Investigating the Possible Causal Role of Coffee Consumption with Prostate Cancer Risk and Progression Using Mendelian Randomization Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Investigating the Possible Causal Role of Coffee Consumption with Prostate Cancer Risk and Progression Using Mendelian Randomization Analysis IJC International Journal of Cancer Short Report Investigating the possible causal role of coffee consumption with prostate cancer risk and progression using Mendelian randomization analysis Amy E. Taylor1,2, Richard M. Martin1,3,4, Milan S. Geybels5, Janet L. Stanford5,6, Irene Shui5, Rosalind Eeles7,8, Doug Easton9, Zsofia Kote-Jarai7, Ali Amin Al Olama9, Sara Benlloch9, Kenneth Muir10, Graham G Giles11,12, Fredrik Wiklund13, Henrik Gronberg13, Christopher A Haiman14, Johanna Schleutker15,16, Børge G. Nordestgaard17, Ruth C Travis18, David Neal19, Nora Pashayan12,20, Kay-Tee Khaw21, William Blot22, Stephen Thibodeau23, Christiane Maier24,25, Adam S Kibel26,27, Cezary Cybulski28, Lisa Cannon-Albright29, Hermann Brenner30,31,32, Jong Park33, Radka Kaneva34, Jyotsna Batra35, Manuel R Teixeira36,37, Hardev Pandha38, and the PRACTICAL Consortium, Jenny Donovan3 and Marcus R. Munafo1,2 1 MRC Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, United Kingdom 2 School of Experimental Psychology and UK Centre for Tobacco and Alcohol Studies, University of Bristol, Bristol, United Kingdom 3 School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom 4 The NIHR Bristol Nutrition Biomedical Research Unit, University Hospitals Bristol NHS Foundation Trust and the University of Bristol 5 Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 6 Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA Key words: prostate cancer, coffee, Mendelian randomization Cancer Epidemiology Additional Supporting Information may be found in the online version of this article. Conflicts of interest: Rosalind Eeles received an honorarium from the genito-urinary American Society of Clinical Oncology (ASCO) meeting 2016. Grant sponsor: UK Centre for Tobacco and Alcohol Studies, a UKCRC Public Health Research: Centre of Excellence (to A.E.T. and M.R.M.); British Heart Foundation, Cancer Research UK, Economic and Social Research Council, Medical Research Council, and the National Institute for Health Research, under the auspices of the UK Clinical Research Collaboration; Grant sponsor: Cancer Research UK (to R.M.M. and Caroline Relton (Integrative Cancer Epidemiology Programme)); Grant number: C18281/A19169; Grant sponsor: Canadian Institutes of Health Research; (CRUK study and the PRACTICAL consortium); Grant sponsor: European Commission’s Seventh Framework Programme; Grant number: 223175 (HEALTH-F2-2009–223175); Grant sponsor: Cancer Research UK; Grant numbers: C5047/A7357, C1287/A10118, C5047/A3354, C5047/A10692, C16913/A6135; Grant sponsor: National Institute of Health (NIH) Cancer Post-Cancer GWAS initiative (the GAME-ON initiative); Grant number: 1 U19 CA 148537–01; Grant sponsor: European Community’s Seventh Framework Programme (iCOGS infrastructure); Grant number: 223175 (HEALTH-F2-2009–223175) (iCOGS); Grant sponsor: Cancer Research UK; Grant numbers: C1287/ A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692; Grant sponsor: National Institutes of Health; Grant number: CA128978; Grant sponsor: Post-Cancer GWAS initiative; Grant numbers: 1U19 CA148537, 1U19 CA148065 and 1U19 CA148112 (GAME-ON initiative); Grant sponsor: Department of Defence; Grant number: W81XWH-10–1-0341; Grant sponsor: Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund; Grant sponsor: VicHealth and Cancer Council Victoria (MCCS cohort recruitment); Grant sponsor: Australian NHMRC; Grant numbers: 209057, 251553 and 504711; Grant sponsor: Victorian Cancer Registry (VCR) and Australian Institute of Health and Welfare (AIHW), including the National Death Index and the Australian Cancer Database; Grant sponsor: U.K. Health Technology Assessment (HTA) Programme of the NIH Research (ProtecT study); Grant numbers: HTA 96/20/99; ISRCTN20141297; Grant sponsor: National Cancer Research Institute (NCRI) formed by the Department of Health, the Medical Research Council and Cancer Research UK [NHS R&D Directorate supported Prodigal study and the ProMPT (Prostate Mechanisms of Progression and Treatment)]; Grant number: G0500966/75466; Grant sponsor: Cancer Research UK (to R.A.E. and Z.K.J.); Grant number: C5047/A7357; Grant sponsor: NIHR Biomedical Research Centre at The Institute of Cancer Research and Royal Marsden NHS Foundation Trust (to RAE and ZKJ); Grant sponsors: National Institute for Health Research Bristol Nutrition Biomedical Research Unit based at University Hospitals Bristol NHS Foundation Trust and the University of Bristol (to R.M.M.); Grant sponsor: NIHR Senior Investigators (to F.C.H., D.E.N. and J.L.D.); Grant sponsors: MRC and the University of Bristol (Integrative Epidemiology Unit); Grant numbers: G0600705, MC_UU_12013/6 DOI: 10.1002/ijc.30462 This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. History: Received 27 Apr 2016; Accepted 5 Sep 2016; Online 14 Oct 2016 Correspondence to: Dr. Amy Taylor, School of Experimental Psychology, 12a Priory Road, University of Bristol, Bristol, UK, Tel.: 0117 928 8547, Fax: 0117 928 8588, E-mail: [email protected] Int. J. Cancer: 140, 322–328 (2017) VC 2016 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC Taylor et al. 323 7 The Institute of Cancer Research, London, SM2 5NG, United Kingdom 8 The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, United Kingdom 9 Strangeways Laboratory, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Worts Causeway, Cambridge, United Kingdom 10 Institute of Population Health, University of Manchester, Manchester, United Kingdom 11 Cancer Epidemiology Centre, Cancer Council Victoria, 615 St Kilda Road, Melbourne, VIC, Australia 12 Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia 13 Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden 14 Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA 15 Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland 16 Institute of Biomedical Technology/BioMediTech, University of Tampere and FimLab Laboratories, Tampere, Finland 17 Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev Ringvej 75, Herlev, 2730, Denmark 18 Cancer Epidemiology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom 19 Surgical Oncology (Uro-Oncology: S4), University of Cambridge, Addenbrooke’s Hospital, Hills Road, Box 279, Cambridge, United Kingdom 20 Department of Applied Health Research, University College London, 1-19 Torrington Place, London, WC1E 7HB, United Kingdom 21 Cambridge Institute of Public Health, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0SR, United Kingdom 22 International Epidemiology Institute, 1455 Research Blvd, Suite 550, Rockville, MD 23 Mayo Clinic, Rochester, MN 24 Department of Urology, University Hospital Ulm, Ulm, Germany 25 Institute of Human Genetics, University Hospital Ulm, Ulm, Germany 26 Brigham and Women’s Hospital/Dana-Farber Cancer Institute, 45 Francis Street-ASB II-3, Boston, MA 27 Washington University, School of Medicine, St. Louis, MO 28 International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland 29 Division of Genetic Epidemiology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 30 Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany Cancer Epidemiology 31 Division of Preventive Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany 32 German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany 33 Division of Cancer Prevention and Control, H. Lee Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL 34 Molecular Medicine Center and Department of Medical Chemistry and Biochemistry, Medical University Sofia, 2 Zdrave St, Sofia, 1431, Bulgaria 35 Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia 36 Department of Genetics, Portuguese Oncology