Z/OS V2R4.0 Communications Server: IP IMS Sockets Guide Summary of Changes for IP IMS Sockets Guide

Total Page:16

File Type:pdf, Size:1020Kb

Z/OS V2R4.0 Communications Server: IP IMS Sockets Guide Summary of Changes for IP IMS Sockets Guide z/OS Communications Server Version 2.Release 4 IP IMS Sockets Guide IBM SC27-3653-40 Note: Before using this information and the product it supports, be sure to read the general information under “Notices” on page 303. This edition applies to Version 2 Release 4 of z/OS® (5650-ZOS), and to subsequent releases and modifications until otherwise indicated in new editions. Last updated: 2021-06-21 © Copyright International Business Machines Corporation 2000, 2020. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Figures................................................................................................................. ix Tables................................................................................................................ xiii About this document.......................................................................................... xvii Who should read this document.............................................................................................................. xvii How this document is organized............................................................................................................. xviii How to use this document.......................................................................................................................xviii How to contact IBM service............................................................................................................... xviii Conventions and terminology that are used in this information............................................................ xviii How to read a syntax diagram...................................................................................................................xix Prerequisite and related information....................................................................................................... xxii Summary of changes for IP IMS Sockets Guide..................................................xxvii Changes made in z/OS Communications Server Version 2 Release 4.................................................. xxvii Changes made in z/OS Communications Server Version 2 Release 3.................................................. xxvii Changes made in z/OS Communications Server Version 2 Release 2.................................................. xxvii Chapter 1. Using TCP/IP in the IMS environment.................................................... 1 The role of IMS TCP/IP.................................................................................................................................1 IMS TCP/IP feature components.................................................................................................................2 The IMS Listener.....................................................................................................................................2 The IMS Assist module...........................................................................................................................2 The MVS TCP/IP socket application programming interface (Sockets Extended)............................... 2 Chapter 2. IMS TCP/IP...........................................................................................3 Using IMS with SNA or TCP/IP.....................................................................................................................3 TCP/IP internets...........................................................................................................................................3 Mainframe interactive processing..........................................................................................................4 Client/server processing........................................................................................................................ 4 TCP, UDP, and IP.....................................................................................................................................4 The socket API........................................................................................................................................5 Programming with sockets.......................................................................................................................... 5 Socket types........................................................................................................................................... 5 Addressing TCP/IP hosts........................................................................................................................6 A typical client/server program flow chart..................................................................................................7 Concurrent and iterative servers............................................................................................................8 The basic socket calls.................................................................................................................................. 9 Server TCP/IP calls.................................................................................................................................... 10 Server SOCKET call...............................................................................................................................10 Server BIND call................................................................................................................................... 11 Server LISTEN call................................................................................................................................11 Server ACCEPT call...............................................................................................................................11 Server GIVESOCKET and TAKESOCKET calls...................................................................................... 11 Server READ and WRITE calls..............................................................................................................12 Client TCP/IP calls..................................................................................................................................... 12 Client SOCKET call................................................................................................................................12 Client CONNECT call.............................................................................................................................12 Client Read/Write calls — the conversation.........................................................................................12 iii Client CLOSE call.................................................................................................................................. 13 Other socket calls...................................................................................................................................... 13 The SELECT call....................................................................................................................................13 IOCTL and FCNTL calls.........................................................................................................................15 GIVESOCKET and TAKESOCKET calls..................................................................................................15 What you need to run IMS TCP/IP.............................................................................................................16 A summary of what IMS TCP/IP provides................................................................................................. 