Differences in Beta Diversity Between Exotic and Native Grasslands Vary with Scale Along a Latitudinal Gradient Leanne M

Total Page:16

File Type:pdf, Size:1020Kb

Differences in Beta Diversity Between Exotic and Native Grasslands Vary with Scale Along a Latitudinal Gradient Leanne M Ecology, Evolution and Organismal Biology Ecology, Evolution and Organismal Biology Publications 4-2015 Differences in Beta Diversity Between Exotic and Native Grasslands Vary with Scale Along a Latitudinal Gradient Leanne M. Martin Iowa State University Brian J. Wilsey Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/eeob_ag_pubs Part of the Biodiversity Commons, Ecology and Evolutionary Biology Commons, and the Plant Breeding and Genetics Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ eeob_ag_pubs/88. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Ecology, Evolution and Organismal Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Ecology, Evolution and Organismal Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Differences in Beta Diversity Between Exotic and Native Grasslands Vary with Scale Along a Latitudinal Gradient Abstract Biodiversity can be partitioned into alpha, beta, and gamma components, and beta diversity is not as clearly understood. Biotic homogenization predicts that exotic species should lower beta diversity at global and continental scales, but it is still unclear how exotic species impact beta diversity at smaller scales. Exotic species could theoretically increase or decrease beta diversity relative to natives depending on many factors, including abiotic conditions, community assembly history, management, dispersal rates of species, and connectivity among patches. We sampled plant species abundances in 42 novel, exotic- and native-dominated (remnant) grasslands across a latitudinal gradient in the tallgrass prairie region, and tested whether exotic and native grasslands differed in beta diversity at three scales: across sites within the entire biome, across sites within regions, and across locations within sites. Exotic-dominated grasslands differed from native-dominated grasslands in beta diversity at all scales, but the direction of the difference changed from positive to negative as scales went from large to small. Contrary to expectations, exotic-dominated grasslands had higher beta diversity than native-dominated grasslands at the largest scale considered. This occurred because the identity of dominant exotic species varied across the latitudinal gradient, with many exotic grassland pairs exhibiting zero similarity, whereas native-dominated grasslands differed more gradually with distance. Beta diversity among sites within a region was variable, with exotic-dominated grasslands having 29% higher beta diversity than native grasslands in the south and 33% lower beta diversity in the north. Within sites, beta diversity was 26% lower in exotic-dominated than native grasslands. Our results provide evidence that different regional identities and abundances of exotics, and lack of connectivity in fragmented landscapes can alter beta diversity in unexpected ways across spatial scales. Keywords alpha diversity, beta diversity, exotic species, gamma diversity, grasslands, homogenization, invasive species, native species, tallgrass prairie R Disciplines Biodiversity | Ecology and Evolutionary Biology | Plant Breeding and Genetics Comments This article is from Ecology 96 (2015): 1042-1051, doi:10.1890/14-0772.1. Posted with permission. This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/eeob_ag_pubs/88 Ecology, 96(4), 2015, pp. 1042–1051 Ó 2015 by the Ecological Society of America Differences in beta diversity between exotic and native grasslands vary with scale along a latitudinal gradient 1 LEANNE M. MARTIN AND BRIAN J. WILSEY Department of Ecology, Evolution, and Organismal Biology, 253 Bessey Hall, Iowa State University, Ames, Iowa 50011 USA Abstract. Biodiversity can be partitioned into alpha, beta, and gamma components, and beta diversity is not as clearly understood. Biotic homogenization predicts that exotic species should lower beta diversity at global and continental scales, but it is still unclear how exotic species impact beta diversity at smaller scales. Exotic species could theoretically increase or decrease beta diversity relative to natives depending on many factors, including abiotic conditions, community assembly history, management, dispersal rates of species, and connectivity among patches. We sampled plant species abundances in 42 novel, exotic- and native-dominated (remnant) grasslands across a latitudinal gradient in the tallgrass prairie region, and tested whether exotic and native grasslands differed in beta diversity at three scales: across sites within the entire biome, across sites within regions, and across locations within sites. Exotic-dominated grasslands differed from native-dominated grasslands in beta diversity at all scales, but the direction of the difference changed from positive to negative as scales went from large to small. Contrary to expectations, exotic-dominated grasslands had higher beta diversity than native-dominated grasslands at the largest scale considered. This occurred because the identity of dominant exotic species varied across the latitudinal gradient, with many exotic grassland pairs exhibiting zero similarity, whereas