SRBR 2004 Program Book
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chronic Hyperaldosteronism in Cryptochrome-Null Mice Induces High-Salt- and Blood Pressure- Independent Kidney Damage in Mice
Hypertension Research (2014) 37, 202–209 & 2014 The Japanese Society of Hypertension All rights reserved 0916-9636/14 www.nature.com/hr ORIGINAL ARTICLE Chronic hyperaldosteronism in Cryptochrome-null mice induces high-salt- and blood pressure- independent kidney damage in mice Dwi Aris Agung Nugrahaningsih1, Noriaki Emoto1,2, Nicolas Vignon-Zellweger2, Eko Purnomo1, Keiko Yagi2, Kazuhiko Nakayama1,2, Masao Doi3, Hitoshi Okamura3 and Ken-ichi Hirata1 Although aldosterone has an essential role in controlling electrolyte and body fluid homeostasis, aldosterone also exerts certain pathological effects on the kidney. Several previous studies have attempted to examine these deleterious effects. However, the majority of these studies were performed using various injury models, including high-salt treatment and/or mineralocorticoid administration, by which the kidney changes observed were not only due to aldosterone but also due to prior injury caused by salt and hypertension. In the present study, we investigated aldosterone’s pathological effect on the kidney using a mouse model with a high level of endogenous aldosterone. We used cryptochrome-null (Cry 1, 2 DKO) mice characterized by high aldosterone levels and low plasma renin activity and observed that even under normal salt exposure conditions, these mice showed increased albumin excretion and kidney tubular injury, decreased nephrin expression and increased reactive oxygen species production in the absence of hypertension. Exposure to high salt levels exacerbated the kidney damage observed in these mice. Moreover, we noted that decreasing blood pressure without blocking aldosterone action did not provide beneficial effects to the kidney in high-salt-treated Cry 1, 2 DKO mice. Thus, our findings support the hypothesis that aldosterone has deleterious effects on the kidney independent of high-salt exposure and high blood pressure. -
Faculty Mentor List Basic Science Faculty Mentors 1. Joseph
Faculty Mentor List Basic Science faculty mentors 1. Joseph Takahashi, Ph.D. Professor and Chair, Department of Neuroscience [email protected] Research Statement: The long-term goals of the Takahashi laboratory are to understand the molecular and genetic basis of circadian rhythms in mammals and to utilize forward genetic approaches in the mouse as a tool for gene discovery for complex behavior. We have focused our attention in three areas: 1) identification of circadian clock genes and assignment of their function in the molecular mechanism of the circadian pacemaker; 2) analysis of central and peripheral circadian oscillators using real-time circadian reporters; and 3) identification of genes defined by mutations isolated in the large-scale mutagenesis screens we have conducted on neural and behavioral phenotypes including psychostimulant responses and contextual and cue dependent fear conditioning. Recently, we have focused on the structural biology of circadian clock proteins and on genomewide analysis of transcription factor binding and gene expression using next generation sequencing methods. A comprehensive global analysis of circadian transcription factor binding in the mouse liver has been completed in which all core components of the clock gene pathway have been interrogated. In addition, we have also analyzed the genome-wide regulation of nascent transcription, RNA polymerase II occupancy and epigenomic regulation of chromatin by the circadian clock. We have recently identified genes involved in cocaine responsiveness using forward genetic approaches. My laboratory has demonstrated a successful record of research productivity and training in circadian biology, mammalian genetics, genomics and molecular biology. 1. Huang, N, Y Chelliah, Y Shan, CA Taylor, S-H Yoo, C Partch, CB Green, H Zhang, JS Takahashi 2012 Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. -
CURRICULUM VITAE Joseph S. Takahashi Howard Hughes Medical
