BIOVIA Materials Studio 8.0 SP1 Product Release Document.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

BIOVIA Materials Studio 8.0 SP1 Product Release Document.Pdf PRODUCT RELEASE DOCUMENT BIOVIA MATERIALS STUDIO 8.0 SP1 Copyright Notice ©2015 Dassault Systèmes. All rights reserved. 3DEXPERIENCE, the Compass icon and the 3DS logo, CATIA, SOLIDWORKS, ENOVIA, DELMIA, SIMULIA, GEOVIA, EXALEAD, 3D VIA, BIOVIA and NETVIBES are commercial trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the U.S. and/or other countries. All other trademarks are owned by their respective owners. Use of any Dassault Systèmes or its subsidiaries trademarks is subject to their express written approval. Acknowledgments and References BIOVIA may grant permission to republish or reprint its copyrighted materials. Requests should be submitted to BIOVIA Support, either through email to [email protected] or in writing to: BIOVIA Support 5005 Wateridge Vista Drive San Diego, CA 92121 Materials Studio 8.0 SP1: Product Release Document | Page 1 Contents About this Document ................................................... 3 Customer Release Details ............................................ 3 Release of Materials Studio 8.0 SP1 .................... 3 Accelrys becomes BIOVIA .......................................... 3 Key Technical Points .................................................. 3 System Requirements ................................................ 4 Getting Help ............................................................... 4 Release Notes ............................................................... 4 Fixed Defects .............................................................. 4 Known Issues ............................................................. 6 Materials Studio 8.0 SP1: Product Release Document | Page 2 About this Document This document contains the following release information for Materials Studio. This release includes defect fixes and known issues for the current release of Materials Studio. ■ Customer Release Details ■ Release Notes Customer Release Details Release of Materials Studio 8.0 SP1 April 2015 Accelrys becomes BIOVIA Accelrys and Dassault Systèmes have joined forces with the purpose of “providing business and people with 3DEXPERIENCE universes to imagine sustainable innovation capable of harmonizing Product, Nature & Life”. BIOVIA continues to support those products previously released by Accelrys, but some products names have been re-branded as described in the following table: Note: This release references the new product names. However, some areas of the user interface may not be updated until a future release. Previous Accelrys Product Name Current BIOVIA Product Name Accelrys Materials Studio BIOVIA Materials Studio Key Technical Points ■ Materials Studio 8.0 SP1 provides a full installer, you do not need to have installed any previous versions of Materials Studio. If you have installed Materials Studio 8.0 or earlier installing this service pack will automatically upgrade your installation. ■ You should not attempt to apply Materials Studio 8.0 HF1 to Materials Studio 8.0 SP1. Notes: Log in to the BIOVIA Community to get more information on the following changes to support: ■ BIOVIA, as previously announced, has discontinued support for Windows XP, Internet Explorer 6, Office 2003, Red Hat Linux 4, and Windows Server 2003 for our Pipeline Pilot, Accord, Materials Studio, and Discovery Studio product lines. See “June(2011): Notice of changes in platform support matrix for Materials Studio, Discovery Studio, Accord products and Pipeline Pilot” for full details. ■ With Materials Studio 8.0 SP1 we are announcing our plans to move support for Windows Vista into our legacy support status. See “(February 2014): End of support for Materials Studio on Microsoft Windows Vista” for full details. ■ As previously announced, Materials Studio 8.0 (and related service packs) will be the last version that supports the Oracle Grid Engine (OGE) queuing system. Releases of Materials Studio with version greater than 8.0 will no longer support OGE. See “(August 2014): End of support for Oracle Grid Engine (OGE) in Materials Studio” for full details. ■ As previously announced Discover, Equilibria, and DPD have been removed from Materials Studio 8.0. Users can open projects containing results from calculations performed with the modules but cannot open the UI or execute the modules. The shared licensing feature between Discover/Forcite and DPD/Mesocite has also been disabled. See “(September 2013): Retirement of MS Discover, MS Equilibria and MS DPD Interface and MS DPD” for full details. Materials Studio 8.0 SP1: Product Release Document | Page 3 Note: With Materials Studio 8.0 SP1, BIOVIA is announcing or reiterating the dates at which various versions of Materials Studio move into their legacy and unsupported