native-dominated grasslands differed more gradually with distance. Beta diversity among sites within a region was variable, with exotic-dominated grasslands having 29% higher beta diversity than native grasslands in the south and 33% lower beta diversity in the north. Within sites, beta diversity was 26% lower in exotic-dominated than native grasslands. Our results provide evidence that different regional identities and abundances of exotics, and lack of connectivity in fragmented landscapes can alter beta diversity in unexpected ways across spatial scales. Key words: alpha diversity; beta diversity; exotic species; gamma diversity; grasslands; homogeniza- tion; invasive species; native species; tallgrass prairie. INTRODUCTION composition can change due to species sorting according Species diversity can be partitioned into alpha, beta, to abiotic conditions, such as soil types or climates. and gamma components in order to understand how Second, differences in assembly history, in which timing species diversity varies at multiple scales across space and arrival order of plant species vary within an (Whittaker 1960). Alpha (local) diversity and gamma environment, can alter beta diversity (Chase 2003, (regional) diversity are commonly measured, but beta Questad and Foster 2008, Martin and Wilsey 2012). diversity is not as clearly understood. Beta diversity, Patches within an area that have the same assembly defined as turnover or patchiness in species identities history should have lower beta diversity, whereas and abundances across space, provides us with the basic patches that differ in their history should have higher understanding of how species are distributed, as well as beta diversity. Third, animal activities, such as grazing, how alpha and gamma diversity are related (e.g., urine deposition, or digging, can alter plant species Whittaker 1960, Olden and Poff 2003, Novotny et al. composition among patches and increase beta diversity 2007, Wilsey 2010, Anderson et al. 2011, Leprieur et al. (Steinauer and Collins 1995). Fourth, metacommunity 2011). theory predicts that dispersal rates and connectivity of Beta diversity of plant communities can, theoretically, habitat patches can influence beta diversity (Wilson vary depending on many factors (e.g., Loreau 2000, 1992, Leibold et al. 2004). Dispersal rates and connec- Chase 2003, Soininen et al. 2007). First, community tivity are inversely related to beta diversity (Loreau 2000, Soininen et al. 2007, Qian 2009) such that species Manuscript received 22 April 2014; revised 4 September with greater numbers of propagules with more time to 2014; accepted 17 September 2014. Corresponding Editor: disperse among connected sites should, theoretically, N. J. B. Kraft. lower beta diversity by occupying more habitat patches 1 Present address: Kansas Biological Survey, 2101 Con- stant Avenue, University of Kansas, Lawrence, Kansas 66047 (all other things being equal). All of these factors can USA. E-mail: [email protected] interact, such that abiotic conditions and assembly 1042 April 2015 EXOTIC AND NATIVE BETA DIVERSITY DIFFERS 1043 history can both alter community composition and beta which homogenization vs. differentiation occurs. Our diversity. lack of understanding of how exotics are altering One human impact with the potential to alter these patterns of beta diversity at multiple, finer scales is determinants of beta diversity is introduction of multiple unfortunate, because these are scales at which manage- exotic (non-native) plant species (Hobbs et al. 2006). ment decisions take place (Gering et al. 2003, Martin et The usual prediction is that exotic species should al. 2005, Wilsey et al. 2005). homogenize biota at broad (continental and global) Understanding how exotic species are impacting beta spatial extents. However, to understand whether exotic diversity at multiple scales is important. Beta diversity species can homogenize biota, one must first examine the declined with latitude (e.g., Hillebrand 2004, Soininen et level of beta diversity that exists for native species at
Recommended publications
  • Partitioning the Colonization and Extinction Components of Beta Diversity: Spatiotemporal Species Turnover Across Disturbance Gradients
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.24.956631; this version posted February 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Research article Partitioning the colonization and extinction components of beta diversity: Spatiotemporal species turnover across disturbance gradients Shinichi TATSUMI1,2,*, Joachim STRENGBOM3, Mihails ČUGUNOVS4, Jari KOUKI4 1 Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada 2 Hokkaido Research Center, Forestry and Forest Products Research Institute, Hokkaido, Japan 3 Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden 4 School of Forest Sciences, University of Eastern Finland, Joensuu, Finland * Corresponding author Shinichi Tatsumi ([email protected], +1-416-208-5130) Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.24.956631; this version posted February 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 ABSTRACT 2 Changes in species diversity often result from species losses and gains. The dynamic nature of 3 beta diversity (i.e., spatial variation in species composition) that derives from such temporal 4 species turnover, however, has been largely overlooked.
