Causality and Quantum Theory

Total Page:16

File Type:pdf, Size:1020Kb

Causality and Quantum Theory CAUSALITY AND QUANTUM THEORY BLAKE K. WINTER Abstract. We begin with a brief summary of issues encountered involving causality in quantum theory, placing careful emphasis on the assumptions in- volved in results such as the EPR paradox and Bell’s inequality. We critique some solutions to the resulting paradox, including Rovelli’s relational quantum mechanics and the many-worlds interpretation. We then discuss how a space- time manifold could come about on the classical level out of a quantum system, by constructing a space with a topology out of the algebra of observables, and show that even with an hypothesis of superluminal causation enforcing consis- tent measurements of entangled states, a causal cone structure arises on the classical level. Finally, we discuss the possibility that causality as understood in classical relativistic physics may be an emergent symmetry which does not hold on the quantum level. 1. Quantum theory Recall that a quantum system may be described by a Hilbert space H (for technical reasons, this must often be a rigged Hilbert space, [1, 8, 11] together with some subalgebra O of the self-adjoint operators on H. Operators in O correspond to observables. For example, the spin of a spin-1/2 particle is described by a two- dimensional Hilbert space with an orthonormal basis of unit vectors given by (using Dirac’s bra-ket notation) |ui and |di, the up and down states respectively. A state of the system is a unit vector in H. According to the usual rules of quantum mechanics. When an observable A ∈ O is measured, the possible outcomes are given by the spectrum of A. If ai is an eigenvalue for A, and the system is in the state |Ψi then the probability of obtaining ai as the result of a measurement t 2 of A is given by | hΨ| Pai Pai |Ψi | , where Pai is the projection operator onto the eigenspace of A corresponding to the eigenvalue ai. The quantity hΦ| Ψi is called the probability amplitude of finding the system in the state |Φi when we measure it while it is in the state |Ψi. arXiv:1705.07201v1 [quant-ph] 19 May 2017 According to the usual rules of quantum mechanics, a system normally evolves in a unitary fashion. That is, the state |Ψ(t)i is given by U(t) |Ψ(0)i for some unitary function U(t). However, when a system is measured, the state changes in a non-unitary fashion: if a measurement of the observable A while the system is in the state |Ψiyields the result ai, then the system changes to the state Pai |Ψi. This is the usual axiom of measurement in quantum theory. The difficulty in interpreting quantum mechanics is that the resulting probabilities are not additive, as we might expect in classical probability theory; rather, if a state |Ψi = a |Ψ1i + b |Ψ2i, then the probability of finding the system in the state |Φi will be given by 2 |hΦ|(a |Ψ1i + b |Ψ2i)| , that is, we are adding the probabilities amplitudes rather than the probabilities. This gives rise to the well-known phenomenon of quantum Key words and phrases. Quantum physics, causality, measurement, Hilbert space. 1 2 BLAKE K. WINTER interference, as well as to the well-known difficulty in interpreting the concept of measurement in quantum mechanics. 2. EPR, Bell, and causality The Einstein-Podolsky-Rosen paradox in quantum theory is a result which shows that ordinary quantum theory, assuming that our universe is a single universe, must either involve hidden variables, or else there must be a mechanism which involves superluminal causation. The original result is found in [7]. Note that the assumption that our universe is a single universe simply means that all observers involved are single observers, and they are the same observers at each point in the history considered, and it does not say anything about whether parallel universes exist or not. This assumption is denied by the many-worlds interpretation, [2], which we will discuss in Sec. 3. Theorem 1. Quantum theory in a single universe without hidden variables requires a superluminal mechanism to enforce consistent measurements, [7]. Proof. As an example, consider two spin-1/2 particles. The Hilbert space describing their spins will be the tensor product of two copies of the Hilbert space with basis |ui and |di. Thus, the Hilbert space will have a basis consisting of four vectors: |u0i |u1i, |u0i |d1i, |d0i |u1i, |d0i |d1i. Suppose these particles are produced at a certain point in spacetime and sent off in opposite directions at close to the speed of light, hitting two detectors which are separated by a spacelike interval. Suppose furthermore that their spins, prior to hitting the detectors, are described by the 1 vector ( √2 (|u0i |u1i + |d0i |d1i). Then when results are compared, either both particles