CURRICULUM VITAE Joseph S. Takahashi Howard Hughes Medical Institute Department of Neuroscience University of Texas Southwestern Medical Center 5323 Harry Hines Blvd., NA4.118 Dallas, Texas 75390-9111 (214) 648-1876, FAX (214) 648-1801 Email: [email protected] DATE OF BIRTH: December 16, 1951 NATIONALITY: U.S. Citizen by birth EDUCATION: 1981-1983 Pharmacology Research Associate Training Program, National Institute of General Medical Sciences, Laboratory of Clinical Sciences and Laboratory of Cell Biology, National Institutes of Health, Bethesda, MD 1979-1981 Ph.D., Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, Dr. Michael Menaker, Advisor. Summer 1977 Hopkins Marine Station, Stanford University, Pacific Grove, California 1975-1979 Department of Zoology, University of Texas, Austin, Texas 1970-1974 B.A. in Biology, Swarthmore College, Swarthmore, Pennsylvania PROFESSIONAL EXPERIENCE: 2013-present Principal Investigator, Satellite, International Institute for Integrative Sleep Medicine, World Premier International Research Center Initiative, University of Tsukuba, Japan 2009-present Professor and Chair, Department of Neuroscience, UT Southwestern Medical Center 2009-present Loyd B. Sands Distinguished Chair in Neuroscience, UT Southwestern 2009-present Investigator, Howard Hughes Medical Institute, UT Southwestern 2009-present Professor Emeritus of Neurobiology and Physiology, and Walter and Mary Elizabeth Glass Professor Emeritus in the Life Sciences, Northwestern University -
SLTBR Meeting 2016
Society for Light Treatment and Biological Rhythms (sltbr.org) Klaus Martiny, MD, PhD, President Academic and Local Conference Host: Center for Environmental Therapeutics (cet.org) Michael Terman, PhD, President New York State Psychiatric Institute 1051 Riverside Drive New York City © 2016 SLTBR, [email protected]. All rights reserved. 1 TABLE OF CONTENTS Letter from the President . 1 Officers, Board Members, and Administrative Team . 2 J. Christian Gillin Young Investigator Award . 3 Scientific Program . 4 List of Abstracts for Oral Presentations and Posters . 8 Abstracts for Oral Presentations . 13 Abstracts for Posters . 40 Meeting Sponsors . 74 2 Dear Friends, On behalf of the Board of Directors, scientific and planning committees, I am delighted to welcome you to the 28th annual meeting of the Society for Light Treatment and Biological Rhythms in New York City. We are honored and grateful for the opportunity to hold our meeting under the auspices of the Columbia University Department of Psychiatry / New York State Psychiatric Institute, with Professor Michael Terman as academic host. We are fortunate to be able to offer you a scientific program with top experts who will show the rapidly emerging knowledge in, and importance of, the areas that SLTBR is devoted to furthering. We greatly appreciate their participation in the meeting. The travel grants and the J. Christian Gillin Young Investigator Award have been major incentives for participation. The number of applicants continues to increase each year. The Center for Environmental Therapeutics (CET) is again generously offering a teaching course, so clinician members of the New York State Psychological Association can obtain CE credits, thanks to NYSPA’s Independent Practice Division, David Byrom, President, and Frank Corigliano, Past President. -
Department of Systems Biology
DIVISION OF BIOINFORMATICS AND CHEMICAL GENOMICS Research Profile Department of Systems Biology Professor: Hitoshi Okamura, Associate Professor: Masao Doi, Assistant Professor: Yoshiaki Yamaguchi, Senior Lecturer: Jean-Michel Fustin Research Projects: How TIME is generated and tuned? We will clarify feedback loop of clock genes. the secret of generation and tuning of TIME in 1.3 Clock genes and cell metabolism, birth, and mammalian circadian system by multi-layered view death at intracellular, intercellular and individual levels. Why virtually all cells in the body have the clock Through clarifying the integration network mecha- inside the cell? We will identify how clock genes nism of TIME, we will develop new drugs for tuning work on the energy metabolism, cell cycles, and TIME. cell death. The subject of our study is circadian timing system 2. Intercellular system for synchronizing TIME in mammals. In this system, the circadian TIME gen- 2.1 Region-specific knockdown of SCN erated at molecular clock in the suprachiasmatic SCN biological clock is composed