17 Chapter 3. Principles of operation of the Listener and the Assist module............... 19 Overview of the Listener and the Assist module.......................................................................................19 The role of the IMS Listener.................................................................................................................19 The role of the IMS Assist module.......................................................................................................19 Client/server logic flow..............................................................................................................................20 How the connection is established......................................................................................................20 How the server exchanges data with the client...................................................................................22 How the IMS Listener manages multiple connection requests.......................................................... 25 Use of the IMS message queue........................................................................................................... 26 Call sequence for the IMS Listener......................................................................................................26 Application design considerations.......................................................................................................27 Restrictions for operation of the Listener and the Assist module............................................................ 28 Chapter 4. How to write an IMS TCP/IP client program......................................... 29 General client program logic flow............................................................................................................. 29 Explicit-mode client
Recommended publications
  • ISSN: 2320-5407 Int. J. Adv. Res. 5(4), 422-426 RESEARCH ARTICLE
    ISSN: 2320-5407 Int. J. Adv. Res. 5(4), 422-426 Journal Homepage: - www.journalijar.com Article DOI: 10.21474/IJAR01/3826 DOI URL: http://dx.doi.org/10.21474/IJAR01/3826 RESEARCH ARTICLE CHALLENGING ISSUES IN OSI AND TCP/IP MODEL. Dr. J. VijiPriya, Samina and Zahida. College of Computer Science and Engineering, University of Hail, Saudi Arabia. …………………………………………………………………………………………………….... Manuscript Info Abstract ……………………. ……………………………………………………………… Manuscript History A computer network is a connection of network devices to data communication. Multiple networks are connected together to form an Received: 06 February 2017 internetwork. The challenges of Internetworking is interoperating Final Accepted: 05 March 2017 between products from different manufacturers requires consistent Published: April 2017 standards. Network reference models were developed to address these challenges. Two useful reference models are Open System Key words:- Interconnection (OSI) and Transmission Control Protocol and Internet OSI, TCP/IP, Data Communication, Protocol (TCP/IP) serve as protocol architecture details the Protocols, Layers, and Encapsulation communication between applications on network devices. This paper depicts the OSI and TCP/IP models, their issues and comparison of them. Copy Right, IJAR, 2017,. All rights reserved. …………………………………………………………………………………………………….... Introduction:- Network reference models are called protocol architecture in which task of communication can be broken into sub tasks. These tasks are organized into layers representing network services and functions. The layered protocols are rules that govern end-to-end communication between devices. Protocols on each layer will interact with protocols on the above and below layers of it that form a protocol suite or stack. The most established TCP/IP suite was developed by Department of Defence's Project Research Agency DARPA based on OSI suite to the foundation of Internet architecture.
    [Show full text]
  • RT-ROS: a Real-Time ROS Architecture on Multi-Core Processors
    Future Generation Computer Systems 56 (2016) 171–178 Contents lists available at ScienceDirect Future Generation Computer Systems journal homepage: www.elsevier.com/locate/fgcs RT-ROS: A real-time ROS architecture on multi-core processors Hongxing Wei a,1, Zhenzhou Shao b, Zhen Huang a, Renhai Chen d, Yong Guan b, Jindong Tan c,1, Zili Shao d,∗,1 a School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, PR China b College of Information Engineering, Capital Normal University, Beijing, 100048, PR China c Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, TN, 37996-2110, USA d Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China article info a b s t r a c t Article history: ROS, an open-source robot operating system, is widely used and rapidly developed in the robotics Received 6 February 2015 community. However, running on Linux, ROS does not provide real-time guarantees, while real-time tasks Received in revised form are required in many robot applications such as robot motion control. This paper for the first time presents 20 April 2015 a real-time ROS architecture called RT-RTOS on multi-core processors. RT-ROS provides an integrated Accepted 12 May 2015 real-time/non-real-time task execution environment so real-time and non-real-time ROS nodes can be Available online 9 June 2015 separately run on a real-time OS and Linux, respectively, with different processor cores. In such a way, real-time tasks can be supported by real-time ROS nodes on a real-time OS, while non-real-time ROS nodes Keywords: Real-time operating systems on Linux can provide other functions of ROS.
    [Show full text]
  • OSI Model and Network Protocols
    CHAPTER4 FOUR OSI Model and Network Protocols Objectives 1.1 Explain the function of common networking protocols . TCP . FTP . UDP . TCP/IP suite . DHCP . TFTP . DNS . HTTP(S) . ARP . SIP (VoIP) . RTP (VoIP) . SSH . POP3 . NTP . IMAP4 . Telnet . SMTP . SNMP2/3 . ICMP . IGMP . TLS 134 Chapter 4: OSI Model and Network Protocols 4.1 Explain the function of each layer of the OSI model . Layer 1 – physical . Layer 2 – data link . Layer 3 – network . Layer 4 – transport . Layer 5 – session . Layer 6 – presentation . Layer 7 – application What You Need To Know . Identify the seven layers of the OSI model. Identify the function of each layer of the OSI model. Identify the layer at which networking devices function. Identify the function of various networking protocols. Introduction One of the most important networking concepts to understand is the Open Systems Interconnect (OSI) reference model. This conceptual model, created by the International Organization for Standardization (ISO) in 1978 and revised in 1984, describes a network architecture that allows data to be passed between computer systems. This chapter looks at the OSI model and describes how it relates to real-world networking. It also examines how common network devices relate to the OSI model. Even though the OSI model is conceptual, an appreciation of its purpose and function can help you better understand how protocol suites and network architectures work in practical applications. The OSI Seven-Layer Model As shown in Figure 4.1, the OSI reference model is built, bottom to top, in the following order: physical, data link, network, transport, session, presentation, and application.
