A Strategy for Measuring Landscape Biodiversity by Gonzalo Halffter 3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Landscape Appurtenant to Residential, Commercial, Industrial, and Institutional Development; And
RESOLUTION NO. 2007- 116 A RESOLUTION OF THE CITY COUNCIL OF THE CITY OF THOUSAND OAKS ADOPTING REVISED GUIDELINES AND STANDARDS FOR LANDSCAPE PLANTING AND IRRIGATION PLANS AND RESCINDING RESOLUTION NO. 93- 74 WHEREAS, the City of Thousand Oaks seeks to improve the physical, social, economic and aesthetic environment by proper design and construction of landscape appurtenant to residential, commercial, industrial, and institutional development; and WHEREAS, landscaping, to be fully appropriate, effective, and have long- term viability, must be designed into the project from the beginning of the design effort; and WHEREAS, appropriate designed landscaping contributes to the beauty and well- being in the City and said landscaping ( xeriscape) should be designed with the need to conserve water within the community; and NOW, THEREFORE, the City Council of the City of Thousand Oaks does resolve as follows: 1. Council Resolution No. 93- 74 IS hereby rescinded and superseded by this resolution. 2. The attached " Guidelines and Standards for Landscape Planting and Irrigation Plans" (Attachment A) are hereby adopted. 3. All new and remodeled developments which require a development permit, major modification, or other entitlement pursuant to Title 9 of the Municipal Code, shall be landscaped to include planting, irrigation system and maintenance of said landscaping improvements in accordance with the attached Guidelines and Standards for Landscape Planting and Irrigation Plans". ATTEST: U~ Linda D. Lawrence, City Clerk r CDD:460- 20/ I./ cdd/ council/ ceres 2007/ MCA 2006- 70478 city Res. No. 2007- 116 Page 1 APPROVED AS TO FORM: Office of City Attorney omeY CERTIFICATION STATE OF CALIFORNIA ) COUNTY OF VENTURA ) SS. -
Gamma Diversity: Derived from and a Determinant of Alpha Diversity and Beta Diversity
Acta Zoologica Mexicana (n.s.) 90: 27-76 (2003) GAMMA DIVERSITY: DERIVED FROM AND A DETERMINANT OF ALPHA DIVERSITY AND BETA DIVERSITY. AN ANALYSIS OF THREE TROPICAL LANDSCAPES Lucrecia ARELLANO y Gonzalo HALFFTER Instituto de Ecología, A.C. Departamento de Ecología y Comportamiento Animal Apartado Postal 63, 91000 Xalapa, Veracruz, MÉXICO E-mail: [email protected] [email protected] RESUMEN Utilizando tres grupos taxonómicos en este trabajo examinamos como las diversidades alfa y beta influyen en la riqueza de especies de un paisaje (diversidad gamma), así como el fenómeno recíproco. Es decir, como la riqueza en especies de un paisaje (un fenómeno histórico-biogeográfico) contribuye a determinar los valores de la diversidad alfa por sitio, por comunidad, la riqueza acumulada de especies por comunidad y la intensidad del recambio entre comunidades. Los grupos utilizados son dos subfamilias de Scarabaeoidea: Scarabaeinae y Geotrupinae, y la familia Silphidae. En todos los análisis los tres grupos taxonómicos son manejados como un grupo indicador: los escarabajos copronecrófagos. De una manera lateral se incluye información sobre la subfamilia Aphodiinae (Scarabaeoidea), escarabajos coprófagos no incorporados al manejo del grupo indicador. Los paisajes estudiados son tres (tropical, de transición y de montaña), situados en un gradiente altitudinal en la parte central del estado de Veracruz. Partimos de las premisas siguientes. La diversidad alfa de un grupo indicador refleja el número de especies que utiliza un mismo ambiente o recurso en un lugar o comunidad. La diversidad beta espacial se relaciona con la respuesta de los organismos a la heterogeneidad del espacio. La diversidad gamma depende fundamentalmente de los procesos histórico-geográficos que actúan a nivel de mesoescala y está también condicionada por las diversidades alfa y beta. -
Patterns of Alpha, Beta and Gamma Diversity of the Herpetofauna in Mexico’S Pacific Lowlands and Adjacent Interior Valleys A