    [Show full text]
  • Gamma Diversity: Derived from and a Determinant of Alpha Diversity and Beta Diversity
    Acta Zoologica Mexicana (n.s.) 90: 27-76 (2003) GAMMA DIVERSITY: DERIVED FROM AND A DETERMINANT OF ALPHA DIVERSITY AND BETA DIVERSITY. AN ANALYSIS OF THREE TROPICAL LANDSCAPES Lucrecia ARELLANO y Gonzalo HALFFTER Instituto de Ecología, A.C. Departamento de Ecología y Comportamiento Animal Apartado Postal 63, 91000 Xalapa, Veracruz, MÉXICO E-mail: [email protected] [email protected] RESUMEN Utilizando tres grupos taxonómicos en este trabajo examinamos como las diversidades alfa y beta influyen en la riqueza de especies de un paisaje (diversidad gamma), así como el fenómeno recíproco. Es decir, como la riqueza en especies de un paisaje (un fenómeno histórico-biogeográfico) contribuye a determinar los valores de la diversidad alfa por sitio, por comunidad, la riqueza acumulada de especies por comunidad y la intensidad del recambio entre comunidades. Los grupos utilizados son dos subfamilias de Scarabaeoidea: Scarabaeinae y Geotrupinae, y la familia Silphidae. En todos los análisis los tres grupos taxonómicos son manejados como un grupo indicador: los escarabajos copronecrófagos. De una manera lateral se incluye información sobre la subfamilia Aphodiinae (Scarabaeoidea), escarabajos coprófagos no incorporados al manejo del grupo indicador. Los paisajes estudiados son tres (tropical, de transición y de montaña), situados en un gradiente altitudinal en la parte central del estado de Veracruz. Partimos de las premisas siguientes. La diversidad alfa de un grupo indicador refleja el número de especies que utiliza un mismo ambiente o recurso en un lugar o comunidad. La diversidad beta espacial se relaciona con la respuesta de los organismos a la heterogeneidad del espacio. La diversidad gamma depende fundamentalmente de los procesos histórico-geográficos que actúan a nivel de mesoescala y está también condicionada por las diversidades alfa y beta.
    [Show full text]
  • Patterns of Alpha, Beta and Gamma Diversity of the Herpetofauna in Mexico’S Pacific Lowlands and Adjacent Interior Valleys A
    Animal Biodiversity and Conservation 30.2 (2007) 169 Patterns of alpha, beta and gamma diversity of the herpetofauna in Mexico’s Pacific lowlands and adjacent interior valleys A. García, H. Solano–Rodríguez & O. Flores–Villela García, A., Solano–Rodríguez, H. & Flores–Villela, O., 2007. Patterns of alpha, beta and gamma diversity of the herpetofauna in Mexico's Pacific lowlands and adjacent interior valleys. Animal Biodiversity and Conservation, 30.2: 169–177. Abstract Patterns of alpha, beta and gamma diversity of the herpetofauna in Mexico’s Pacific lowlands and adjacent interior valleys.— The latitudinal distribution patterns of alpha, beta and gamma diversity of reptiles, amphibians and herpetofauna were analyzed using individual binary models of potential distribution for 301 species predicted by ecological modelling for a grid of 9,932 quadrants of ~25 km2 each. We arranged quadrants in 312 latitudinal bands in which alpha, beta and gamma values were determined. Latitudinal trends of all scales of diversity were similar in all groups. Alpha and gamma responded inversely to latitude whereas beta showed a high latitudinal fluctuation due to the high number of endemic species. Alpha and gamma showed a strong correlation in all groups. Beta diversity is an important component of the herpetofauna distribution patterns as a continuous source of species diversity throughout the region. Key words: Latitudinal distribution pattern, Diversity scales, Herpetofauna, Western Mexico. Resumen Patrones de diversidad alfa, beta y gama de la herpetofauna de las tierras bajas y valles adyacentes del Pacífico de México.— Se analizaron los patrones de distribución latitudinales de la diversidad alfa, beta y gama de los reptiles, anfibios y herpetofauna utilizando modelos binarios individuales de distribución potencial de 301 especies predichas mediante un modelo ecológico para una cuadrícula de 9.932 cuadrantes de aproximadamente 25 km2 cada uno.