Institute, Porto, Portugal 37 Biomedical Sciences Institute (ICBAS), Porto University, Porto, Portugal 38 Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom Coffee consumption has been shown in some studies to be associated with lower risk of prostate cancer. However, it is unclear if this association is causal or due to confounding or reverse causality. We conducted a Mendelian randomisation analysis to investigate the causal effects of coffee consumption on prostate cancer risk and progression. We used two genetic variants robustly associated with caffeine intake (rs4410790 and rs2472297) as proxies for coffee consumption in a sample of 46,687 men of European ancestry from 25 studies in the PRACTICAL
Recommended publications
  • Commercial Partnerships Annual Review 19/20
    1 Overview Commercial Partnerships Annual Review 19/20 Together we will beat cancer 2 Overview Our missions & values Contents CRUK’s vision is to bring forward the day when all cancers Overview are cured. Over the last 40 years, cancer survival rates in 4 CBO’s statement the UK have doubled. In the 1970s just a quarter of people 5 Highlights from the 19/20 financial year survived. Today that figure is half. In order to improve on this, we need to work with industry partners to progress Introduction the best ideas to market. This is where the Commercial Partnerships team can help. 2 What we do and why 7 Where we do it 8 Our principles for doing business 9 Our commitment to CRUK funded researchers Our Our Our 10 Our Commercial Objectives mission vision ambition Our achievements 11 - 17 Objective 1: Supporting researchers with translational activity The mission of CRUK Commercial Together we will 18 - 19 Objective 2: Encouraging entrepreneurial culture and skills in CRUK Commercial Partnerships will be beat cancer and our research community Partnerships is to the world’s leading see 3/4 of people maximise the translation cancer translation and survive by 2034 20 - 26 Objective 3: Develop industry partnerships in therapeutics of cancer research for commercialisation 27 - 29 Objective 4: Diversify and maximise opportunities beyond therapeutics patient benefit group 30 - 31 Objective 5: Invest in our people and processes, promote diversity See our objectives on See our achievements on See our impact on 32 - 35 Objective 6: Leverage and return
    [Show full text]
  • The Francis Crick Institute
    Clinical Medicine 2017 Vol 17, No 2: 105–7 PROFESSIONAL ISSUES T h e F r a n c i s C r i c k I n s t i t u t e A u t h o r s : K e i t h P e t e r s A a n d J i m S m i t h B The Francis Crick Institute Laboratory, opened in 2016, is sup- is within easy reach of GlaxoSmithKine (GSK) and Astra ported by the Medical Research Council, Cancer Research UK, Zeneca’s principal research laboratories in Stevenage and the Wellcome Trust, and University College London, King’s Col- Cambridge, respectively. lege London and Imperial College London. The emphasis on But in order to justify investment on the scale required, the research training and early independence of gifted scientists new institute needed to be more than a simple translocation to ABSTRACT in a multidisciplinary environment provides unique opportuni- a new site. ties for UK medical science, including clinical and translational After discussion and negotiation, the MRC, Cancer Research research. UK (CRUK), the Wellcome Trust and University College London (UCL) created a partnership: CRUK’s London Research K E Y W O R D S : MRC , CRUK , Wellcome , Crick , UCL , King’s , Imperial Institute (LRI) would join the NIMR, with researchers from UCL contributing expertise in the physical and clinical sciences. Importantly, the Crick was not simply to be a merger The Francis Crick Institute has been referred to as the most of LRI and NIMR but a new entity with a different ethos – a significant development in UK biomedical science for a multidisciplinary institute with a substantial new investment in generation.