phases: Version Legacy support begins Unsupported as of 6.0 16-Dec-2014 16-Dec-2015 6.0 SP1 16-Dec-2014 16-Dec-2015 6.1 13-Nov-2015 13-Nov-2016 6.1 SP1 13-Nov-2015 13-Nov-2016 7.0 15-Nov-2016 15-Nov-2017 7.0 SP1 15-Nov-2016 15-Nov-2017 7.0 SP2 15-Nov-2016 15-Nov-2017 8.0 15-Dec-2017 15-Dec-2018 8.0 SP1 15-Dec-2017 15-Dec-2018 System Requirements The system requirements for Materials Studio are detailed in the document Materials Studio System Requirements. This file is included in the Materials Studio documentation zip file. The zip file is located on the BIOVIA Download Center. If you are unable to locate the System Requirements document, contact BIOVIA Support at [email protected] or [email protected] (for customers in Japan). Getting Help If you have any questions, contact BIOVIA Support: http://accelrys.com/customer-support/contact.html Release Notes Fixed Defects This release includes the following fixed defects: Severity Description Defect # Major An issue that prevented only those charge groups associated with selected atoms MS-46895 from being deleted has been resolved. Major An issue with using Ctrl+C to copy data from charts containing a large number of MS-47184 points, for example band structure charts, has been resolved. Major On Linux an issue with referencing dependent libraries of the apache httpd server MS-47194 executable from an incorrect location has been resolved. MS-47204 Previously this could cause the gateway service to stop or behave in an unexpected MS-47239 manner. MS-47903 Major An issue with the Strain pattern sections of the Forcite Mechanical Properties and MS-47207 CASTEP Elastic Constants dialogs has been resolved. Previously it would not populate MS-47219 correctly in some circumstances. Major The agreement between potentials on the device and on the electrode has been MS-47217 improved in DMol3 electron transport calculations, leading to faster convergence and more accurate transmission functions. Materials Studio 8.0 SP1: Product Release Document | Page 4 Severity Description Defect # Major The Properties explorer now properly allows editing of properties for Mesoscale MS-47220 template documents. Major An additional check of data model validity in charge group definition has been added. MS-47224 This improves behavior for some cross linked polymer models, where some atoms MS-47556 were previously being assigned to more than one charge group. Major A memory issue in DMol3 calculations for crystals on Linux has been resolved. Jobs MS-47265 will no longer stop for elongated unit cells when large atomic cutoff radii are used. Major An issue with running ONETEP geometry optimizations in continuation mode has MS-47457 been resolved. Major An issue running parallel DFTB+ calculations has been resolved. Calculations will no MS-47458 longer hang when electron density for a periodic system is requested and more than 1 k-point is used. Major An issue that prevented VAMP from creating energy evolution and convergence MS-47890 charts for geometry optimization has been resolved. Minor The unit of the DipoleProperty property in MaterialsScript has changed from e Å to MS-46280 Debye. Minor An issue in the Atomic Temperature Factors dialog (accessed from the Properties MS-47152 explorer) has been resolved. For Isotropic temperature factors changing units between B and U now correctly updates the specified value. Minor An issue has been resolved in Reflex Powder Refinement. Generation of HTML MS-47153 reports will no longer result in slightly incorrect refined occupancies. Minor Instances of orphan DMol3 processes on the Windows 8.1 operating system have MS-47158 been eliminated. Minor Force evaluation in spin-unrestricted DMol3 calculations run in parallel has been MS-47190 improved. The results are no longer dependent on the number of threads used by the server. Minor The Copy Script feature has been enhanced; the selection of the Use lookup table MS-47208 checkbox for the Ewald summation method is now correctly added to the generated script. Minor When setting up DMol3 geometry optimization of excited states with the Spin MS-47234 restricted checkbox checked, the triplet/singlet setting for Optics properties is now properly employed. Minor An issue that caused Dendrogram charts to not be printed correctly has been MS-47402 resolved. Minor The total energy returned by scripts running CASTEP calculations now always includes MS-47529 dispersion correction when the DFT-D setting is used (it was previously ignored in fixed occupancy calculations). Materials Studio 8.0 SP1: Product Release Document | Page 5 Known Issues This release of Materials Studio includes the following known issues: Severity Description Defect # Major On computers using an Intel GMA integrated graphics processor, Materials Visualizer MS-39098 may crash
Recommended publications
  • JRC QSAR Model Database