    [Show full text]
  • Drivers of Beta Diversity in Modern and Ancient Reef-Associated Soft-Bottom Environments
    Drivers of beta diversity in modern and ancient reef-associated soft-bottom environments Vanessa Julie Roden1, Martin Zuschin2, Alexander Nützel3,4,5, Imelda M. Hausmann3,4 and Wolfgang Kiessling1 1 GeoZentrum Nordbayern, Section Paleobiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany 2 Department of Palaeontology, University of Vienna, Vienna, Austria 3 SNSB—Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany 4 Department of Earth & Environmental Sciences, Ludwig-Maximilians-Universität München, Munich, Germany 5 GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany ABSTRACT Beta diversity, the compositional variation among communities, is often associated with environmental gradients. Other drivers of beta diversity include stochastic processes, priority effects, predation, or competitive exclusion. Temporal turnover may also explain differences in faunal composition between fossil assemblages. To assess the drivers of beta diversity in reef-associated soft-bottom environments, we investigate community patterns in a Middle to Late Triassic reef basin assemblage from the Cassian Formation in the Dolomites, Northern Italy, and compare results with a Recent reef basin assemblage from the Northern Bay of Safaga, Red Sea, Egypt. We evaluate beta diversity with regard to age, water depth, and spatial distance, and compare the results with a null model to evaluate the stochasticity of these differences. Using pairwise proportional dissimilarity, we find very high beta diversity for the Cassian Formation (0.91 ± 0.02) and slightly lower beta diversity for the Bay of Safaga (0.89 ± 0.04). Null models show that stochasticity only plays a minor role in determining faunal differences. Spatial distance is also irrelevant. Contrary to expectations, there is no tendency of beta Submitted 26 September 2019 Accepted 16 April 2020 diversity to decrease with water depth.
    [Show full text]
  • Use of Alpha, Beta, and Gamma Diversity Measures to Characterize Seed Dispersal by Animals
    The University of Chicago 8VHRI$OSKD%HWDDQG*DPPD'LYHUVLW\0HDVXUHVWR&KDUDFWHUL]H6HHG'LVSHUVDOE\$QLPDOV $XWKRU V 'RXJODV*6FRILHOG3HWHU(6PRXVH-RUGDQ.DUXELDQDQG9LFWRULD/6RUN 6RXUFH7KH$PHULFDQ1DWXUDOLVW9RO1R 'HFHPEHU SS 3XEOLVKHGE\The University of Chicago PressIRUThe American Society of Naturalists 6WDEOH85/http://www.jstor.org/stable/10.1086/668202 . $FFHVVHG Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press, The American Society of Naturalists, The University of Chicago are collaborating with JSTOR to digitize, preserve and extend access to The American Naturalist. http://www.jstor.org This content downloaded from 128.97.244.148 on Mon, 5 Aug 2013 10:15:52 AM All use subject to JSTOR Terms and Conditions vol. 180, no. 6 the american naturalist december 2012 Use of Alpha, Beta, and Gamma Diversity Measures to Characterize Seed Dispersal by Animals Douglas G. Scofield,1,2 Peter E. Smouse,3 Jordan Karubian,4 and Victoria L. Sork1,5,* 1. Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095; 2. Umea˚ Plant Science Centre, Department of Plant Physiology, Umea˚ University, 901 87 Umea˚, Sweden; 3. Department of Ecology, Evolution, and Natural Resources, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901; 4.