Animal Biodiversity and Conservation 30.2 (2007) 169 Patterns of alpha, beta and gamma diversity of the herpetofauna in Mexico’s Pacific lowlands and adjacent interior valleys A. García, H. Solano–Rodríguez & O. Flores–Villela García, A., Solano–Rodríguez, H. & Flores–Villela, O., 2007. Patterns of alpha, beta and gamma diversity of the herpetofauna in Mexico's Pacific lowlands and adjacent interior valleys. Animal Biodiversity and Conservation, 30.2: 169–177. Abstract Patterns of alpha, beta and gamma diversity of the herpetofauna in Mexico’s Pacific lowlands and adjacent interior valleys.— The latitudinal distribution patterns of alpha, beta and gamma diversity of reptiles, amphibians and herpetofauna were analyzed using individual binary models of potential distribution for 301 species predicted by ecological modelling for a grid of 9,932 quadrants of ~25 km2 each. We arranged quadrants in 312 latitudinal bands in which alpha, beta and gamma values were determined. Latitudinal trends of all scales of diversity were similar in all groups. Alpha and gamma responded inversely to latitude whereas beta showed a high latitudinal fluctuation due to the high number of endemic species. Alpha and gamma showed a strong correlation in all groups. Beta diversity is an important component of the herpetofauna distribution patterns as a continuous source of species diversity throughout the region. Key words: Latitudinal distribution pattern, Diversity scales, Herpetofauna, Western Mexico. Resumen Patrones de diversidad alfa, beta y gama de la herpetofauna de las tierras bajas y valles adyacentes del Pacífico de México.— Se analizaron los patrones de distribución latitudinales de la diversidad alfa, beta y gama de los reptiles, anfibios y herpetofauna utilizando modelos binarios individuales de distribución potencial de 301 especies predichas mediante un modelo ecológico para una cuadrícula de 9.932 cuadrantes de aproximadamente 25 km2 cada uno. -
Landscape Approach in Addressing Land Use and Tenure Arrangements Among Pastoral Commnities in Eastern Africa: the Case of Tanzania
LANDSCAPE APPROACH IN ADDRESSING LAND USE AND TENURE ARRANGEMENTS AMONG PASTORAL COMMNITIES IN EASTERN AFRICA: THE CASE OF TANZANIA Working paper STEPHEN NINDI (1), FIONA FLINTAN (2), DEUS KALENZI (2), VICTOR MWITA (3), ISAACK LUAMBANO (2) Paper prepared for presentation at the “2018 WORLD BANK CONFERENCE ON LAND AND POVERTY” The World Bank - Washington DC, March 25-29, 2019 Copyright 2019 by author(s). All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies. Abstract Land use and tenure related conflicts are not new in Tanzania including between farmers and livestock herders. Conflicts are increasingly becoming common places as human and animal population heightens, urbanization grows and increases in other land uses such as agriculture, mining, infrastructure development and other emerging uses. Pastoralists are used to their mobility to ensure sustainable availability of pasture, water and minerals and maintenance of gene diversity. Nonetheless, economic and human development processes have tremendously reduced land available for pastoral mobility resulting in increasing challenges over access to resources and land. For decades conventional village spatial planning has further restricted pastoral movement within village jurisdiction boundaries. Recently, spatial planners have embarked on developing Joint Village Land Use Plans and Agreements to enable more space and diversity for pastoral mobility, protecting shared grazing areas across village boundaries as part of this. As part of a wider and an integrated approach that looks at the challenge in its holistic and integral manner, there is opportunity for reconciling different land uses in the landscape and improving mutual benefits. -
Use of Alpha, Beta, and Gamma Diversity Measures to Characterize Seed Dispersal by Animals
The University of Chicago 8VHRI$OSKD%HWDDQG*DPPD'LYHUVLW\0HDVXUHVWR&KDUDFWHUL]H6HHG'LVSHUVDOE\$QLPDOV $XWKRU V 'RXJODV*6FRILHOG3HWHU(6PRXVH-RUGDQ.DUXELDQDQG9LFWRULD/6RUN 6RXUFH7KH$PHULFDQ1DWXUDOLVW9RO1R 'HFHPEHU SS 3XEOLVKHGE\The University of Chicago PressIRUThe American Society of Naturalists 6WDEOH85/http://www.jstor.org/stable/10.1086/668202 . $FFHVVHG Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press, The American Society of Naturalists, The University of Chicago are collaborating with JSTOR to digitize, preserve and extend access to The American Naturalist. http://www.jstor.org This content downloaded from 128.97.244.148 on Mon, 5 Aug 2013 10:15:52 AM All use subject to JSTOR Terms and Conditions vol. 180, no. 6 the american naturalist december 2012 Use of Alpha, Beta, and Gamma Diversity Measures to Characterize Seed Dispersal by Animals Douglas G. Scofield,1,2 Peter E. Smouse,3 Jordan Karubian,4 and Victoria L. Sork1,5,* 1. Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095; 2. Umea˚ Plant Science Centre, Department of Plant Physiology, Umea˚ University, 901 87 Umea˚, Sweden; 3. Department of Ecology, Evolution, and Natural Resources, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901; 4. -