    [Show full text]
  • Fedramp Master Acronym and Glossary Document
    FedRAMP Master Acronym and Glossary Version 1.6 07/23/2020 i​[email protected] fedramp.gov Master Acronyms and Glossary DOCUMENT REVISION HISTORY Date Version Page(s) Description Author 09/10/2015 1.0 All Initial issue FedRAMP PMO 04/06/2016 1.1 All Addressed minor corrections FedRAMP PMO throughout document 08/30/2016 1.2 All Added Glossary and additional FedRAMP PMO acronyms from all FedRAMP templates and documents 04/06/2017 1.2 Cover Updated FedRAMP logo FedRAMP PMO 11/10/2017 1.3 All Addressed minor corrections FedRAMP PMO throughout document 11/20/2017 1.4 All Updated to latest FedRAMP FedRAMP PMO template format 07/01/2019 1.5 All Updated Glossary and Acronyms FedRAMP PMO list to reflect current FedRAMP template and document terminology 07/01/2020 1.6 All Updated to align with terminology FedRAMP PMO found in current FedRAMP templates and documents fedramp.gov page 1 Master Acronyms and Glossary TABLE OF CONTENTS About This Document 1 Who Should Use This Document 1 How To Contact Us 1 Acronyms 1 Glossary 15 fedramp.gov page 2 Master Acronyms and Glossary About This Document This document provides a list of acronyms used in FedRAMP documents and templates, as well as a glossary. There is nothing to fill out in this document. Who Should Use This Document This document is intended to be used by individuals who use FedRAMP documents and templates. How To Contact Us Questions about FedRAMP, or this document, should be directed to ​[email protected]​. For more information about FedRAMP, visit the website at ​https://www.fedramp.gov​.
    [Show full text]
  • A Comparative Evaluation of OSI and TCP/IP Models
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 A Comparative Evaluation of OSI and TCP/IP Models P. Ravali Department of Computer Science and Engineering, Amrita Vishwa Vidhyapeetham, Bengaluru Abstract: Networking can be done in a layered manner. To reduce design complexities, network designers organize protocols. Every layer follows a protocol to communicate with the client and the server end systems. There is a piece of layer n in each of the network entities. These pieces communicate with each other by exchanging messages. These messages are called as layer-n protocol data units [n-PDU]. All the processes required for effective communication are addressed and are divided into logical groups called layers. When a communication system is designed in this manner, it is known as layered architecture. The OSI model is a set of guidelines that network designers used to create and implement application that run on a network. It also provides a framework for creating and implementing networking standards, devices, and internetworking schemes. This paper explains the differences between the TCP/IP Model and OSI Reference Model, which comprises of seven layers and five different layers respectively. Each layer has its own responsibilities. The TCP/IP reference model is a solid foundation for all of the communication tasks on the Internet. Keywords: TCP/IP, OSI, Networking 1. Introduction Data formats for data exchange where digital bit strings are exchanged. A collection of autonomous computers interconnected by a Address mapping. single technology is called as computer networks.
    [Show full text]
  • Internet of Things (Iot): Protocols White Paper
    INTERNET OF THINGS (IOT): PROTOCOLS WHITE PAPER 11 December 2020 Version 1 1 Hospitality Technology Next Generation Internet of Things (IoT) Security White Paper 11 December 2020 Version 1 About HTNG Hospitality Technology Next Generation (HTNG) is a non-profit association with a mission to foster, through collaboration and partnership, the development of next-generation systems and solutions that will enable hoteliers and their technology vendors to do business globally in the 21st century. HTNG is recognized as the leading voice of the global hotel community, articulating the technology requirements of hotel companies of all sizes to the vendor community. HTNG facilitate the development of technology models for hospitality that will foster innovation, improve the guest experience, increase the effectiveness and efficiency of hotels, and create a healthy ecosystem of technology suppliers. Copyright 2020, Hospitality Technology Next Generation All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the copyright owner. For any software code contained within this specification, permission is hereby granted, free-of-charge, to any person obtaining a copy of this specification (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the above copyright notice and this permission notice being included in all copies or substantial portions of the Software.