    [Show full text]
  • Cancer Research UK Submission to the European Commission Assessment of The
    Cancer Research UK submission to the European Commission assessment of the January 2010 About Cancer Research UK Cancer Research UK (CR-UK)1 is leading the world in finding new ways to prevent, diagnose and independent funder of cancer research in Europe. Over half of all cancer research in the UK is carried out by our doctors and scientists. Cancer Re s entirely funded by the public and in 2008/09 we spent £355 million on research, supporting the work of more than 4,500 scientists, doctors and nurses. CR-UK funds research into all aspects of cancer from exploratory biology to clinical trials of novel and existing drugs as well as population-based studies and prevention research. Our scientists, doctors and nurses have contributed to the development of 19 of the top 20 drugs used to treat cancer patients worldwide today. At CR-UK we are involved with all stages of clinical trials, and we have a perspective both as a funder of academics conducting trials and as a Sponsor of early phase trials. For further information about our involvement in clinical trials, please see appendix 1. For further information about the implementation of the Clinical Trials Directive (CTD) in the UK, please see appendix 2. For a glossary of terms used throughout this response, please see appendix 3. Acknowledgements Our response has been collated following internal staff discussion and with contributions from the follow additional groups/individuals: Cancer Research UK Clinical Trials Unit, University of Birmingham Charles Coombes, Director, Department of Oncology,
    [Show full text]
  • April 28 Sir Paul Nurse
    MONDAY, APRIL 26th 8 pm We look forward to welcoming to Kenton SIR PAUL NURSE RATHER THAN GIVE A TALK, WE ARE VERY FORTUNATE IN THAT SIR PAUL IS HAPPY TO ANSWER QUESTIONS ON HIS EXTENSIVE CAREER AND HOBBIES PLEASE HAVE YOUR QUESTIONS READY OR SEND THEM IN BEFORE THE MEETING Paul Nurse is a geneticist and cell biologist who has worked on how the eukaryotic cell cycle is controlled. His major work has been on the cyclin dependent protein kinases and how they regulate cell reproduction. He is Director of the Francis Crick Institute in London, and has served as President of the Royal Society, Chief Executive of Cancer Research UK and President of Rockefeller University. He shared the 2001 Nobel Prize in Physiology or Medicine and has received the Albert Lasker Award, the Gairdner Award, the Louis Jeantet Prize and the Royal Society's Royal and Copley Medals. He was knighted by The Queen in 1999, received the Legion d'honneur in 2003 from France, and the Order of the Rising Sun in 2018 from Japan. He served for 15 years on the Council of Science and Technology, advising the Prime Minister and Cabinet, and is presently a Chief Scientific Advisor for the European Union. As well as his many medical accomplishments, amazingly Paul also has time to fly planes and engage in varied hobbies Paul flies gliders and vintage aeroplanes and has been a qualified bush pilot. He also likes the theatre, hill-walking, going to museums and art galleries, and running very slowly. All our Zoom sessions are available on the Kenton https://us02web.zoom.us/j/3531782577? YouTube channel: pwd=N0tlSWxxUGZmOEUrM1ZzclJFN1pzdz09 Kenton Shul In The Park Goes Live.
    [Show full text]
  • Cancer Research Technology Provides Routes to Commercialisation, Speeding up the Development and Translation of Cancer Research Into the Clinic
    INSIGHT The yellow brick road to commercialisation KEITH BLUNDY, CEO Acting as the meeting point between academia and industry, Cancer Research Technology provides routes to commercialisation, speeding up the development and translation of cancer research into the clinic. Keith Blundy highlights CRT’s unique characteristics 22 INTERNATIONAL INNOVATION Can you set the scene with a synopsis of Cancer Research Technology (CRT)’s history? When and why was the organisation created? CRT is the development and commercialisation arm of the charity Cancer Research UK. It aims to develop new discoveries in cancer research for the benefit of cancer patients and has exclusive rights to intellectual property (IP) derived from Cancer Research UK-funded science. The company was formed in 2002, at the same time as the Imperial Cancer Research Fund and Cancer Research Campaign were merging to form Cancer Research UK. Combining the strengths and employees of its predecessor technology transfer companies, Cancer Research Campaign Technology, Cancer Research Ventures and Imperial Cancer Research Technology, CRT’s track record goes back much further. The idea was to form a company, wholly owned by Cancer Research UK, that would progress discoveries made by the charity’s extensive network of scientists by attracting potential investors and collaborators with the necessary expertise and resources to help deliver new treatments to cancer patients. We’ve been hugely successful in achieving this, with an active portfolio of projects available for licensing and co-development, more than 30 partnered agents in preclinical and clinical development, and three drugs currently on the market and benefiting patients. What is your involvement with CRT and how did you first become interested in the company? I decided quite early in my career that genetics was the area that was key to the future understanding of biology.