    [Show full text]
  • Diversity Partitioning in Phanerozoic Benthic Marine Communities
    Diversity partitioning in Phanerozoic benthic marine communities Richard Hofmanna,1, Melanie Tietjea, and Martin Aberhana aMuseum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany Edited by Peter J. Wagner, University of Nebraska-Lincoln, Lincoln, NE, and accepted by Editorial Board Member Neil H. Shubin November 19, 2018 (received for review August 24, 2018) Biotic interactions such as competition, predation, and niche construc- formations harbor a pool of species that were principally able to tion are fundamental drivers of biodiversity at the local scale, yet their interact at the local and regional scale and thus can be regarded as long-term effect during earth history remains controversial. To test their the constituents of metacommunities in the geological record. role and explore potential limits to biodiversity, we determine within- Beta diversity among collections from the same formation is habitat (alpha), between-habitat (beta), and overall (gamma) diversity expected for two reasons, even though many benthic marine in- of benthic marine invertebrates for Phanerozoic geological formations. vertebrates have planktonic larval stages and thus high dispersal We show that an increase in gamma diversity is consistently generated capabilities. First, the distribution of species within a meta- by an increase in alpha diversity throughout the Phanerozoic. Beta community is predicted to be patchy (17). Even if the habitats diversity drives gamma diversity only at early stages of diversifica- represented by a formation were homogeneous, local differences tion but remains stationary once a certain gamma level is reached. This mode is prevalent during early- to mid-Paleozoic periods, in species distributions would result in compositional differences whereas coupling of beta and gamma diversity becomes increas- among sites.
    [Show full text]
  • BROAD-SCALE PATTERNS and DETERMINANTS of BETA-DIVERSITY Meghan Wilde Mcknight a Dissertation Submitted to the Faculty of The
    BROAD-SCALE PATTERNS AND DETERMINANTS OF BETA-DIVERSITY Meghan Wilde McKnight A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Curriculum in Ecology. Chapel Hill 2007 Approved by: Advisor: Peter S. White Reader: John Bruno Reader: Aaron Moody Reader: Robert K. Peet Reader: Dean L. Urban © 2007 Meghan Wilde McKnight ALL RIGHTS RESERVED ii ABSTRACT MEGHAN WILDE MCKNIGHT: Broad-Scale Patterns and Determinants of Beta-Diversity (Under the direction of Peter S. White) Ecologists recognize two components of biodiversity: inventory diversity, the species composition of a single place, and differentiation diversity, more commonly called beta-diversity, which is derived by several different methods from the change in species composition between places. Beta-diversity is determined through a complex array of processes relating to the interaction of species traits and characteristics of the physical landscape over time. Geographic variation in beta- diversity reflects past and present differences in environment, ecological interactions, and biogeographic history, including barriers to dispersal. As beta-diversity quantifies the turnover in species across space, it has important applications to the scaling of diversity, the delineation of biotic regions and conservation planning. Despite the importance of beta-diversity, relatively little is known about diversity’s “other component”, particularly at broad scales. In this dissertation, I trace the conceptual evolution of beta-diversity in order to reconcile the different views surrounding it, and examine empirical patterns of terrestrial vertebrate beta-diversity at broad spatial scales in order to gain insight into this important diversity component.
