereiwirtschaftliche Probleme auf, die wesentlich auf markante Wachstumseinbrüche bei den Coregonenbeständen (Coregonus sp.; i.e. Renken, Felchen, etc.) zurückzuführen sind. So auch
    [Show full text]
  • And Description of a New Species, Ciona Interme
    An integrative taxonomic framework for the study of the genus Ciona (Ascidiacea) and description of a new species, Ciona intermedia Francesco Mastrototaro, Federica Montesanto, Marika Salonna, Frédérique Viard, Giovanni Chimienti, Egidio Trainito, Carmela Gissi To cite this version: Francesco Mastrototaro, Federica Montesanto, Marika Salonna, Frédérique Viard, Giovanni Chimi- enti, et al.. An integrative taxonomic framework for the study of the genus Ciona (Ascidiacea) and description of a new species, Ciona intermedia. Zoological Journal of the Linnean Society, Linnean Society of London, 2020, 10.1093/zoolinnean/zlaa042. hal-02861027 HAL Id: hal-02861027 https://hal.archives-ouvertes.fr/hal-02861027 Submitted on 8 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Doi: 10.1093/zoolinnean/zlaa042 An integrative taxonomy framework for the study of the genus Ciona (Ascidiacea) and the description of the new species Ciona intermedia Francesco Mastrototaro1, Federica Montesanto1*, Marika Salonna2, Frédérique Viard3, Giovanni Chimienti1, Egidio Trainito4, Carmela Gissi2,5,* 1 Department of Biology and CoNISMa LRU, University of Bari “Aldo Moro” Via Orabona, 4 - 70125 Bari, Italy 2 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Via Orabona, 4 - 70125 Bari, Italy 3 Sorbonne Université, CNRS, Lab.
    [Show full text]
  • Studies of Marine Natural Products in Tasmania
    Studies of marine natural products in Tasmania By Jongkolnee Jongaramruong, B. Sc. and M. Sc. (Chulalongkorn University, Thailand) A thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy University of Tasmania Hobart March, 2002 Declaration This thesis contains no material that has been accepted for the award of any other degree or diploma in any university or tertiary institution, and to the best of knowledge and belief, this thesis contains no copy or paraphrase of material previously published or written by another person, except when due reference is made in the text of this thesis. Signed (Ms. Jongkolnee Jongaramruong) This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968. Signed izefut, cvicvwvotal (Ms. Jongkolnee Jongaramruong) Acknowledgements I would like to express my sincere thanks to my supervisor, Dr. Adrian J. Blackman for his exceptional supervision, encouragement, guidance and criticism, as well as invaluable time during the course of my study. Thanks are also given to numerous people who helped in collection of samples used in this study, namely Adrian Blackman, Christian Narkowicz, Daniel Ghedhill, Elizabeth Morgan, and Martin Hitchman. I would like to thank Professor Allan H. White and Dr. Brian W. Skelton from the University of Western Australia for the X-ray crystallography. Invaluable and professional help from Dr. Noel Davis on mass spectrometry, Dr. Evan Peacock for nuclear magnetic resonance and Dr. Graham Rowbottom for selecting the good crystal, as well as Marshall Hughes for lots of technical help about computers is greatly appreciated. As well as other technical staff at the Central Science Laboratory, staff and students in the School of Chemistry, University of Tasmania are also acknowledged.
    [Show full text]
  • Marine Drugs
    Mar. Drugs 2015, 13, 1552-1568; doi:10.3390/md13031552 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Kalkitoxin Inhibits Angiogenesis, Disrupts Cellular Hypoxic Signaling, and Blocks Mitochondrial Electron Transport in Tumor Cells J. Brian Morgan 1, Yang Liu 1, Veena Coothankandaswamy 1, Fakhri Mahdi 1, Mika B. Jekabsons 2, William H. Gerwick 3, Frederick A. Valeriote 4, Yu-Dong Zhou 1,*, and Dale G. Nagle 1,* 1 Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA; E-Mails: [email protected] (J.B.M.); [email protected] (Y.L.); [email protected] (V.C.); [email protected] (F.M.) 2 Department of Biology, University of Mississippi, University, MS 38677, USA; E-Mail: [email protected] 3 Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 920933, USA; E-Mail: [email protected] 4 Department of Internal Medicine, Division of Hematology and Oncology, Henry Ford Hospital, Detroit, MI 48202, USA; E-Mail: [email protected] * Authors to whom correspondence should be addressed; E-Mails: [email protected] (D.G.N.); [email protected] (Y.-D.Z.); Tel.: +1-662-915-7143; Fax: +1-662-915-5638. Academic Editors: Sergey A. Dyshlovoy and Friedemann Honecker Received: 29 January 2015 / Accepted: 11 March 2015 / Published: 20 March 2015 Abstract: The biologically active lipopeptide kalkitoxin was previously isolated from the marine cyanobacterium Moorea producens (Lyngbya majuscula). Kalkitoxin exhibited N-methyl-D-aspartate (NMDA)-mediated neurotoxicity and acted as an inhibitory ligand for voltage-sensitive sodium channels in cultured rat cerebellar granule neurons.