MF-Romanticism .Pdf
Europe and America, 1800 to 1870 1 Napoleonic Europe 1800-1815 2 3 Goals • Discuss Romanticism as an artistic style. Name some of its frequently occurring subject matter as well as its stylistic qualities. • Compare and contrast Neoclassicism and Romanticism. • Examine reasons for the broad range of subject matter, from portraits and landscape to mythology and history. • Discuss initial reaction by artists and the public to the new art medium known as photography 4 30.1 From Neoclassicism to Romanticism • Understand the philosophical and stylistic differences between Neoclassicism and Romanticism. • Examine the growing interest in the exotic, the erotic, the landscape, and fictional narrative as subject matter. • Understand the mixture of classical form and Romantic themes, and the debates about the nature of art in the 19th century. • Identify artists and architects of the period and their works. 5 Neoclassicism in Napoleonic France • Understand reasons why Neoclassicism remained the preferred style during the Napoleonic period • Recall Neoclassical artists of the Napoleonic period and how they served the Empire 6 Figure 30-2 JACQUES-LOUIS DAVID, Coronation of Napoleon, 1805–1808. Oil on canvas, 20’ 4 1/2” x 32’ 1 3/4”. Louvre, Paris. 7 Figure 29-23 JACQUES-LOUIS DAVID, Oath of the Horatii, 1784. Oil on canvas, approx. 10’ 10” x 13’ 11”. Louvre, Paris. 8 Figure 30-3 PIERRE VIGNON, La Madeleine, Paris, France, 1807–1842. 9 Figure 30-4 ANTONIO CANOVA, Pauline Borghese as Venus, 1808. Marble, 6’ 7” long. Galleria Borghese, Rome. 10 Foreshadowing Romanticism • Notice how David’s students retained Neoclassical features in their paintings • Realize that some of David’s students began to include subject matter and stylistic features that foreshadowed Romanticism 11 Figure 30-5 ANTOINE-JEAN GROS, Napoleon at the Pesthouse at Jaffa, 1804. -
The Landscape Architecture Data Model
The Landscape Architecture Data Model A Case Study in GIS Data Modeling Andrew Holguin LDA Senior Project - Spring 2009 University of California, Davis The Landscape Architecture Data Model: A Case Study in GIS Data Modeling A Senior Project Presented to the faculty of the program of Landscape Architecture at the University of California, Davis in partial fulfillment of the requirements for the degree of Bachelors of Science of Landscape Architecture. Presented by: Andrew Jason Holguin at University of California, Davis on the twelfth day of June, 2008 Acceptance and Approval by: ___________________________________ Steve McNeil, Faculty Advisor ___________________________________ Keir Keightley, Committee Member ___________________________________ James Thorne, Committee Member ___________________________________ Mark Francis, Senior Project Advisor Abstract The primary objective of this project is to develop a geodatabase that can be used by undergraduate landscape architecture students in the site analysis phase of a design or planning project. As part of this process, useful datasets are discussed, and basic GIS concepts are explained. The spatial extent of the database covers Yolo County, and the relevant map scale for analysis and map production is 1:24,000 or less. The database consists entirely of publically available data that can be obtained online from a variety of sources. The organization of the database is also described and sample map products are displayed. Finally, a simple analysis is performed to demonstrate how the data -
Lackawanna Valley