of thousands nucleus (SCN) evokes the synchronized oscillation of clock cells which are subdivided into several of molecular clocks in the whole body. Between groups. We will perform region-specific knockdown them, TIME is transmitted in multilayer systems: 1) of these subdivisions to address the functional sub- intracellular system of generation of cyclic TIME, 2) division of SCN. Intercellular system for synchronizing TIME, and 3) 2.3 Geography of SCN Symphony of TIME in individuals. SCN clock cells are highly organized in time and 1. Clarification of clock machinery to generate space. For example, in our real-time luciferase- TIME imaging system at cell level, time is generated and 1.1 Identification of all components of CLOCK synchronized in a very highly organized system. -
The Circadian Clock Modulates Core Steps in Long-Term Memory Formation in Aplysia
8662 • The Journal of Neuroscience, August 23, 2006 • 26(34):8662–8671 Cellular/Molecular The Circadian Clock Modulates Core Steps in Long-Term Memory Formation in Aplysia Lisa C. Lyons, Maria Sol Collado, Omar Khabour, Charity L. Green, and Arnold Eskin Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001 The circadian clock modulates the induction of long-term sensitization (LTS) in Aplysia such that long-term memory formation is significantly suppressed when animals are trained at night. We investigated whether the circadian clock modulated core molecular processes necessary for memory formation in vivo by analyzing circadian regulation of basal and LTS-induced levels of phosphorylated mitogen-activated protein kinase (P-MAPK) and Aplysia CCAAT/enhancer binding protein (ApC/EBP). No basal circadian regulation occurred for P-MAPK or total MAPK in pleural ganglia. In contrast, the circadian clock regulated basal levels of ApC/EBP protein with peak levels at night, antiphase to the rhythm in LTS. Importantly, LTS training during the (subjective) day produced greater increases in P-MAPK and ApC/EBP than training at night. Thus, circadian modulation of LTS occurs, at least in part, by suppressing changes in key proteins at night. Rescue of long-term memory formation at night required both facilitation of MAPK and transcription in conjunction with LTS training, confirming that the circadian clock at night actively suppresses MAPK activation and transcription involved in memory formation. The circadian clock appears to modulate LTS at multiple levels. 5-HT levels are increased more when animals receive LTS training during the (subjective) day compared with the night, suggesting circadian modulation of 5-HT release. -
February 2012
Having trouble viewing this email? Click here February 2012 SBN E-News In This Issue Contact Us SBN Announcements General Announcements SBN Executive Office Two Woodfield Lake Job Postings/Training Opportunities 1100 E Woodfield Road, Suite 520 Schaumburg, IL 60173 Phone: (847) 517-7225 Fax: (847) 517-7229 Email: [email protected] Website: www.sbn.org SBN Announcements Come to SBN 2012 in Madison, WI, in June! The annual SBN meeting will be held in Madison,Wisconsin, June 15 -18 at the Frank Lloyd Wright- designed Monona Terrace: www.mononaterrace.com. Meeting Highlights Keynote Speakers: Larry Young (Emory University), Rae Silver (Columbia University), Heather Cameron (NIMH) Pre-Meeting Workshop: Strategies for Studying Social Behavior and the Social Brain Symposia: Neuroendocrine-Immune Interactions Neuroplasticity, Neurosteroidogenesis, & Neurotrauma Hormones and Evolutionary Trade-Offs in Social Context for Females and Males Kisspeptins and the Control of Reproduction Neural Plasticity and Endocrine Responses to Social Odor Cues in Parents Young Investigators Symposium Meeting & program information are now available at: http://sbn.org/meetings/2012/. Present your Research at SBN 2012! The 2012 Society of Behavioral Neuroendocrinology Annual Meeting will be held at the Monona Terrace in Madison, Wisconsin, June 15 -18. Below are some important dates to keep in mind. Abstract submission deadlines: For SBN Trainee Members: Undergrads, Graduate Students and Post Docs: If you would like to enter the poster award competition, or apply for a Travel or Young Investigator Award (see below), the deadline for submitting your application materials and your abstract will be Friday March 9, 2012 at NOON CST. If you are an invited speaker at the meeting, or you would like to present a poster without applying for an award, the deadline for non-award abstract submissions will be Friday March 16, 2012 at NOON CST. -