    [Show full text]
  • Alkaloids from Marine Ascidians
    Molecules 2011, 16, 8694-8732; doi:10.3390/molecules16108694 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Alkaloids from Marine Ascidians Marialuisa Menna *, Ernesto Fattorusso and Concetta Imperatore The NeaNat Group, Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131, Napoli, Italy * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-081-678-518; Fax: +39-081-678-552. Received: 16 September 2011; in revised form: 11 October 2011 / Accepted: 14 October 2011 / Published: 19 October 2011 Abstract: About 300 alkaloid structures isolated from marine ascidians are discussed in term of their occurrence, structural type and reported pharmacological activity. Some major groups (e.g., the lamellarins and the ecteinascidins) are discussed in detail, highlighting their potential as therapeutic agents for the treatment of cancer or viral infections. Keywords: natural products; alkaloids; ascidians; ecteinascidis; lamellarins 1. Introduction Ascidians belong to the phylum Chordata, which encompasses all vertebrate animals, including mammals and, therefore, they represent the most highly evolved group of animals commonly investigated by marine natural products chemists. Together with the other classes (Thaliacea, Appendicularia, and Sorberacea) included in the subphylum Urochordata (=Tunicata), members of the class Ascidiacea are commonly referred to as tunicates, because their body is covered by a saclike case or tunic, or as sea squirts, because many species expel streams of water through a siphon when disturbed. There are roughly 3,000 living species of tunicates, of which ascidians are the most abundant and, thus, the mostly chemically investigated.
    [Show full text]
  • Describing Species
    DESCRIBING SPECIES Practical Taxonomic Procedure for Biologists Judith E. Winston COLUMBIA UNIVERSITY PRESS NEW YORK Columbia University Press Publishers Since 1893 New York Chichester, West Sussex Copyright © 1999 Columbia University Press All rights reserved Library of Congress Cataloging-in-Publication Data © Winston, Judith E. Describing species : practical taxonomic procedure for biologists / Judith E. Winston, p. cm. Includes bibliographical references and index. ISBN 0-231-06824-7 (alk. paper)—0-231-06825-5 (pbk.: alk. paper) 1. Biology—Classification. 2. Species. I. Title. QH83.W57 1999 570'.1'2—dc21 99-14019 Casebound editions of Columbia University Press books are printed on permanent and durable acid-free paper. Printed in the United States of America c 10 98765432 p 10 98765432 The Far Side by Gary Larson "I'm one of those species they describe as 'awkward on land." Gary Larson cartoon celebrates species description, an important and still unfinished aspect of taxonomy. THE FAR SIDE © 1988 FARWORKS, INC. Used by permission. All rights reserved. Universal Press Syndicate DESCRIBING SPECIES For my daughter, Eliza, who has grown up (andput up) with this book Contents List of Illustrations xiii List of Tables xvii Preface xix Part One: Introduction 1 CHAPTER 1. INTRODUCTION 3 Describing the Living World 3 Why Is Species Description Necessary? 4 How New Species Are Described 8 Scope and Organization of This Book 12 The Pleasures of Systematics 14 Sources CHAPTER 2. BIOLOGICAL NOMENCLATURE 19 Humans as Taxonomists 19 Biological Nomenclature 21 Folk Taxonomy 23 Binomial Nomenclature 25 Development of Codes of Nomenclature 26 The Current Codes of Nomenclature 50 Future of the Codes 36 Sources 39 Part Two: Recognizing Species 41 CHAPTER 3.