    [Show full text]
  • The OSI Model: Understanding the Seven Layers of Computer Networks
    Expert Reference Series of White Papers The OSI Model: Understanding the Seven Layers of Computer Networks 1-800-COURSES www.globalknowledge.com The OSI Model: Understanding the Seven Layers of Computer Networks Paul Simoneau, Global Knowledge Course Director, Network+, CCNA, CTP Introduction The Open Systems Interconnection (OSI) model is a reference tool for understanding data communications between any two networked systems. It divides the communications processes into seven layers. Each layer both performs specific functions to support the layers above it and offers services to the layers below it. The three lowest layers focus on passing traffic through the network to an end system. The top four layers come into play in the end system to complete the process. This white paper will provide you with an understanding of each of the seven layers, including their functions and their relationships to each other. This will provide you with an overview of the network process, which can then act as a framework for understanding the details of computer networking. Since the discussion of networking often includes talk of “extra layers”, this paper will address these unofficial layers as well. Finally, this paper will draw comparisons between the theoretical OSI model and the functional TCP/IP model. Although TCP/IP has been used for network communications before the adoption of the OSI model, it supports the same functions and features in a differently layered arrangement. An Overview of the OSI Model Copyright ©2006 Global Knowledge Training LLC. All rights reserved. Page 2 A networking model offers a generic means to separate computer networking functions into multiple layers.
    [Show full text]
  • 1.2. OSI Model
    1.2. OSI Model The OSI model classifies and organizes the tasks that hosts perform to prepare data for transport across the network. You should be familiar with the OSI model because it is the most widely used method for understanding and talking about network communications. However, remember that it is only a theoretical model that defines standards for programmers and network administrators, not a model of actual physical layers. Using the OSI model to discuss networking concepts has the following advantages: Provides a common language or reference point between network professionals Divides networking tasks into logical layers for easier comprehension Allows specialization of features at different levels Aids in troubleshooting Promotes standards interoperability between networks and devices Provides modularity in networking features (developers can change features without changing the entire approach) However, you must remember the following limitations of the OSI model: OSI layers are theoretical and do not actually perform real functions. Industry implementations rarely have a layer‐to‐layer correspondence with the OSI layers. Different protocols within the stack perform different functions that help send or receive the overall message. A particular protocol implementation may not represent every OSI layer (or may spread across multiple layers). To help remember the layer names of the OSI model, try the following mnemonic devices: Mnemonic Mnemonic Layer Name (Bottom to top) (Top to bottom) Layer 7 Application Away All Layer 6 Presentation Pizza People Layer 5 Session Sausage Seem Layer 4 Transport Throw To Layer 3 Network Not Need Layer 2 Data Link Do Data Layer 1 Physical Please Processing Have some fun and come up with your own mnemonic for the OSI model, but stick to just one so you don't get confused.
    [Show full text]
  • The GNU C Library: System & Network Applications
    The GNU C Library: System & Network Applications For GNU C Libraries version 2.3.x by Sandra Loosemore with Richard M. Stallman, Roland McGrath, Andrew Oram, and Ulrich Drepper This manual documents the GNU C Libraries version 2.3.x. ISBN 1-882114-24-8, First Printing, March 2004. Published by: GNU Press Website: www.gnupress.org a division of the General: [email protected] Free Software Foundation Orders: [email protected] 51 Franklin St, Fifth Floor Tel: 617-542-5942 Boston, MA 02110-1301 USA Fax: 617-542-2652 Copyright © 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2, or any later version published by the Free Software Foundation; with the Invariant Sections being “Free Software and Free Manuals”, the “GNU Free Documentation License”," and the “GNU Lesser General Public License”, with the Front Cover Texts being “A GNU Manual”, and with the Back Cover Texts as in (a) below. A copy of the license is included in the section entitled “GNU Free Documentation License”. (a) The Back Cover Text is: You are free to copy and modify this GNU Manual. Buying copies from GNU Press supports the FSF in developing GNU and promoting software freedom. Cover art by Etienne Suvasa. Cover design by Jonathan Richard. Printed in USA. i Short Contents 1 Introduction ............................................ 1 2 Low-Level Input/Output .................................. 17 3 File-System Interface .................................... 71 4 Pipes and FIFOs ...................................... 119 5 Sockets .............................................. 125 6 Low-Level Terminal Interface ...........................