    JRC QSAR Model Database EURL ECVAM DataBase service on ALternative Methods to animal experimentation To promote the development and uptake of alternative and advanced methods in toxicology and biomedical sciences SDF - STRUCTURE DATA FORMAT: How to create from SMILES The European Commission’s science and knowledge service Joint Research Centre Directorate F Health, Consumers & Reference Materials Chemicals Safety & Alternative Methods Unit The European Commission’s science and knowledge service Joint Research Centre EUR 28708 EN This publication is a Tutorial by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide user support. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. Contact information Email: [email protected] JRC Science Hub https://ec.europa.eu/jrc JRC107492 EUR 28708 EN PDF ISBN 978-92-79-71294-4 ISSN 1831-9424 doi:10.2760/952280 Print ISBN 978-92-79-71295-1 ISSN 1018-5593 doi:10.2760/668595 Luxembourg: Publications Office of the European Union, 2017 Ispra: European Commission, 2017 © European Union, 2017 The reuse of the document is authorised, provided the source is acknowledged and the original meaning or message of the texts are not distorted. The European Commission shall not be held liable for any consequences stemming from the reuse. How to cite this document: Triebe
    [Show full text]
  • BIOVIA DISCOVERY STUDIO® 2016 COMPREHENSIVE MODELING and SIMULATIONS for LIFE SCIENCES Datasheet
    BIOVIA DISCOVERY STUDIO® 2016 COMPREHENSIVE MODELING AND SIMULATIONS FOR LIFE SCIENCES Datasheet ACCURATELY Drug discovery is a multi-objective optimization. Scientists have to optimize both biochemical potency and characteristics such as ADME and toxicity. The latest PREDICT LIGAND release of BIOVIA’s predictive science application, Discovery Studio®, continues the BINDING evolution of new science in its market-leading CHARMm molecular simulations engine. Built on BIOVIA Foundation™, Discovery Studio® is uniquely positioned as ENERGIES the most comprehensive, collaborative modeling and simulation application for Life Sciences discovery research. DISCOVERY STUDIO 2016 Part of the 2016 BIOVIA product release series, Discovery Studio 2016 continues to deliver key new CHARMm-based molecular simulations. NEW AND ENHANCED SCIENCE • New! Steered Molecular Dynamics: Developed and validated in academia by members of the CHARMM Developer community2,3, the CHARMM AFM (Atomic Force Microscopy) function has been included in the latest release of Discovery Studio CHARMm • Apply a pull force to a molecular system to: • Estimate the ligand binding free energy • Study the conformational details of the ligand unbinding process • Investigate protein unfolding or conformational • Major DMol3 Performance Improvement: The latest release changes of the density functional theory program DMol3, version • Two protocols have been included to enable the simulation 2016, includes dramatic performance improvements, both in of protein or protein-ligand complexes while
    [Show full text]
  • In Silico Screening and Molecular Docking of Bioactive Agents Towards Human Coronavirus Receptor
    GSC Biological and Pharmaceutical Sciences, 2020, 11(01), 132–140 Available online at GSC Online Press Directory GSC Biological and Pharmaceutical Sciences e-ISSN: 2581-3250, CODEN (USA): GBPSC2 Journal homepage: https://www.gsconlinepress.com/journals/gscbps (RESEARCH ARTICLE) In silico screening and molecular docking of bioactive agents towards human coronavirus receptor Pratyush Kumar *, Asnani Alpana, Chaple Dinesh and Bais Abhinav Priyadarshini J. L. College of Pharmacy, Electronic Building, Electronic Zone, MIDC, Hingna Road, Nagpur-440016, Maharashtra, India. Publication history: Received on 09 April 2020; revised on 13 April 2020; accepted on 15 April 2020 Article DOI: https://doi.org/10.30574/gscbps.2020.11.1.0099 Abstract Coronavirus infection has turned into pandemic despite of efforts of efforts of countries like America, Italy, China, France etc. Currently India is also outraged by the virulent effect of coronavirus. Although World Health Organisation initially claimed to have all controls over the virus, till date infection has coasted several lives worldwide. Currently we do not have enough time for carrying out traditional approaches of drug discovery. Computer aided drug designing approaches are the best solution. The present study is completely dedicated to in silico approaches like virtual screening, molecular docking and molecular property calculation. The library of 15 bioactive molecules was built and virtual screening was carried towards the crystalline structure of human coronavirus (6nzk) which was downloaded from protein database. Pyrx virtual screening tool was used and results revealed that F14 showed best binding affinity. The best screened molecule was further allowed to dock with the target using Autodock vina software.