are found to have been spin up, or both have been found to be spin down. But this requires either that there be local hidden variables telling the particles which state they should collapse into upon measurement, or else some superluminal mechanism to enforce their correlation. On the other hand, Bell showed that local hidden variables are incapable of reproducing the results of quantum mechanics. Theorem 2. No local hidden variable theory can reproduce the measured results of quantum mechanics. See [3] for a proof of this theorem, and [5] for an experiment demonstrating that the quantum mechanical results are experimentally verified. Bell’s theorem seems to frequently be cited as proof that hidden variables cannot be local (though non-local hidden variables, or hidden variables with superluminal causal enforcement mechanisms, can reproduce the results of quantum mechanics, e.g. [4]). However, it is often overlooked that the EPR result says that without hidden variables, there must still be some nonlocal enforcement mechanism, pro- vided that our universe remains a single universe through history, and provided that correlations require some real causal mechanism of enforcement. 3. Relational Quantum Mechanics and Many-Worlds Here we will discuss two methods for trying to resolve the above issue. The first, relational quantum mechanics, attempts to do this in a single universe. It thus CAUSALITYANDQUANTUMTHEORY 3 ends up violating the supposition that every correlation has some real mechanism of enforcement underlying it, and appears logically unsound. The second does away with the assumption that our universe is a single universe. We begin with the notion of relational quantum mechanics, which relies on the idea that the split of the physical universe into quantum systems and classical observers is relative or relational and has been suggested by Rovelli, [10]. According to this interpretation, a state vector exists only relative to an observer. Observer A may be a part of observer B’s state vector (and vice verse). There are two problems with this approach. First, it does not define what systems will actually give rise to observers. Therefore, it depends, like the Copenhagen interpretation, on arbitrarily inserting observers into the physical universe. However, it is possible that this problem could be eventually resolved in a satisfactory manner. Second, it does not explain why two observers will agree whenever they compare experimental results. As an example, suppose there are a pair of spin-1/2 particles, a and b, which are entangled so they are both spin up or both spin down. Suppose observer A measures the spin of particle a and observer B measures the spin of particle B. Then according to observer A, measuring particle a causes the state vector to collapse to a state where particle b has exactly one spin, while observer B sees measuring particle b to cause his state vector to collapse particle a to a state with only one spin. When A and B compare their results, A sees B’s measurement as being caused by A’s state vector, while B sees A’s measurement as being caused by the collapse of B’s state vector. Rovelli argues that this is no different than the case of chronological ordering in special relativity, in which two observers may disagree about which event precedes another. Therefore, Rovelli is comfortable with the fact that A and B disagree about the cause of correlation between A’s results and B’s results. However, we maintain that the two cases are quite different. In special relativity, chronological order is no longer fixed, but there is still a well-defined causal order between events. Two observers in special relativity will agree about the causes of a chain of events, even though they might disagree on the chronological order. Ac- cording to our understanding of Rovelli’s relational quantum mechanics, however, the question ”what actually causes there to be a correlation between A’s measure- ments and B’s measurements” has no answer. A and B will disagree about the cause. Relational quantum mechanics is therefore incompatible with the philosoph- ical tenet that there is an objective or real cause for the correlation between the measurements of the two observers. The only method that we can see to try to salvage both the relational interpre- tation and the objectivity of causes is to add in a many-worlds type interpretation, [2]. In order to avoid any kind of spacelike causes, we might posit that when ob- server A goes to meet observer B, the act of comparing results causes observer A to branch into a universe with a compatible version of observer B. Note that we cannot say that A was already in that universe from the moment they made the first measurement, without returning to the need to enforce spacelike correlations.