MAN and the NATURAL WORLD: ROMANTICISM (Nineteenth-Century American Landscape Painting) NINETEENTH-CENTURY AMERICAN LANDSCAPE PAINTING Online Links: Thomas Cole – Wikipedia Hudson River School – Wikipedia Frederic Edwin Church – Wikipedia Cole's Oxbow – Smarthistory Cole's Oxbow (Video) – Smarthistory Church's Niagara and Heart of the Andes - Smarthistory Thomas Cole. The Oxbow (View from Mount Holyoke, Northampton, Massachusetts, after a Thunderstorm), 1836, oil on canvas Thomas Cole (1801-1848) was one of the first great professional landscape painters in the United States. Cole emigrated from England at age 17 and by 1820 was working as an itinerant portrait painter. With the help of a patron, he traveled to Europe between 1829 and 1832, and upon his return to the United States he settled in New York and became a successful landscape painter. He frequently worked from observation when making sketches for his paintings. In fact, his self-portrait is tucked into the foreground of The Oxbow, where he stands turning back to look at us while pausing from his work. He is executing an oil sketch on a portable easel, but like most landscape painters of his generation, he produced his large finished works in the studio during the winter months. Cole painted this work in the mid- 1830s for exhibition at the National Academy of Design in New York. He considered it one of his “view” paintings because it represents a specific place and time. Although most of his other view paintings were small, this one is monumentally large, probably because it was created for exhibition at the National Academy. -
Diversity Partitioning in Phanerozoic Benthic Marine Communities
Diversity partitioning in Phanerozoic benthic marine communities Richard Hofmanna,1, Melanie Tietjea, and Martin Aberhana aMuseum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany Edited by Peter J. Wagner, University of Nebraska-Lincoln, Lincoln, NE, and accepted by Editorial Board Member Neil H. Shubin November 19, 2018 (received for review August 24, 2018) Biotic interactions such as competition, predation, and niche construc- formations harbor a pool of species that were principally able to tion are fundamental drivers of biodiversity at the local scale, yet their interact at the local and regional scale and thus can be regarded as long-term effect during earth history remains controversial. To test their the constituents of metacommunities in the geological record. role and explore potential limits to biodiversity, we determine within- Beta diversity among collections from the same formation is habitat (alpha), between-habitat (beta), and overall (gamma) diversity expected for two reasons, even though many benthic marine in- of benthic marine invertebrates for Phanerozoic geological formations. vertebrates have planktonic larval stages and thus high dispersal We show that an increase in gamma diversity is consistently generated capabilities. First, the distribution of species within a meta- by an increase in alpha diversity throughout the Phanerozoic. Beta community is predicted to be patchy (17). Even if the habitats diversity drives gamma diversity only at early stages of diversifica- represented by a formation were homogeneous, local differences tion but remains stationary once a certain gamma level is reached. This mode is prevalent during early- to mid-Paleozoic periods, in species distributions would result in compositional differences whereas coupling of beta and gamma diversity becomes increas- among sites. -
Envisioning Present and Future Land-Use Change Under Varying Ecological Regimes and Their Influence on Landscape Stability
sustainability Commentary Envisioning Present and Future Land-Use Change under Varying Ecological Regimes and Their Influence on Landscape Stability Marcela Prokopová 1, Luca Salvati 1,2,*, Gianluca Egidi 3, OndˇrejCudlín 1, Renata Vˇceláková 1, Radek Plch 1 and Pavel Cudlín 1 1 Global Change Research Institute, Czech Academy of Sciences, Lipová 9, CZ-37005 Ceskˇ é Budˇejovice,Czech Republic 2 Council for Agricultural Research and Economics (CREA), Viale S. Margherita 80, I-52100 Arezzo, Italy 3 Department of Agricultural and Forestry Sciences (DAFNE), Tuscia University, Via San Camillo de Lellis, I-01100 Viterbo, Italy * Correspondence: [email protected] Received: 30 July 2019; Accepted: 22 August 2019; Published: 27 August 2019 Abstract: Climate change plays an important role in shaping ecological stability of landscape systems. Increasing weather fluctuations such as droughts threaten the ecological stability of natural and anthropogenic landscapes. Uncertainty exists regarding the validity of traditional landscape assessment schemes under climate change. This commentary debates the main factors that threaten ecological stability, discussing basic approaches to interpret landscape functioning. To address this pivotal issue, the intimate linkage between ecological stability and landscape diversity is explored, considering different approaches to landscape stability assessment. The impact of land-use changes on landscape stability is finally discussed. Assessment methodologies and indicators are reviewed and grouped into homogeneous classes based on a specific nomenclature of stability aspects which include landscape composition, fragmentation and connectivity, thermodynamic and functional issues, biodiversity, soil degradation, and ecological disturbance. By considering land-use change as one of the most important factors underlying climate change, individual components of landscape stability are finally delineated and commented upon. -