Profile of Jay C. Dunlap
PROFILE PROFILE Profile of Jay C. Dunlap Paul Gabrielsen Science Writer On moonless nights, the wakes of oceangoing back to oceanography,” Dunlap says, “but I boats sparkle with the blue bioluminescence just thought clocks were the greatest things of unicellular dinoflagellates. As a graduate I’deverheardabout.” He chose to attend student at Harvard University, Jay C. Dunlap Harvard. pondered the carefully orchestrated biological Dunlap found Hastings’ approach to his rhythms that direct dinoflagellates to produce students’ research to be supportive but hands light only at night. Dunlap, a student of off. “He provided all these resources,” Dunlap oceanography at the time, realized that the says, “but he never told people what to do. He field of biological rhythms was still a wide- would give you great feedback on what you open frontier, with many fundamental ques- were doing, but you needed to find your own tions yet to be answered. “This was a place,” way. And if you were lucky enough to do that, he says, “where I could make a mark.” then you really learned how to do science.” Dunlap, Nathan Smith Professor and Chair In 1977, Dunlap attended a 10-week of Genetics at Dartmouth’s Geisel School of summer course on biological rhythms at Medicine and a member of the National Hopkins Marine Station in Pacific Grove, Academy of Sciences since 2009, has devoted California organized by Colin Pittendrigh, his career to answering those fundamental who, along with Hastings, had made pio- questions. His work has uncovered how cir- neering advances in the field of rhythms. The cadian rhythms work at a genetic level, how course attracted scientists studying rhythms environmental cues, such as light, can set bi- along with their graduate students, who, ological clocks, and how the clock can regu- Dunlap says, composed an entire generation Jay C. -
Depressive Symptomatology Differentiates Subgroups of Patients with Seasonal Affective Disorder
34 Goel et al. DEPRESSION AND ANXIETY 15:34–41 (2002) DOI: 10.1002/da.1083 DEPRESSIVE SYMPTOMATOLOGY DIFFERENTIATES SUBGROUPS OF PATIENTS WITH SEASONAL AFFECTIVE DISORDER Namni Goel, Ph.D.,1,2,3* Michael Terman, Ph.D.,1,2 and Jiuan Su Terman, Ph.D.2 Patients with seasonal affective disorder (SAD) may vary in symptoms of their depressed winter mood state, as we showed previously for nondepressed (manic, hypomanic, hyperthymic, euthymic) springtime states [Goel et al., 1999]. Iden- tification of such differences during depression may be useful in predicting dif- ferences in treatment efficacy or analyzing the pathogenesis of the disorder. In a cross-sectional analysis, we determined whether 165 patients with Bipolar Dis- order (I, II) or Major Depressive Disorder (MDD), both with seasonal pattern, showed different symptom profiles while depressed. Assessment was by the Structured Interview Guide for the Hamilton Depression Rating Scale—Sea- sonal Affective Disorder Version (SIGH-SAD), which includes a set of items for atypical symptoms. We identified subgroup differences in SAD based on cat- egories specified for nonseasonal depression, using multivariate analysis of variance and discriminant analysis. Patients with Bipolar Disorder (I and II) were more depressed (had higher SIGH-SAD scores) and showed more psy- chomotor agitation and social withdrawal than those with MDD. Bipolar I patients had more psychomotor retardation, late insomnia, and social with- drawal than bipolar II patients. Men showed more obsessions/compulsions and suicidality than women, while women showed more weight gain and early insomnia. Whites showed more guilt and fatigability than blacks, while blacks showed more hypochondriasis and social withdrawal. -
Crystal Structure of the Avirulence Gene Avrlm4-7 of Leptosphaeria Maculans. Illuminates Its Evolutionary and Functional Charact