Recommended publications
  • Relational Quantum Mechanics
    Relational Quantum Mechanics Matteo Smerlak† September 17, 2006 †Ecole normale sup´erieure de Lyon, F-69364 Lyon, EU E-mail: [email protected] Abstract In this internship report, we present Carlo Rovelli’s relational interpretation of quantum mechanics, focusing on its historical and conceptual roots. A critical analysis of the Einstein-Podolsky-Rosen argument is then put forward, which suggests that the phenomenon of ‘quantum non-locality’ is an artifact of the orthodox interpretation, and not a physical effect. A speculative discussion of the potential import of the relational view for quantum-logic is finally proposed. Figure 0.1: Composition X, W. Kandinski (1939) 1 Acknowledgements Beyond its strictly scientific value, this Master 1 internship has been rich of encounters. Let me express hereupon my gratitude to the great people I have met. First, and foremost, I want to thank Carlo Rovelli1 for his warm welcome in Marseille, and for the unexpected trust he showed me during these six months. Thanks to his rare openness, I have had the opportunity to humbly but truly take part in active research and, what is more, to glimpse the vivid landscape of scientific creativity. One more thing: I have an immense respect for Carlo’s plainness, unaltered in spite of his renown achievements in physics. I am very grateful to Antony Valentini2, who invited me, together with Frank Hellmann, to the Perimeter Institute for Theoretical Physics, in Canada. We spent there an incredible week, meeting world-class physicists such as Lee Smolin, Jeffrey Bub or John Baez, and enthusiastic postdocs such as Etera Livine or Simone Speziale.
    [Show full text]
  • The E.P.R. Paradox George Levesque
    Undergraduate Review Volume 3 Article 20 2007 The E.P.R. Paradox George Levesque Follow this and additional works at: http://vc.bridgew.edu/undergrad_rev Part of the Quantum Physics Commons Recommended Citation Levesque, George (2007). The E.P.R. Paradox. Undergraduate Review, 3, 123-130. Available at: http://vc.bridgew.edu/undergrad_rev/vol3/iss1/20 This item is available as part of Virtual Commons, the open-access institutional repository of Bridgewater State University, Bridgewater, Massachusetts. Copyright © 2007 George Levesque The E.P.R. Paradox George Levesque George graduated from Bridgewater his paper intends to discuss the E.P.R. paradox and its implications State College with majors in Physics, for quantum mechanics. In order to do so, this paper will discuss the Mathematics, Criminal Justice, and features of intrinsic spin of a particle, the Stern-Gerlach experiment, Sociology. This piece is his Honors project the E.P.R. paradox itself and the views it portrays. In addition, we will for Electricity and Magnetism advised by consider where such a classical picture succeeds and, eventually, as we will see Dr. Edward Deveney. George ruminated Tin Bell’s inequality, fails in the strange world we live in – the world of quantum to help the reader formulate, and accept, mechanics. why quantum mechanics, though weird, is valid. Intrinsic Spin Intrinsic spin angular momentum is odd to describe by any normal terms. It is unlike, and often entirely unrelated to, the classical “orbital angular momentum.” But luckily we can describe the intrinsic spin by its relationship to the magnetic moment of the particle being considered.