    [Show full text]
  • BIOVIA Discovery Studio
    3DS.COM/BIOVIA3DS.COM/BIOVIA © © DassaultDassault Systèmes Systèmes| |Confidential Confidential InformationInformation | |3/16/2019 3/16/2019| BIOVIA Discovery Discovery BIOVIA COMPREHENSIVE MODELING 創源生技 FOR FOR SCIENCESLIFE ANDSIMULATIONS 經理 陳冠文 分子視算中心 Studio (Gene) 3DS.COM/BIOVIA © Dassault Systèmes | Confidential Information | 3/16/2019 | Copyright©2019 GGA Corp., All rights reserved. AllCorp., GGA Copyright and Disclaimer • Copyright © 2019 GGA corp. All rights reserved. • This presentation and/or any related documents contains statements regarding our plans or expectations | for future features, enhancements or functionalities of current or future products (collectively "Enhancements"). Our plans or expectations are subject to change at any time at our discretion. 3/16/2019 Accordingly, GGA Corp. is making no representation, undertaking no commitment or legal obligation to create, develop or license any product or Enhancements. • The presentation, documents or any related statements are not intended to, nor shall, create any legal | Confidential Information | Information | Confidential obligation upon GGA Corp., and shall not be relied upon in purchasing any product. Any such obligation shall only result from a written agreement executed by both parties. Systèmes • In addition, information disclosed in this presentation and related documents, whether oral or written, is © Dassault Dassault © confidential or proprietary information of GGA Corp.. It shall be used only for the purpose of furthering our business relationship, and shall not be disclosed to third parties. 3DS.COM/BIOVIA Copyright©2019 GGA Corp., All rights reserved. GGA is part of the BIONET Group (訊聯生物科技) | CEO: Christopher Tsai, Ph.D. 蔡政憲 博士 3/16/2019 Established: Nov. 2008 Main Product & Service Areas: | Confidential Information | Information | Confidential 1.
    [Show full text]
  • Quantitative Structure-Activity Relationship and Molecular Docking
    Journal of Advanced Research (2017) 8, 33–43 Cairo University Journal of Advanced Research ORIGINAL ARTICLE Quantitative structure-activity relationship and molecular docking studies of a series of quinazolinonyl analogues as inhibitors of gamma amino butyric acid aminotransferase Usman Abdulfatai *, Adamu Uzairu, Sani Uba Department of Chemistry, Ahmadu Bello University, P.M.B. 1044, Zaria, Nigeria GRAPHICAL ABSTRACT ARTICLE INFO ABSTRACT Article history: Quantitative structure-activity relationship and molecular docking studies were carried out on a Received 4 July 2016 series of quinazolinonyl analogues as anticonvulsant inhibitors. Density Functional Theory Received in revised form 11 October (DFT) quantum chemical calculation method was used to find the optimized geometry of the 2016 anticonvulsants inhibitors. Four types of molecular descriptors were used to derive a quantita- tive relation between anticonvulsant activity and structural properties. The relevant molecular * Corresponding author. Fax: +234 (+603) 6196 4053. E-mail address: [email protected] (U. Abdulfatai). Peer review under responsibility of Cairo University. Production and hosting by Elsevier http://dx.doi.org/10.1016/j.jare.2016.10.004 2090-1232 Ó 2016 Production and hosting by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 34 U. Abdulfatai et al. Accepted 15 October 2016 descriptors were selected by Genetic Function Algorithm (GFA). The best model was validated Available online 16 November 2016 and found to be statistically significant with squared correlation coefficient (R2) of 0.934, 2 adjusted squared correlation coefficient (Radj) value of 0.912, Leave one out (LOO) cross valida- 2 2 Keywords: tion coefficient (Q ) value of 0.8695 and the external validation (Rpred) of 0.72.