    [Show full text]
  • Paul Nurse : Dsc
    PAUL NURSE : DSC Mr Chancellor, Just behind St Pancras Station in London stand two cranes that mark the site of the new Francis Crick Institute, an innovative venture pulling together the resources of a half dozen leading organisations into what has been described as “the mother-ship of British bioscience”. This collaborative enterprise is a result of the inspiration of Professor Sir Paul Nurse, to whom we are to award an honorary degree this afternoon. President of the Royal Society, former president of The Rockefeller University in New York, knight and Nobel prize winner, not to mention the recipient of myriad other international awards, he has done well for a lad from London who just could not pass French O’level. To understand how he got there you first have to realise that Paul Nurse is a man who is interested in everything, possibly excluding French linguistics. Intelligent and interested observations of the natural world are the bedrock of great biological discovery, helping to crystallize theoretical questions and experimental approaches to resolving them. As a child, Paul was an astute observer of the natural world, from the creatures at his feet to the heavens above, a trait shared by many great biologists; like Darwin himself, he even had a beetle collection. So, when it comes to scientific observation, Paul Nurse started early. But his career nearly stopped before it started. A modern language O’level was considered essential to secure a place at University but, despite a half dozen attempts, the brain of the young Paul was so full of fascinating science that declining the past perfect of the verb decouvrir (to discover) was really - 1 - PAUL NURSE : DSC not as interesting as actually doing some discovering.
    [Show full text]
  • Cancer Research Uk and Hsbc Join Forces in Usd25m Partnership to Build the Francis Crick Institute and Support the Scientific Le
    Thursday 22 October CANCER RESEARCH UK AND HSBC JOIN FORCES IN US$25M PARTNERSHIP TO BUILD THE FRANCIS CRICK INSTITUTE AND SUPPORT THE SCIENTIFIC LEADERS OF THE FUTURE Cancer Research UK today announced a partnership with HSBC to support the scientific leaders of tomorrow through a contribution of US$25 million towards the development of the Francis Crick Institute. The new state‐of‐the‐art biomedical research facility is currently being built in King’s Cross, in the heart of London. HSBC’s support is contributing to the cost of the construction of the Francis Crick Institute which is due to open in 2016. Cancer Research UK will receive US$5m per year from HSBC for the next five years (2015‐2019). The Francis Crick Institute will see more than 1,200 scientists, representing a variety of disciplines, collaborating to tackle the diseases that pose the greatest threat to humanity – cancer, heart disease, lung disease, infectious diseases such as HIV and malaria and many more. The collaboration between HSBC, Cancer Research UK and the Francis Crick Institute will be marked by 150 PhD students who will be provided with an opportunity to conduct vital research at the new institute. The young scientists will be selected from across the world for the PhD programme. Harpal Kumar, Chief Executive Officer at Cancer Research UK, said: “Cancer Research UK has a long history of working with HSBC, but this donation really is game‐changing for us. This extraordinarily generous gift will cement our commitment to investing in the highest quality science by helping us to support some of the best and most imaginative scientists in the world.” HSBC’s donation is part of a series of community investments being made globally to mark HSBC’s 150th anniversary.