    [Show full text]
  • Theoretical Physics Group Decoherent Histories Approach: a Quantum Description of Closed Systems
    Theoretical Physics Group Department of Physics Decoherent Histories Approach: A Quantum Description of Closed Systems Author: Supervisor: Pak To Cheung Prof. Jonathan J. Halliwell CID: 01830314 A thesis submitted for the degree of MSc Quantum Fields and Fundamental Forces Contents 1 Introduction2 2 Mathematical Formalism9 2.1 General Idea...................................9 2.2 Operator Formulation............................. 10 2.3 Path Integral Formulation........................... 18 3 Interpretation 20 3.1 Decoherent Family............................... 20 3.1a. Logical Conclusions........................... 20 3.1b. Probabilities of Histories........................ 21 3.1c. Causality Paradox........................... 22 3.1d. Approximate Decoherence....................... 24 3.2 Incompatible Sets................................ 25 3.2a. Contradictory Conclusions....................... 25 3.2b. Logic................................... 28 3.2c. Single-Family Rule........................... 30 3.3 Quasiclassical Domains............................. 32 3.4 Many History Interpretation.......................... 34 3.5 Unknown Set Interpretation.......................... 36 4 Applications 36 4.1 EPR Paradox.................................. 36 4.2 Hydrodynamic Variables............................ 41 4.3 Arrival Time Problem............................. 43 4.4 Quantum Fields and Quantum Cosmology.................. 45 5 Summary 48 6 References 51 Appendices 56 A Boolean Algebra 56 B Derivation of Path Integral Method From Operator
    [Show full text]
  • On Relational Quantum Mechanics Oscar Acosta University of Texas at El Paso, [email protected]
    University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2010-01-01 On Relational Quantum Mechanics Oscar Acosta University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Philosophy of Science Commons, and the Quantum Physics Commons Recommended Citation Acosta, Oscar, "On Relational Quantum Mechanics" (2010). Open Access Theses & Dissertations. 2621. https://digitalcommons.utep.edu/open_etd/2621 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. ON RELATIONAL QUANTUM MECHANICS OSCAR ACOSTA Department of Philosophy Approved: ____________________ Juan Ferret, Ph.D., Chair ____________________ Vladik Kreinovich, Ph.D. ___________________ John McClure, Ph.D. _________________________ Patricia D. Witherspoon Ph. D Dean of the Graduate School Copyright © by Oscar Acosta 2010 ON RELATIONAL QUANTUM MECHANICS by Oscar Acosta THESIS Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of MASTER OF ARTS Department of Philosophy THE UNIVERSITY OF TEXAS AT EL PASO MAY 2010 Acknowledgments I would like to express my deep felt gratitude to my advisor and mentor Dr. Ferret for his never-ending patience, his constant motivation and for not giving up on me. I would also like to thank him for introducing me to the subject of philosophy of science and hiring me as his teaching assistant.
    [Show full text]
  • Path Integral Implementation of Relational Quantum Mechanics
    Path Integral Implementation of Relational Quantum Mechanics Jianhao M. Yang ( [email protected] ) Qualcomm (United States) Research Article Keywords: Relational Quantum mechanics, Path Integral, Entropy, Inuence Functional Posted Date: February 18th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-206217/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Scientic Reports on April 21st, 2021. See the published version at https://doi.org/10.1038/s41598-021-88045-6. Path Integral Implementation of Relational Quantum Mechanics Jianhao M. Yang∗ Qualcomm, San Diego, CA 92121, USA (Dated: February 4, 2021) Relational formulation of quantum mechanics is based on the idea that relational properties among quantum systems, instead of the independent properties of a quantum system, are the most fundamental elements to construct quantum mechanics. In the recent works (J. M. Yang, Sci. Rep. 8:13305, 2018), basic relational quantum mechanics framework is formulated to derive quantum probability, Born’s Rule, Schr¨odinger Equations, and measurement theory. This paper gives a concrete implementation of the relational probability amplitude by extending the path integral formulation. The implementation not only clarifies the physical meaning of the relational probability amplitude, but also gives several important applications. For instance, the double slit experiment can be elegantly explained. A path integral representation of the reduced density matrix of the observed system can be derived. Such representation is shown valuable to describe the interaction history of the measured system and a series of measuring systems.