    [Show full text]
  • Preparing a PDB File the Protein Data Bank (PDB) Is Possibly the World’S Leading Public Source of Three-Dimensional Data for Biological Molecules (1)
    Copyright ©2006, Accelrys Software Inc. All rights reserved. Preparing a PDB File The Protein Data Bank (PDB) is possibly the world’s leading public source of three-dimensional data for biological molecules (1). As of July 2006, over 37,000 entries could be found in the PDB. Hundreds more are being added every month. Both X-ray diffraction and other solid-state techniques account for the majority of the structures. However, over 5500 NMR structures are also available. These deposited structures include proteins, peptides, nucleic acids, carbohydrates, and complexes of these molecules. Figure 1: Schematic view of the ligand-binding domain from the As a first step in a modeling project, many vitamin D receptor (PDB file 1IE9). researchers look in the PDB to find available The crystallographic waters are shown structures related to their project. Preparation of as small spheres and the bound ligand these molecules for work in the Discovery Studio is shown as a CPK model. environment is a critical process to your modeling OH efforts. H3C CH In the following steps, we will load a PDB file for 3 the ligand-binding domain of the vitamin D receptor H C 3 (VDR) in complex with a ligand (named VDX in CH 3 this exercise). The file is 1IE9 as reported by Tocchini-Valentini et al. (5). The vitamin D receptor is responsible for the expression of a H variety of genes including calcium metabolism, bone formation, and cell growth and differentiation CH 2 (2). Understanding VDR conformational changes resulting from interactions with bound ligands may HO OH help to identify and treat persons at risk for Figure 2: 1α,25-dihydroxyvitamin disorders such as osteoporosis, breast cancer, or D3, the metabolized form of prostate cancer.
    [Show full text]
  • Original Research Paper In-Silico FDA-Approved Drug Repurposing to Find
    Original Research Paper In-silico FDA-approved drug repurposing to find the possible treatment of Coronavirus Disease-19 (COVID-19) Kumar Sharp1, Dr. Shubhangi Dange2* 12nd MBBS undergraduate student, Government Medical College and Hospital, Jalgaon 2Associate Professor, Dept. of Microbiology, Government Medical College and Hospital, Jalgaon *Corresponding author: - Dr. Shubhangi Dange, Associate Professor, Department of Microbiology, Government Medical College and Hospital, Jalgaon Email: [email protected] Abstract Identification of potential drug-target interaction for approved drugs serves as the basis of repurposing drugs. Studies have shown polypharmacology as common phenomenon. In-silico approaches help in screening large compound libraries at once which could take years in a laboratory. We screened a library of 1050 FDA-approved drugs against spike glycoprotein of SARS-CoV2 in-silico. Anti-cancer drugs have shown good binding affinity which is much better than hydroxychloroquine and arbidol. We have also introduced a hypothesis named “Bump” hypothesis which and be developed further in field of computational biology. Keywords: spike glycoprotein; FDA; drug repurposing; anti-cancer; hydroxychloroquine Introduction Identification of potential drug-target interaction for approved drugs serves as the basis of repurposing drugs. Studies have shown polypharmacology as common phenomenon [1][2]. Since the three-dimensional structures of proteins of SARS-CoV2 have been mapped it opens opportunity for in-silico approaches of either novel drug discovery or drug repurposing. In the absence of an exact cure or vaccine, coronavirus disease-19 has taken a huge toll of humanity. Our study of target specific drug docking and novel hypothesis contributes in this fight. In-silico approaches help in screening large compound libraries at once which could take years in a laboratory.
    [Show full text]
  • What Is Discovery Studio?