    [Show full text]
  • Resilient Video Coding for Wireless and Peer-To-Peer Networks
    Resilient Video Coding for Wireless and Peer-to-peer Networks Resilient Video Coding for Wireless and Peer-to-peer Networks Proefschrift ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus Prof. dr. ir. J. T. Fokkema, voorzitter van het College voor Promoties, in het openbaar te verdedigen op 2 oktober 2007 om 10.00 uur door Jacco Reynoud TAAL elektrotechnisch ingenieur geboren te Rotterdam. Dit proefschrift is goedgekeurd door de promotor: Prof. dr. ir. R. L. Lagendijk Samenstelling promotiecommissie: Rector Magnificus, voorzitter Prof. dr. ir. R. L. Lagendijk, Technische Universiteit Delft, promotor Prof. dr. ir. P. F. A. Van Mieghem Technische Universiteit Delft Prof. dr. ir. H. J. Sips Technische Universiteit Delft Prof. dr. ir. C. H. Slump Universiteit Twente Prof. dr. ir. P. H. N. de With Technische Universiteit Eindhoven Univ.-Prof. Dr.-Ing. Eckehard Steinbach Technische Universität München Dr. A. Reibman AT&T Research A This document is typeset with the LTEX ÑeÑÓiÖ typesetting system. The photo on the cover is taken in April 2006 in the pedestrians tunnel connecting the old and new part of Shanghai. This work was carried out in the ASCI graduate school. ASCI dissertation series number 155 Advanced School for Computing and Imaging ISBN: 978-90-9022238-7 Copyright c 2007 by J. R. Taal All rights reserved. No part of this material may be reproduced or transmitted in any form or by any means, electronic, mechanical, including photocopying, recording or by any information storage and retrieval system, without the prior permission of the copyright owner.
    [Show full text]
  • Physical Interfaces
    N95- 14161 "..,, .....-,, "11.... / "\ RESEARCH & APPLIC_. ONS .Y SYMPOSIUM '92 ""..... A GENERIC ARCHITECTURE MODEL FOR SI CE DATA SYSTEMS RICHARD B. WRA Y ABSTRACT A Space Generic Open Avionics Architecture (SGOAA) was created for the NASA, to be the basis for an open, standard generic architecture for the entities in spacecraft core avionics. Its purpose is to be tailored by NASA to future space program avionics ranging from small vehicles such as Moon Ascent/ Descent Vehicles to large vehicles such as Mars Transfer Vehicles or Orbiting Stations. This architec- ture standard consists of several parts: (1) a system architecture, (2) a generic processing hardware architecture, (3) a six class architecture interface model, (4) a system services functional subsystem architecture model, and (5) an operations control functional subsystem architecture model. This paper describes the SGOAA model. It includes the definition of the key architecture require- ments; the use of standards in designing the architecture; examples of other architecture standards; identification of the SGOAA model; the relationships between the SGOAA, POSIX and OSI models; and the generic system architecture. Then the six classes of the architecture interface model are summarized. Plans for the architecture are reviewed. BIOGRAPHY Richard B. Wray has a dual MS/MBA in Systems Management, Acquisition, and Contracting; a MBA with Distinction Honors in General Management; a MS in Systems Engineering and a BS in Math- ematics. He is the Vice President-Technical of the National Council on Systems Engineering (NCoSE) Texas Gulf Coast Chapter, and Chairman of the NCoSE Systems Engineering Process Working Group to define a nationally recognized systems engineering process.
    [Show full text]
  • DNS and the DNS Cache Poisoning Attack
    Lecture 17: DNS and the DNS Cache Poisoning Attack Lecture Notes on “Computer and Network Security” by Avi Kak ([email protected]) June 25, 2021 3:21pm ©2021 Avinash Kak, Purdue University Goals: The Domain Name System BIND Configuring BIND Running BIND on your Ubuntu laptop Light-Weight Nameservers (and how to install them) DNS Cache Poisoning Attack Writing Perl and Python code for cache poisoning attacks Dan Kaminsky’s More Virulent DNS Cache Poisoning Attack CONTENTS Section Title Page 17.1 Internet, Harry Potter, and the Magic of DNS 3 17.2 DNS 5 17.3 An Example That Illustrates Extensive DNS 13 Lookups in Even the Simplest Client-Server Interactions 17.4 The Domain Name System and The dig Utility 28 17.5 host, nslookup, and whois Utilities for Name 42 Lookup 17.6 Creating a New Zone and Zone Transfers 45 17.7 DNS Cache 48 17.7.1 The TTL Time Interval 51 17.8 BIND 56 17.8.1 Configuring BIND 58 17.8.2 An Example of the named.conf Configuration File 64 17.8.3 Running BIND on Your Ubuntu Laptop 68 17.9 What Does it Mean to Run a Process in a 70 chroot Jail? 17.10 Phishing versus Pharming 73 17.11 DNS Cache Poisoning 74 17.12 Writing Perl and Python Code for Mounting a 81 DNS Cache Poisoning Attack 17.13 Dan Kaminsky’s More Virulent Exploit for 92 DNS Cache Poisoning 17.14 Homework Problems 99 Computer and Network Security by Avi Kak Lecture 17 Back to TOC 17.1 INTERNET, HARRY POTTER, AND THE MAGIC OF DNS If you have read Harry Potter, you are certainly familiar with the use of owl mail by the wizards and the witches.
    [Show full text]