E 10 Ways to Make Your Landscape EARTH-KIND®
EHT-083 02-15 10 Ways to Make Your Landscape EARTH-KIND® Tim Hartmann, Extension Program Specialist, Horticultural Sciences The Texas A&M University System arth-Kind® focuses on using environmentally friendly management practices to produce landscapes that are beautiful, low-maintenance, and sustainable. The goals of an E Earth-Kind® landscape are to conserve water and energy, reduce pesticide and fertilizer use, and to recycle landscape wastes. Unfortunately, some Earth-Kind® principles can be difficult to implement in an established landscape especially if the owner does not wish to make drastic changes to the existing design and plantings. The following, however, are ten practices that can easily be implemented to transform an existing landscape into one that is Earth-Kind® (https://aggie- horticulture.tamu.edu/earthkind/). 1. Mulch adding and maintaining a three-inch layer of plant- derived mulch, such as native hardwood, will significantly reduce the amount of water required in the landscape. This is especially true when drip irrigation is placed underneath it. Mulch also helps prevent weeds and erosion, modifies the soil temperature, and serves as continuous supply of organic matter for the soil beneath. Mulch can easily be added to an existing landscape and may be available free from municipal or utility sites. Learn more at: https://aggie- horticulture.tamu.edu/earthkind/files/2010/10/mulch.pdf Native hardwood mulch spread evenly to a thickness of 3 inches, with drip irrigation buried beneath. 2. Low-volume irrigation Micro and drip irrigation is typically at least 90 percent efficient compared to traditional sprinkler irrigation (50 to 70 percent) because it applies water only where it is needed and slowly enough to minimize runoff and evaporation loss. -
Integrating Nature Into the Urban Landscape a Design Guide
Integrating Nature into the Urban Landscape A Design Guide FEBRUARY 2018 Integrating Nature into the Urban Landscape 1 | INTRODUCTION 2 | ECOLOGICAL APPROACH 3 | GOALS AND PRIORITIES 4 | DESIGN PARAMETERS 5 | LANDSCAPE MANAGEMENT 6 | BIRD-SAFE DESIGN GUIDELINES 7 | PLANT PALETTES AND PHOTOS 8 | REFERENCES APPENDIX A | DESIGN CHECKLISTS Acknowledgements We would like to thank the following parties for their thoughtful feedback on the draft document: Google’s Ecology Team California Native Plant Society, Santa Clara Valley Chapter; Committee for Green Foothills; Living Classroom; Santa Clara Valley Audubon Society; Sierra Club Loma Prieta, Sustainable Land Use Committee; and Canopy. The funding sponsor for this document is Google, Inc. All photos were provided by H. T. Harvey & Associates staff. Native planting area in San Jose, CA Integrating Nature into the Urban Landscape: A Design Guide February 2018 | iv Introduction 1 2 In our increasingly developed world, wildlife substantial landscapes to manage are the primary habitat is being lost to development at an alarming intended users of this document. However, even 3 rate, putting native plant and wildlife populations small landscapes that prioritize habitat creation at risk and reducing overall ecosystem health. will provide benefits to wildlife, increasing habitat Who are these Incorporating wildlife habitat into urban and structure and resources (including shelter, nesting, Guidelines primarily for? 4 suburban systems can help counteract these forces, and foraging). Every landscape project – regardless Any person or organization sustaining native plant and wildlife populations of size – offers valuable opportunities to incorporate that manages or makes decisions while enhancing the human experience. More and habitat elements and add to the overall urban 5 about landscapes at a substantial more companies, educational institutions, public habitat matrix, maximizing benefits to wildlife.