    [Show full text]
  • CV Paul Maxime Nurse Date of Birth: 25 January 1949 Nationality: British Marital Status: Married, Two Children EDUCATION 1960
    CV Paul Maxime Nurse Date of Birth: 25 January 1949 Nationality: British Marital Status: Married, two children EDUCATION 1960 - 1966 Harrow County Grammar School 1967 - 1970 University of Birmingham - BSc (First Class Honours) in Biological Sciences Awarded the John Humphreys Memorial Prize in Botany 1970 - 1973 University of East Anglia - PhD in Cell Biology/Biochemistry EMPLOYMENT 1967 Twyford Laboratories, London; Research Assistant in Microbiology Department 1973 Institute of Microbiology, University of Bern, Switzerland; Royal Society Research Fellow 1974 - 1980 Department of Zoology, University of Edinburgh; SERC Research Fellow with Professor J M Mitchison 1980 - 1984 School of Biology, University of Sussex; MRC Senior Research Fellow 1984 - 1987 Imperial Cancer Research Fund, London; Head of Cell Cycle Control Laboratory 1987 - 1991 University of Oxford, Iveagh Professor of Microbiology 1991 - 1993 University of Oxford, Napier Research Professor of the Royal Society 1993 - 1996 Imperial Cancer Research Fund, London, Director of Research (Laboratories) 1996 - 2002 Imperial Cancer Research Fund, London, Director-General 2002 - 2003 Cancer Research UK, Director-General (Science) (Feb-Mar 2002), Chief Executive (Mar-Apr 2003) 2003 - 2011 The Rockefeller University, New York, USA, President 2010 - 2015 The Royal Society, London, President 2010 - Francis Crick Institute, Director ACADEMIC DISTINCTIONS Major International Award Lectures and Medals 1990 Royal Society Florey Lecturer (UK) 1991 Cetus Lecturer, University of California,
    [Show full text]
  • My Journey to DNA Repair
    Genomics Proteomics Bioinformatics 11 (2013) 2–7 Genomics Proteomics Bioinformatics www.elsevier.com/locate/gpb www.sciencedirect.com LIFE-TIME ACHIEVEMENT REVIEW My Journey to DNA Repair Tomas Lindahl * Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, United Kingdom Received 6 December 2012; accepted 7 December 2012 Available online 21 December 2012 KEYWORDS Abstract I completed my medical studies at the Karolinska Institute in Stockholm but have always DNA repair; been devoted to basic research. My longstanding interest is to understand fundamental DNA repair Base excision repair; mechanisms in the fields of cancer therapy, inherited human genetic disorders and ancient DNA. DNA glycosylase; I initially measured DNA decay, including rates of base loss and cytosine deamination. I have dis- DNA exonuclease; covered several important DNA repair proteins and determined their mechanisms of action. The AlkB dioxygenase discovery of uracil-DNA glycosylase defined a new category of repair enzymes with each specialized for different types of DNA damage. The base excision repair pathway was first reconstituted with human proteins in my group. Cell-free analysis for mammalian nucleotide excision repair of DNA was also developed in my laboratory. I found multiple distinct DNA ligases in mammalian cells, and led the first genetic and biochemical work on DNA ligases I, III and IV. I discovered the mam- malian exonucleases DNase III (TREX1) and IV (FEN1). Interestingly, expression of TREX1 was altered in some human autoimmune diseases. I also showed that the mutagenic DNA adduct O6-methylguanine (O6mG) is repaired without removing the guanine from DNA, identifying a sur- prising mechanism by which the methyl group is transferred to a residue in the repair protein itself.
    [Show full text]
  • Information and Support Centre, Bristol Haematology & Oncology
    Sept/Dec 2017 FREE BHOC ININ TOUCHTOUCH Information and Support Centre, Bristol Haematology & Oncology Centre The Magazine for Cancer Patients, Families and Carers IN THIS EDITION: Birthday Celebrations IN TOUCH is generously funded by The Friends of Bristol Haematology & Oncology Centre 1 Welcome to edition 4 of In Touch magazine. NEWS FROM THE Hello again and a very warm welcome to this edition of In Touch. The past few months have been very busy here as we have been planning for our birthday party which was held in June. Hence the main focus of the Information and Support pages this time is on those celebrations. We had a fabulous day and were delighted to be joined by patients, families and staff both past and present. It was lovely to see so many familiar faces and meet some new ones. We were privileged that Dr James Brennan and Liz Pritchard, Secretary of The Friends of BHOC Ann Bullock were able to join us as they were both instrumental Email: [email protected] Telephone or fax: 0117 342 3432 in the Centre being created in the first place. Also in this edition are articles from various cancer charities and support and research groups. Friends Chairman John Miles MBE There are the usual recipes and quizzes and helpful contact numbers for various organisations. stands down from Committee I hope that you will find it both informative and useful - and maybe even find a little humour in places. After 25 years of dedication to the Friends, our Chairman and friend, John Miles MBE, decided You can contact us on 01173423369 or email [email protected] to stand down from the Main or drop us a line Information and Support Centre, Committee in June.