    [Show full text]
  • Bachelorarbeit
    Bachelorarbeit The EPR-Paradox, Nonlocality and the Question of Causality Ilvy Schultschik angestrebter akademischer Grad Bachelor of Science (BSc) Wien, 2014 Studienkennzahl lt. Studienblatt: 033 676 Studienrichtung lt. Studienblatt: Physik Betreuer: Univ. Prof. Dr. Reinhold A. Bertlmann Contents 1 Motivation and Mathematical framework 2 1.1 Entanglement - Separability . .2 1.2 Schmidt Decomposition . .3 2 The EPR-paradox 5 2.1 Introduction . .5 2.2 Preface . .5 2.3 EPR reasoning . .8 2.4 Bohr's reply . 11 3 Hidden Variables and no-go theorems 12 4 Nonlocality 14 4.1 Nonlocality and Quantum non-separability . 15 4.2 Teleportation . 17 5 The Bell theorem 19 5.1 Bell's Inequality . 19 5.2 Derivation . 19 5.3 Violation by quantum mechanics . 21 5.4 CHSH inequality . 22 5.5 Bell's theorem and further discussion . 24 5.6 Different assumptions . 26 6 Experimental realizations and loopholes 26 7 Causality 29 7.1 Causality in Special Relativity . 30 7.2 Causality and Quantum Mechanics . 33 7.3 Remarks and prospects . 34 8 Acknowledgment 35 1 1 Motivation and Mathematical framework In recent years, many physicists have taken the incompatibility between cer- tain notions of causality, reality, locality and the empirical data less and less as a philosophical discussion about interpretational ambiguities. Instead sci- entists started to regard this tension as a productive resource for new ideas about quantum entanglement, quantum computation, quantum cryptogra- phy and quantum information. This becomes especially apparent looking at the number of citations of the original EPR paper, which has risen enormously over recent years, and be- coming the starting point for many groundbreaking ideas.
    [Show full text]
  • Many Worlds Model Resolving the Einstein Podolsky Rosen Paradox Via a Direct Realism to Modal Realism Transition That Preserves Einstein Locality
    Many Worlds Model resolving the Einstein Podolsky Rosen paradox via a Direct Realism to Modal Realism Transition that preserves Einstein Locality Sascha Vongehr †,†† †Department of Philosophy, Nanjing University †† National Laboratory of Solid-State Microstructures, Thin-film and Nano-metals Laboratory, Nanjing University Hankou Lu 22, Nanjing 210093, P. R. China The violation of Bell inequalities by quantum physical experiments disproves all relativistic micro causal, classically real models, short Local Realistic Models (LRM). Non-locality, the infamous “spooky interaction at a distance” (A. Einstein), is already sufficiently ‘unreal’ to motivate modifying the “realistic” in “local realistic”. This has led to many worlds and finally many minds interpretations. We introduce a simple many world model that resolves the Einstein Podolsky Rosen paradox. The model starts out as a classical LRM, thus clarifying that the many worlds concept alone does not imply quantum physics. Some of the desired ‘non-locality’, e.g. anti-correlation at equal measurement angles, is already present, but Bell’s inequality can of course not be violated. A single and natural step turns this LRM into a quantum model predicting the correct probabilities. Intriguingly, the crucial step does obviously not modify locality but instead reality: What before could have still been a direct realism turns into modal realism. This supports the trend away from the focus on non-locality in quantum mechanics towards a mature structural realism that preserves micro causality. Keywords: Many Worlds Interpretation; Many Minds Interpretation; Einstein Podolsky Rosen Paradox; Everett Relativity; Modal Realism; Non-Locality PACS: 03.65. Ud 1 1 Introduction: Quantum Physics and Different Realisms ...............................................................
    [Show full text]
  • John Von Neumann's “Impossibility Proof” in a Historical Perspective’, Physis 32 (1995), Pp
    CORE Metadata, citation and similar papers at core.ac.uk Provided by SAS-SPACE Published: Louis Caruana, ‘John von Neumann's “Impossibility Proof” in a Historical Perspective’, Physis 32 (1995), pp. 109-124. JOHN VON NEUMANN'S ‘IMPOSSIBILITY PROOF’ IN A HISTORICAL PERSPECTIVE ABSTRACT John von Neumann's proof that quantum mechanics is logically incompatible with hidden varibales has been the object of extensive study both by physicists and by historians. The latter have concentrated mainly on the way the proof was interpreted, accepted and rejected between 1932, when it was published, and 1966, when J.S. Bell published the first explicit identification of the mistake it involved. What is proposed in this paper is an investigation into the origins of the proof rather than the aftermath. In the first section, a brief overview of the his personal life and his proof is given to set the scene. There follows a discussion on the merits of using here the historical method employed elsewhere by Andrew Warwick. It will be argued that a study of the origins of von Neumann's proof shows how there is an interaction between the following factors: the broad issues within a specific culture, the learning process of the theoretical physicist concerned, and the conceptual techniques available. In our case, the ‘conceptual technology’ employed by von Neumann is identified as the method of axiomatisation. 1. INTRODUCTION A full biography of John von Neumann is not yet available. Moreover, it seems that there is a lack of extended historical work on the origin of his contributions to quantum mechanics.