    [Show full text]
  • Beta Diversity for Functional Ecology
    Preslia 80: 61–71, 2008 61 Beta diversity for functional ecology Beta diverzita ve funkční ekologii Carlo R i c o t t a & Sabina B u r r a s c a n o Department of Plant Biology, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy, e-mail: [email protected], [email protected] Ricotta C. & Burrascano S. (2008): Beta diversity for functional ecology. – Preslia 80: 61–71. The utility of biodiversity measures that incorporate pairwise species functional differences is be- coming increasingly recognized. Functional diversity is regarded as the key for linking community composition to ecosystem processes like productivity, nutrient cycling, carbon sequestration, or sta- bility when subject to perturbations. Therefore, several indices have been proposed to measure the functional diversity of a given species assemblage. The principle behind these measures is that a species assemblage with high functional overlap among species has a lower functional diversity than an assemblage with low functional overlap. On the other hand, the variability in the species functional characters among different species assemblages (i.e., functional beta diversity) has re- ceived much less attention. The aim of this paper is thus to discuss a general framework for calculat- ing functional beta diversity from plot-to-plot functional dissimilarity matrices. To illustrate our proposal we use data from two beech forest stands with different management histories in central It- aly. The results of our analysis show that, though the two stands are significantly different from one another in terms of their species functional traits, the difference in their functional beta diversity val- ues is only marginally significant.
    [Show full text]
  • Biodiversity Gains? the Debate on Changes in Local- Vs Global-Scale Species Richness
    Portland State University PDXScholar Political Science Faculty Publications and Presentations Political Science 2018 Biodiversity Gains? The Debate on Changes in Local- vs Global-Scale Species Richness Richard B. Primack Boston University Abraham J. Miller-Rushing US National Park Service Richard T. Corlett Chinese Academy of Sciences, Menglun, Yunnan, China Vincent Devictor CNRS-Univerité Montpellier David Johns Portland State University, [email protected] See next page for additional authors Follow this and additional works at: https://pdxscholar.library.pdx.edu/polisci_fac Part of the Political Science Commons Let us know how access to this document benefits ou.y Citation Details Primack, R. B., Miller-Rushing, A. J., Corlett, R. T., Devictor, V., Johns, D. M., Loyola, R., ... & Pejchar, L. (2018). Biodiversity gains? The debate on changes in local-vs global-scale species richness. This Article is brought to you for free and open access. It has been accepted for inclusion in Political Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Authors Richard B. Primack, Abraham J. Miller-Rushing, Richard T. Corlett, Vincent Devictor, David Johns, Rafael Loyola, Bea Hass, Robin J. Pakeman, and Liba Pejchar This article is available at PDXScholar: https://pdxscholar.library.pdx.edu/polisci_fac/68 Biological Conservation 219 (2018) A1–A3 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Editorial Biodiversity gains? The debate on changes in local- vs global-scale species T richness Do changes in biodiversity at local scales reflect the declines seen at global scales? This debate dates back at least 15 years (Sax and Gaines, 2003), but has recently been revived by several authors (e.g., Gonzalez et al., 2016; Vellend et al., 2017).
    [Show full text]
  • A Strategy for Measuring Landscape Biodiversity by Gonzalo Halffter 3
    CONTENTS (N° 36, 1998) EDITORIAL • From Unity and Diversity to Consistency in Life By Jean-Claude Mounolou 1 FEATURE ARTICLE • A Strategy for Measuring Landscape Biodiversity By Gonzalo Halffter 3 • Stress Biology: A Challenging Area in Integrative Biology By Subhash C. Lakhotia 18 NEWS HIGHLIGHTS • Ethology is Dead ! Long Live Ethology By Isabelle Veissier 31 • IAPT Announces Registration of Plant Names 34 • Highlights of the 26th IUBS General Assembly 37 IUBS Scientific Programme (1997-2000) 37 26th IUBS G.A. Resolutions 40 IUBS Executive Committee (1997-2000) 42 • Obituaries: Frans A. Stafleu (1921 -1997) 43 Tamije Inoue (1948-1997) 44 Heinz Ellenberg (1913-1997) 46 PUBLICATIONS REVIEW 48 CALENDAR OF MEETINGS 50 ISSN 02532069 Editorial From Unity and Diversity to Consistency in Life For almost a century, the International Union of Biological Sciences has provided an important service to biology, biologists and societies. Exchanges between scientists and freedom in Science are the founding principles of its activities, and through successive phases of influence and retreat the Union has initiated major scientific developments (Toward a Theoretical Biology, International Biology Programme, The Decade of the Tropics, DIVERSITAS), fostered the growth and independence of specific disciplines (Physiology, Neurosciences,...) and accommodated and welcomed movements born in other "cenacles" (molecular biology or molecular genetics). From its establishment, the role of biology within society is an issue that has been fully recognised and consistently addressed by the Union and this in turn has led to strong positions, suggestions, and actions in the field of education. This aspect of IUBS activity is presently the object of renewed interest.