    [Show full text]
  • Toxin Types, Toxicokinetics and Toxicodynamics
    Chapter 16: Toxin types, toxicokinetics and toxicodynamics Andrew Humpage1,2,3 1Australian Water Quality Centre, PMB 3, Salisbury, Adelaide, SA 5108, Australia. 2Discipline of Pharmacology, School of Medical Sciences, Uni- versity of Adelaide, SA 5005, Australia. 3Cooperative Research Centre for Water Quality and Treatment, PMB 3, Salisbury, Adelaide, SA 5108, Aus- tralia. Introduction Cyanobacteria produce a wide array of bioactive secondary metabolites (see Table A.1 in Appendix A), some which are toxic (Namikoshi and Rinehart 1996; Skulberg 2000). Those toxic to mammals include the mi- crocystins, cylindrospermopsins, saxitoxins, nodularins, anatoxin-a, ho- moanatoxin-a, and anatoxin-a(s). It has been recently suggested that β- methylamino alanine (BMAA) may be a new cyanobacterial toxin (Cox et al. 2003; Cox et al. 2005). The public health risks of cyanotoxins in drink- ing water have recently been reviewed (Falconer and Humpage 2005b). The aim of this paper is to concisely review our current knowledge of their acute toxicity, mechanisms of action, toxicokinetics and toxicodynamics. Microcystins Microcystins (MCs) are a group of at least 80 variants based on a cyclic heptapeptide structure (Fig. 1). All toxic microcystin structural variants contain a unique hydrophobic amino acid, 3-amino-9-methoxy-10-phenyl- 2,6,8-trimethyl-deca-4(E),6(E)-dienoic acid (ADDA). The prototype- compound is MC-LR, which has leucine and arginine at the two hypervari- able positions in the ring structure (X and Y, respectively, in Fig. 1). Sub- 384 A. Humpage stitution of other amino acids at these sites, or methylation of residues at other sites, leads to wide structural variability (Namikoshi et al.
    [Show full text]
  • Algal Bloom Expansion Increases Cyanotoxin Risk in Food Niam M
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in Food Science and Food Science and Technology Department Technology 2018 Algal Bloom Expansion Increases Cyanotoxin Risk in Food Niam M. Abeysiriwardena Lake Forest College Samuel J. L. Gascoigne Lake Forest College Angela Anandappa University of Nebraska - Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/foodsciefacpub Part of the Food Science Commons Abeysiriwardena, Niam M.; Gascoigne, Samuel J. L.; and Anandappa, Angela, "Algal Bloom Expansion Increases Cyanotoxin Risk in Food" (2018). Faculty Publications in Food Science and Technology. 262. http://digitalcommons.unl.edu/foodsciefacpub/262 This Article is brought to you for free and open access by the Food Science and Technology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in Food Science and Technology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. YALE JOURNAL OF BIOLOGY AND MEDICINE 91 (2018), pp.129-142. Review Algal Bloom Expansion Increases Cyanotoxin Risk in Food Niam M. Abeysiriwardenaa,b, Samuel J. L. Gascoignea,c, and Angela Anandappad,e,f,* aNeuroscience Department, Lake Forest College, Lake Forest, IL; bComputer Science, Lake Forest College, Lake Forest, IL; cBiology Department, Lake Forest College, Lake Forest IL; dAlliance for Advanced Sanitation, University of Nebraska-Lincoln, NE; eFood Processing Center, University of Nebraska-Lincoln, NE; fDepartment of Food Science and Technology, University of Nebraska-Lincoln, NE As advances in global transportation infrastructure make it possible for out of season foods to be available year-round, the need for assessing the risks associated with the food production and expanded distribution are even more important.
    [Show full text]
  • Curriculum Vitae Murray 2010.Pdf
    Thomas F. Murray Curriculum Vitae Thomas F. Murray, Ph.D. Education: 1971—B.S. (Biology), University of North Texas, Denton, Texas 1979—Ph.D. (Pharmacology), School of Medicine, University of Washington, Seattle, Washington Brief Chronology of Employment: 1971—1973 Biology Teacher, Onondaga Central School, Nedrow, New York 1974—1976 Teaching Assistant, College of Pharmacy, Washington State University, Pullman, Washington 1976—1979 Research Assistant, Department of Pharmacology, University of Washington, Seattle, Washington (Major Professor: Akira Horita) 1979—1981 Pharmacology Research Associate, Laboratory of Preclinical Pharmacology, National Institute of Mental Health, Saint Elizabeths Hospital, Washington, D.C. (Preceptor: Erminio Costa) 1981—1983 Assistant Professor of Pharmacology, College of Pharmacy, Washington State University, Pullman, Washington 1983—1986 Assistant Professor of Pharmacology, College of Pharmacy, Oregon State University, Corvallis, Oregon 1986—1990 Associate Professor of Pharmacology, College of Pharmacy, Oregon State University, Corvallis, Oregon 1990—1997 Professor of Pharmacology, College of Pharmacy, Oregon State University, Corvallis, Oregon 1997—2006 Professor and Head, Department of Physiology and Pharmacology, College of Veterinary Medicine, the University of Georgia, Athens, Georgia 2006— Professor and Chair, Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska 2008— Associate Dean for Research, Creighton University School of Medicine, Omaha, Nebraska Societies: Sigma
    [Show full text]