Crystal structure of the Avirulence Gene AvrLm4-7 of Leptosphaeria maculans. Illuminates its evolutionary and functional characteristics Isabelle Fudal, Francoise Blaise, K Blondeau, M. Graille, A. Labarde, A. Doisy, Bm Tyler, S.D. Kale, Guillaume Daverdin, Marie-Helene Balesdent, et al. To cite this version: Isabelle Fudal, Francoise Blaise, K Blondeau, M. Graille, A. Labarde, et al.. Crystal structure of the Avirulence Gene AvrLm4-7 of Leptosphaeria maculans. Illuminates its evolutionary and functional characteristics. 26. Fungal Genetics Conference at Asilomar, Mar 2011, Asilomar, United States. pp.234. hal-01000740 HAL Id: hal-01000740 https://hal.archives-ouvertes.fr/hal-01000740 Submitted on 6 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 26th Fungal Genetics Conference at Asilomar March 15-20 2011 Principle Financial Sponsors Genetics Society of America Burroughs Wellcome Fund US National Institutes of Health Novozymes Great Lakes Bioenergy Research Center Konkuk University Bio Molecular Informatics Center Genencor, A Danisco Division -
Abstracts from the Neurospora 2002 Conference
Fungal Genetics Reports Volume 49 Article 13 Abstracts from the Neurospora 2002 conference Neurospora 2002 conference Follow this and additional works at: https://newprairiepress.org/fgr This work is licensed under a Creative Commons Attribution-Share Alike 4.0 License. Recommended Citation Neurospora 2002 conference. (2002) "Abstracts from the Neurospora 2002 conference," Fungal Genetics Reports: Vol. 49, Article 13. https://doi.org/10.4148/1941-4765.1195 This Supplementary Material is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Fungal Genetics Reports by an authorized administrator of New Prairie Press. For more information, please contact [email protected]. Abstracts from the Neurospora 2002 conference Abstract Abstracts and Poster abstracts from the Neurospora 2002 conference This supplementary material is available in Fungal Genetics Reports: https://newprairiepress.org/fgr/vol49/iss1/13 : Abstracts from the Neurospora 2002 conference Neurospora 2002 Schedule March 14-17, 2002 Invited Abstracts Asilomar Conference Center Pacific Grove, CA. Poster Abstracts SCIENTIFIC PROGRAM Index Barry Bowman Gloria Turner Schedule of Activities Thursday, March 14 3:00 - 6:00 pm, Registration: Administration 6:00 - 7:00 pm, Dinner: Crocker 7:00 - 10:00 pm, Mixer: Kiln Friday, March 15 7:30 - 8:30 am, Breakfast, Crocker 8:30 - 12:00 Noon, Session I, Chapel Genomic Analysis : Mary Anne Nelson, Chair 8:35 - Bruce Birren, MIT, Whitehead Institute. "Genome sequencing for Neurospora crassa." 9:05 - Gertrud Mannhaupt, Heinrich-Heine-University. "The MIPS Neurospora crassa database- MNCDB." 9:30 - Chuck Staben, U. of Kentucky. "Gene finding and annotation for fungal genomes." 9:55 - Alan Radford, University of Leeds. -
Single-Cell Analysis on the Biological Clock Using Microfluidic
SINGLE-CELL ANALYSIS ON THE BIOLOGICAL CLOCK USING MICROFLUIDIC DROPLETS by ZHAOJIE DENG (Under the Direction of Leidong Mao and Jonathan Arnold) ABSTRACT Single-cell analysis has become crucial for uncovering the underlying mechanism for cell heterogeneity. Different biological questions pose different challenges for single-cell analysis. In order to answer questions like, whether a single-cell has a biological clock and how the clocks synchronize among cells to overcome the heterogeneity, continuous long-term measurement on large numbers of single-cells is required. However traditional measurement techniques usually involve measurement on millions of cells. My dissertation addresses these challenges by developing a microfluidic droplet platform capable of measuring the biological clock on >1000 Neurospora crassa single-cells for up to 10 days. The results show that in Neurospora crassa a single cell has the three major properties of a biological clock: a circadian oscillator, light entertainment, and temperature compensation and that single-cells synchronize their biological clock with each other possibly through quorum sensing. INDEX WORDS: Single-cell analysis, Microfluidic droplets, Neurospora crassa, Circadian rhythm, Biological clock, Stochastic noise, Synchronization SINGLE-CELL ANALYSIS ON THE BIOLOGICAL CLOCK USING MICROFLUIDIC DROPLETS by ZHAOJIE DENG B.A., Huazhong University of Science and Technology, China, 2008 M.S., Huazhong University of Science and Technology, China, 2011 A Dissertation Submitted to the Graduate Faculty