    [Show full text]
  • A New Home for Science and Discovery
    THE FRANCIS CRICK INSTITUTE A NEW HOME FOR SCIENCE AND DISCOVERY Annual Review 2016/17 WHO WE ARE CONTENTS The Francis Crick Institute is a Introduction 2 biomedical discovery institute dedicated Progress against our strategy 4 to understanding the fundamental Research highlights 16 biology underlying health and disease. Highlights from the year 30 Its work is helping to understand Our year in numbers 44 why disease develops and to translate discoveries into new ways to prevent, diagnose and treat illnesses such as cancer, heart disease, stroke, infections and neurodegenerative diseases. For more information www.crick.ac.uk Right cover image: Wellcome Images WHAT’S INSIDE? INTRODUCTION PROGRESS AGAINST OUR STRATEGY RESEARCH HIGHLIGHTS HIGHLIGHTS FROM THE YEAR OUR YEAR IN NUMBERS Focus on how Science Technology Platforms are changing the way 12 42 we work INSPIRING THE NEXT GENERATION Dedicated laboratory for schools opened OPENING CEREMONY 39 New building opened by The Queen 30 25 Genetic switch may control cancer cell immortality 26 2 www.crick.ac.uk 1 INTRODUCTION INTRODUCTION BY PAUL NURSE 2 The Francis Crick Institute Annual Review 2016/17 INTRODUCTION PROGRESS AGAINST OUR STRATEGY RESEARCH HIGHLIGHTS HIGHLIGHTS FROM THE YEAR OUR YEAR IN NUMBERS A BEGINNING Having most of our staff physically together for the first time does feel like the real beginning of what I hope will become a special place for science and discovery. Welcome to our Annual Review for 2016/17: An exciting programme of seminars and a year which saw the Francis Crick Institute – lectures has been established, contributing its research and its people – come together to a lively culture of scientific interaction within in the new laboratories at St Pancras, London.
    [Show full text]
  • PRESS RELEASE Monday 6 November, 2017 SCIENTISTS EXPLOIT LEAKS in BLOOD BRAIN BARRIER to TREAT GLIOBLASTOMA
    PRESS RELEASE Monday 6 November, 2017 NCRI Press Office SCIENTISTS EXPLOIT LEAKS IN BLOOD BRAIN BARRIER TO TREAT GLIOBLASTOMA Angel Building 407 St John Street London EC1V 4AD An ovarian cancer drug can leak through the blood brain barrier to reach brain tumours T: +44 (0)20 3469 8300 and could be an effective treatment for glioblastoma, suggest results* presented at T: +44 (0)7050 264 059 the National Cancer Research Institute’s (NCRI) Cancer Conference in Liverpool, today (out of hours) (Monday). E: [email protected] The Cancer Research UK-funded OPARATIC trial,* which was managed by the charity’s www.ncri.org.uk Centre for Drug Development, tested whether the ovarian cancer drug olaparib could reach glioblastoma, a type of brain tumour which is very difficult to treat. And early results show it successfully reaches brain tumours at high enough levels for treatment. The successful delivery of this drug is an important step as many others have failed to reach the tumour. The study recruited 48 patients with glioblastoma which had returned after initial treatment. The majority of patients were then given olaparib in combination with the chemotherapy drug temozolomide. Scientists looked at tumour samples and found that the drug penetrates the core of the tumour as well as the surrounding areas which contain smaller numbers of cancerous cells.*** Cancer cells in these regions cannot be removed by surgery so reaching them with drugs is crucial. The researchers also identified a way to safely combine both drugs by giving olaparib intermittently, minimising dangerous side effects.**** Olaparib is a PARP inhibitor, which is already used to treat certain ovarian cancer patients and prevents damaged cancer cells from repairing themselves after chemotherapy or radiotherapy.
    [Show full text]