    Discovery Studio 2.0 Accelrys Life Science Tool 林進中 分子視算 What is Discovery Studio? • Discovery Studio is a complete modelling and simulations environment for Life Science researchers – Interactive, visual and integrated software – Consistent, contemporary user interface for added ease-of-use – Tools for visualisation, protein modeling, simulations, docking, pharmacophore analysis, QSAR and library design – Access computational servers and tools, share data, monitor jobs, and prepare and communicate their project progress – Windows and Linux clients and servers Accelrys Discovery Studio Application Discovery Studio Pipeline ISV Materials Discovery Accord WeWebbPPortort Pipeline ISV Materials Discovery Accord (web Studio Studio (web PilotPilot ClientClient Studio Studio ClientsClients access) (Pro or Lite ) (e.g., Client Client access) (Pro or Lite ) (e.g., Client Client Spotfire) Spotfire) Client Integration Layer SS c c i iT T e e g g i ic c P P l la a t t f f o o r r m m Tool Integration Layer Data Access Layer Cmd-Line Isentris Chemistry Biology Materials Accord Accord IDBS Oracle ISIS Reporting Statistics ISV Tools Databases Pipeline Pilot - Data Processing and Integration • Integration of data from multiple disparate data sources • Integration of disparate applications – Third party vendors and in- house developed codes under the same environment Pipeline Pilot - Data Processing and Integration • Automated execution of routine processes • Standardised data management • Capture of workflows and deployment of best practice Interoperability
    [Show full text]
  • Introduction to Biovia Discovery Studio
    Introduction to Biovia Discovery Studio 1 Introduction Discovery Studio is a suite of software for simulating small molecule and macromolecule systems. It is developed and distributed by Dassault Systemes BIOVIA (formerly Accelrys). It is a comprehensive software suite for analyzing and modeling molecular structures, sequences, and other data of relevance to life science researchers. The product includes functionality for viewing and editing data along with tools for performing basic data analysis. The Discovery Studio Visualizer is a free viewer that can be used to open data generated by other software in the Discovery Studio product line. It is designed to offer an interactive environment for viewing and editing molecular structures, sequences, X-ray reflection data, scripts, and other data. 2 It also provides a rich set of viewers for displaying plots and other graphical representations of data. The application runs on Windows and Linux and is a fully integrated desktop environment that provides access to standard operating system features such as the file system, clipboard, and printing services. Scope Discovery Studio provides software applications covering the following areas: • Simulations – Including Molecular Mechanics, Molecular Dynamics, Quantum Mechanics – For molecular mechanics based simulations: Include implicit and explicit-based solvent models and membrane models 3 – Also includes the ability to perform hybrid QM/MM calculations • Ligand Design – Including tools for enumerating molecular libraries and library optimization
    [Show full text]
  • In Silico Analysis, Modeling, Docking and Pharmacophore Studies of Proteins Involved in Auto Immune Maladies (Rheumatoid Arthritis)
    Sahithi, et al. Int J Pharm 2015; 5(3): 953-960 ISSN 2249-1848 International Journal of Pharmacy Journal Homepage: http://www.pharmascholars.com Research Article CODEN: IJPNL6 IN SILICO ANALYSIS, MODELING, DOCKING AND PHARMACOPHORE STUDIES OF PROTEINS INVOLVED IN AUTO IMMUNE MALADIES (RHEUMATOID ARTHRITIS) G. Prathima1*, Dr. A. Ravindernath2, Dr. P. Raja Rao 3, P. Sahithi 4 1*M.Tech Biotechnology Final year, University College of Technology, Osmania University, Hyderabad, India 2 Professor and Head, University College of Technology, Osmania University, Hyderabad, India 3 Associate Professor, University College of Technology, Osmania University, Hyderabad, India 4Assistant Professor, University College of Technology, Osmania University, Hyderabad, India *Corresponding author e-mail: [email protected] ABSTRACT Cytokine networks participate with paracrine and autocrine loops maintaining cellular activation in the synovial intimal lining. In rheumatoid arthritis inflammatory changes occur throughout the connective tissues of the body. The most useful medications in relieving the pain and disability of rheumatoid arthritis with anti-inflammatory properties are aspirin and ibuprofen. The present project was focused on study of anti-rheumatoid arthritis activity of bioactive compounds.In the present study, homology modeling, mutagenesis, docking studies were carried out with some of the selected bioactive compounds.PDB latest version was used to identify the target protein, obtain sequence from protein sequence data bank and homology modeling for the target protein was done using modeler 9.14 version and MOE 2008. version. Docking studies using molecular operating environment program revealed that Ellagic acid, Curcuminoid and Methyl gallate possess anti rheumatoid arthritis activity. Further, pharmacophore mapping studies were performed using DISCOVERY STUDIO on these compounds in order to identify the pharmacophoric feature responsible for the observed activity of the compounds.