    [Show full text]
  • EPR Paradox Solved by Special Theory of Relativity J
    Vol. 125 (2014) ACTA PHYSICA POLONICA A No. 5 EPR Paradox Solved by Special Theory of Relativity J. Lee 17161 Alva Rd. #1123, San Diego, CA 92127, U.S.A. (Received November 7, 2013) This paper uses the special theory of relativity to introduce a novel solution to EinsteinPodolskyRosen paradox. More specically, the faster-than-light communication is described to explain two types of EPR paradox experiments: photon polarization and electronpositron pair spins. Most importantly, this paper explains why this faster-than-light communication does not violate the special theory of relativity. DOI: 10.12693/APhysPolA.125.1107 PACS: 03.65.Ud 1. Introduction At this point, it is very important to note that both EPR paradox and Bell's inequality theorem assume that EPR paradox refers to the thought experiment de- faster-than-light (FTL) communication between the two signed by Einstein, Podolsky, and Rosen (EPR) to show entangled systems is theoretically impossible [1, 3]. It is the incompleteness of wave function in quantum mechan- the intent of this paper to show how the FTL commu- ics (QM) [1]. In QM, the Heisenberg uncertainty princi- nication could be possible without violating the special ple places a limitation on how precisely two complemen- theory of relativity (SR). In short, it is the innite time tary physical properties of a system can be measured si- dilation that would be responsible for the instant FTL multaneously [2]. EPR came up with the following para- communication. doxical scenario where the two properties, i.e. momen- 2. Methods tum and position, could be measured precisely, and thus The two common types of Bell's inequality experiments would contradict the Heisenberg uncertainty principle.
    [Show full text]
  • SENTENARYO NG TEORYANG GENERAL RELATIVITY March 14, 2016 (1 - 3 Pm), NIP Auditorium, up Diliman Program Emcees: Ms
    SENTENARYO NG TEORYANG GENERAL RELATIVITY March 14, 2016 (1 - 3 pm), NIP Auditorium, UP Diliman Program Emcees: Ms. Cherrie Olaya and Mr. Nestor Bareza National Anthem Welcome Remarks Academician William G. Padolina (NAST) Presentation 1 Einstein: Science, Image, and Impact (Dr. Perry Esguerra) Presentation 2 Einstein and the Music of the Spheres (Dr. Ian Vega) Intermission NIP Resonance Choir Presentation 3 From Einstein’s Universe to the Multiverse (Dr. Reina Reyes) Open Forum* *Moderators: Dr. May Lim and Dr. Nathaniel Hermosa II Closing Remarks Dr. Jose Maria P. Balmaceda (UP College of Science) (Refreshments will be served at the NIP Veranda) What’s Inside? Organizing Committee Messages p.1 Extended Abstracts 8 Dr. Percival Almoro (Chair) Einstein chronology 18 Dr. Perry Esguerra Einstein quotations 19 Dr. Ian Vega Dr. Caesar Saloma (Convenor) Outside Front Cover Outside Back Cover Inside Back Cover Einstein in Vienna, 1921 Depiction of gravitational waves Galaxies By: F. Schmutzer generated by binary neutron stars. By: Hubble Ultra Deep Field (Wikimedia Commons) By: R. Hurt/Caltech-JPL (http://hyperphysics.phy-astr.gsu. (http://www.jpl.nasa.gov/im- edu/hbase/astro/deepfield.html) ages/universe/20131106/pul- sar20131106-full.jpg) Acknowledgements Sentenaryo ng Teoryang General Relativity (March 14, 2016, UP-NIP) 1 2 Sentenaryo ng Teoryang General Relativity (March 14, 2016, UP-NIP) Sentenaryo ng Teoryang General Relativity (March 14, 2016, UP-NIP) 3 4 Sentenaryo ng Teoryang General Relativity (March 14, 2016, UP-NIP) http://www.npr.org/sections/thetwo-way/2016/02/11/466286219/in-milestone- scientists-detect-waves-in-space-time-as-black-holes-collide https://www.youtube.com/watch?v=B4XzLDM3Py8 https://soundcloud.com/emily-lakdawalla Sentenaryo ng Teoryang General Relativity (March 14, 2016, UP-NIP) 5 6 Sentenaryo ng Teoryang General Relativity (March 14, 2016, UP-NIP) Sentenaryo ng Teoryang General Relativity (March 14, 2016, UP-NIP) 7 Einstein: Science, Image, and Impact By Perry Esguerra ‘WHY is it that nobodY for photoluminescence, the ory of relativity.