    [Show full text]
  • Interaction Diversity Maintains Resiliency in a Frequently Disturbed Ecosystem
    ORIGINAL RESEARCH published: 01 May 2019 doi: 10.3389/fevo.2019.00145 Interaction Diversity Maintains Resiliency in a Frequently Disturbed Ecosystem Jane E. Dell 1,2*, Danielle M. Salcido 1, Will Lumpkin 1, Lora A. Richards 1, Scott M. Pokswinski 3, E. Louise Loudermilk 2, Joseph J. O’Brien 2 and Lee A. Dyer 1 1 Ecology, Evolution, and Conservation Biology, Department of Biology, University of Nevada, Reno, NV, United States, 2 US Forest Service, Center for Forest Disturbance Science, Southern Research Center, Athens, GA, United States, 3 Wildland Fire Science Program, Tall Timbers Research Station, Tallahassee, FL, United States Frequently disturbed ecosystems are characterized by resilience to ecological disturbances. Longleaf pine ecosystems are not only resilient to frequent fire disturbance, but this feature sustains biodiversity. We examined how fire frequency maintains beta diversity of multi-trophic interactions in longleaf pine ecosystems, as this community property provides a measure of functional redundancy of an ecosystem. We found that beta interaction diversity at small local scales is highest in the most frequently burned Edited by: Gina Marie Wimp, stands, conferring immediate resiliency to disturbance by fire. Interactions become Georgetown University, United States more specialized and less resilient as fire frequency decreases. Local scale patterns of Reviewed by: interaction diversity contribute to broader scale patterns and confer long-term ecosystem Francesco Pomati, Swiss Federal Institute of Aquatic resiliency. Such natural disturbances are likely to be important for maintaining regional Science and Technology, Switzerland diversity of interactions for a broad range of ecosystems. Serena Rasconi, Wasser Cluster Lunz, Austria Keywords: interaction diversity, tri-trophic interaction, resilience, response diversity, scale-dependency, Pinus palustris, prescribed fire *Correspondence: Jane E.
    [Show full text]
  • Biodiversity Loss Threatens the Current Functional Similarity of Beta Diversity in Benthic Diatom Communities
    Microbial Ecology https://doi.org/10.1007/s00248-020-01576-9 MICROBIOLOGY OF AQUATIC SYSTEMS Biodiversity Loss Threatens the Current Functional Similarity of Beta Diversity in Benthic Diatom Communities Leena Virta1,2 & Janne Soininen1 & Alf Norkko2,3 Received: 13 May 2020 /Accepted: 10 August 2020 # The Author(s) 2020 Abstract The global biodiversity loss has increased the need to understand the effects of decreasing diversity, but our knowledge on how species loss will affect the functioning of communities and ecosystems is still very limited. Here, the levels of taxonomic and functional beta diversity and the effect of species loss on functional beta diversity were investigated in an estuary that provides a naturally steep environmental gradient. The study was conducted using diatoms that are among the most important microorgan- isms in all aquatic ecosystems and globally account for 40% of marine primary production. Along the estuary, the taxonomic beta diversity of diatom communities was high (Bray-Curtis taxonomic similarity 0.044) and strongly controlled by the environment, particularly wind exposure, salinity, and temperature. In contrast, the functional beta diversity was low (Bray-Curtis functional similarity 0.658) and much less controlled by the environment. Thus, the diatom communities stayed functionally almost similar despite large changes in species composition and environment. This may indicate that, through high taxonomic diversity and redundancy in functions, microorganisms provide an insurance effect against environmental change. However, when studying the effect of decreasing species richness on functional similarity of communities, simulated species loss to 45% of the current species richness decreased functional similarity significantly. This suggests that decreasing species richness may increase variability and reduce the stability and resilience of communities.
    [Show full text]