    [Show full text]
  • Molecular Dynamics Simulation Study of the Selectivity of a Silica Polymer for Ibuprofen
    International Journal of Molecular Sciences Article Molecular Dynamics Simulation Study of the Selectivity of a Silica Polymer for Ibuprofen Riccardo Concu * and M. Natalia D. S. Cordeiro * REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal * Correspondence: [email protected] (R.C.); [email protected] (M.N.D.S.C.); Tel.: +351-220-402-502 (R.C. & M.N.D.S.C.) Academic Editor: Humberto González-Díaz Received: 19 May 2016; Accepted: 28 June 2016; Published: 7 July 2016 Abstract: In the past few years, the sol-gel polycondensation technique has been increasingly employed with great success as an alternative approach to the preparation of molecularly imprinted materials (MIMs). The main aim of this study was to study, through a series of molecular dynamics (MD) simulations, the selectivity of an imprinted silica xerogel towards a new template—the (˘)-2-(P-Isobutylphenyl) propionic acid (Ibuprofen, IBU). We have previously demonstrated the affinity of this silica xerogel toward a similar molecule. In the present study, we simulated the imprinting process occurring in a sol-gel mixture using the Optimized Potentials for Liquid Simulations-All Atom (OPLS-AA) force field, in order to evaluate the selectivity of this xerogel for a template molecule. In addition, for the first time, we have developed and verified a new parameterisation for the Ibuprofen® based on the OPLS-AA framework. To evaluate the selectivity of the polymer, we have employed both the radial distribution functions, interaction energies and cluster analyses. Keywords: molecular dynamics; ibuprofen; molecular imprinting; xerogels; sol-gel; GROMACS; OPLS-AA 1.
    [Show full text]
  • Molecular Docking Studies of Some Tetrahydronaphtalene-Benzimidazole Derivatives and Correlation with Their Corresponding Anti-Mrsa Activities
    J. Fac. Pharm. Ankara / Ankara Ecz. Fak. Derg., 43(1): 20-27, 2019 Doi: 10.33483/jfpau.519907 ORIGINAL ARTICLE / ÖZGÜN MAKALE MOLECULAR DOCKING STUDIES OF SOME TETRAHYDRONAPHTALENE-BENZIMIDAZOLE DERIVATIVES AND CORRELATION WITH THEIR CORRESPONDING ANTI-MRSA ACTIVITIES YENİ TETRAHİDRONAFTALEN-BENZİMİDAZOL TÜREVİ BİLEŞİKLERİN MOLEKÜLER DOKİNG ÇALIŞMALARI VE ONLARIN ANTİ-MRSA AKTİVİTELERİNİN KARŞILAŞTIRILMASI Fikriye ZENGİN, Mehmet Murat KIŞLA*, Zeynep ATEŞ-ALAGÖZ Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara, Turkey. ABSTRACT Objective: Methicillin- resistant S. aureus (MRSA) is a type of bacteria which is resistant to various types of antibiotics and causes mortality in hospital environment and community. To further investigate the inhibition activity of previously synthesized retinoidal compounds against MRSA, docking studies of these compounds with MRSA pyruvate kinase (PK) were made. Material and Method: As a first step, ligand preparation procedure has been made. For optimization of compounds, Hyperchem Professional was used. Molecular Mechanics Force Field (MMFF) and semi-empirical methods have been implemented in this program. After converting the ligands to pdb files, charges and torsions were added via AutoDockTools 1.5.6. Macromolecule file for MRSA Pyruvate kinase (PDB ID:3T07) was procured from protein data bank. Appropriate chain for binding was chosen via UCSF Chimera. Polar hydrogens and Gasteiger charges were added to macromolecule via AutoDockTools 1.5.6. Gridbox has been predicted by protein- ligand complex which is currently present in protein data bank and prepared via same software. Docking process was made via AutoDock Vina. For MIC values of retinoidal compounds, previous study by Ates-Alagoz et al. has been used. In addition, some QSAR properties were calculated via Hyperchem Professional and were also interpreted.
    [Show full text]