    [Show full text]
  • Albert Einstein - Wikipedia, the Free Encyclopedia Page 1 of 27
    Albert Einstein - Wikipedia, the free encyclopedia Page 1 of 27 Albert Einstein From Wikipedia, the free encyclopedia Albert Einstein ( /ælbərt a nsta n/; Albert Einstein German: [albt a nʃta n] ( listen); 14 March 1879 – 18 April 1955) was a German-born theoretical physicist who developed the theory of general relativity, effecting a revolution in physics. For this achievement, Einstein is often regarded as the father of modern physics.[2] He received the 1921 Nobel Prize in Physics "for his services to theoretical physics, and especially for his discovery of the law of the photoelectric effect". [3] The latter was pivotal in establishing quantum theory within physics. Near the beginning of his career, Einstein thought that Newtonian mechanics was no longer enough to reconcile the laws of classical mechanics with the laws of the electromagnetic field. This led to the development of his special theory of relativity. He Albert Einstein in 1921 realized, however, that the principle of relativity could also be extended to gravitational fields, and with his Born 14 March 1879 subsequent theory of gravitation in 1916, he published Ulm, Kingdom of Württemberg, a paper on the general theory of relativity. He German Empire continued to deal with problems of statistical Died mechanics and quantum theory, which led to his 18 April 1955 (aged 76) explanations of particle theory and the motion of Princeton, New Jersey, United States molecules. He also investigated the thermal properties Residence Germany, Italy, Switzerland, United of light which laid the foundation of the photon theory States of light. In 1917, Einstein applied the general theory of relativity to model the structure of the universe as a Ethnicity Jewish [4] whole.
    [Show full text]
  • Bell's Theorem...What?!
    Bell’s Theorem...What?! Entanglement and Other Puzzles Kyle Knoepfel 27 February 2008 University of Notre Dame Bell’s Theorem – p.1/49 Some Quotes about Quantum Mechanics Erwin Schrödinger: “I do not like it, and I am sorry I ever had anything to do with it.” Max von Laue (regarding de Broglie’s theory of electrons having wave properties): “If that turns out to be true, I’ll quit physics.” Niels Bohr: “Anyone who is not shocked by quantum theory has not understood a single word...” Richard Feynman: “I think it is safe to say that no one understands quantum mechanics.” Carlo Rubbia (when asked why quarks behave the way they do): “Nobody has a ******* idea why. That’s the way it goes. Golden rule number one: never ask those questions.” Bell’s Theorem – p.2/49 Outline Quantum Mechanics (QM) Introduction Different Formalisms,Pictures & Interpretations Wavefunction Evolution Conceptual Struggles with QM Einstein-Podolsky-Rosen (EPR) Paradox John S. Bell The Inequalities The Experiments The Theorem Should we expect any of this? References Bell’s Theorem – p.3/49 Quantum Mechanics Review Which of the following statements about QM are false? Bell’s Theorem – p.4/49 Quantum Mechanics Review Which of the following statements about QM are false? 1. If Oy = O, then the operator O is self-adjoint. 2. ∆x∆px ≥ ~=2 is always true. 3. The N-body Schrödinger equation is local in physical R3. 4. The Schrödinger equation was discovered before the Klein-Gordon equation. Bell’s Theorem – p.5/49 Quantum Mechanics Review Which of the following statements about QM are false? 1.
    [Show full text]